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ABSTRACT
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Computer-Aided Diagnosis (CAD) approaches categorise medical images substantially. Shape,
colour, and texture can be problem-specific in medical imagery. Conventional approaches rely
largely on them and their relationship, resulting in systems that can’tillustrate high-issue domain
ideas and have weak prototype generalization. Deep learning techniques deliver an end-to-
end model that classifies medical photos thoroughly. Due to the improved medical picture
quality and short dataset size, this approach may have high processing costs and model layer
restrictions. Multilayer vectorization and the Coding Network-Multilayer Perceptron (CNMP) are
merged with deep learning to handle these challenges. This study extracts a high-level character-
istic using vectorization, CNN, and conventional characteristics. The model'’s steps are below. The
input picture is vectorized into a few pixels during preprocessing. These pixel images are deliv-
ered to a coding network being trained to create high-level classification feature vectors. Medical
imaging fundamentals determine picture properties. Finally, neural networks combine the col-
lected features. The recommended technique is tested on ISIC2017 and HIS2828. The model’s

Accepted 8 December 2022

KEYWORDS

Multi-layer vectorization;
CNN; image feature
extraction; Coding Network
Multi-layer Perceptron
(CNMP)

accuracy is 91% and 92%.

1. Introduction

Image identification by computer programmes has
grown in popularity and activity in machine learning
and application-specific research due to the tremen-
dous progress in digital image recording and storage
technologies [1]. Fast and accurate annotation of med-
ical images is increasingly important in Computer-
Aided Diagnosing (CAD) systems, paving the way for
an intelligent CAD system across most medical fields. A
large number of Americans get a skin cancer diagnosis
each year [2]. If it had been discovered sooner, sev-
eral lives might have been spared. Numerous research
publications have been published in the area of med-
ical image classification. The focusing area, contrast,
and white balance of these photographs obtained from
diverse sources could differ. Furthermore, inner struc-
tures with various textures and pixel densities are com-
monly seen in these photographs. It is difficult to accu-
rately define certain groups if the traditional attributes
are used to describe medical images [3].

The numerical attribute space in which machine
learning algorithms operate is a two-dimensional array
with input rows and columns that include featured

characteristics and actual examples. Consequently, the
image pixel must first be translated into vector repre-
sentations to execute numerical machine learning on
photos. This method, the first step in examining natu-
ral language processing, is known as vectorization. The
geometrical primitives use vector graphics to depict
a raster image. Because of these primitives, it is very
small, scalable, editable, independent of resolution, and
even smaller in file size. Due to their qualities, they are
also appropriate for mobile apps. The vectorization pro-
cess makes new possibilities for using vector images and
their inclusion in the creative arts, transforming raster
images into vector representations [4].

Deep learning has been the most active area of study
in computer-based applications in recent years. Due
to recent advancements in several academic domains,
deep learning has been attempted to handle non-
medical images. The deep model’s design was originally
explained by Hinton et al. [5]. Various deep models are
created to overcome image issues. A deep CNN trained
to recognize images was used in the Large-Scale Ima-
geNet Visual Recognizing Challenges 2010 [6]. Because
of this fruitful study, much work has already been put
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into using this unique concept to address the issues
associated with categorizing medical images.

The classification of clinical photographs into differ-
ent categories to assist doctors in diagnosing illnesses
and research is the most urgent topic in image iden-
tification. Two categories make up the categorization
of medical imagery. The first step is to extract the
image’s relevant components. The next step involves
creating models that classify the image database using
the attributes. It used to be a difficult, time-consuming
procedure for doctors to obtain properties from med-
ical images and then classify them using their expert
information. This approach is probably going to pro-
vide inconsistent or unpredictable outcomes. Based on
prior research, the application study of medical image
classification is quite significant. Numerous published
works on this topic result from the researchers’ efforts.
It is now unable to carry out this duty successfully,
nevertheless. After completing the categorization pro-
cedure, the data will help physicians identify illnesses
that need further research. Therefore, figuring out how
to accomplish this task is crucial.

Before the development of deep structures, several
prior studies [7-9] used shallow approaches for cat-
egorizing images that only relied on their integration
of shape, colour, and texture data. Low-level features,
which are underrepresented in high-level issue domain
theories and have limited generalizability, are generally
cited as the primary problem with these models fea-
ture extraction techniques. In the non-medical imag-
ing industry, deep architectures have a lot of expertise
[10-12]. Deep learning techniques are the extremely
exciting part of machine learning, which require a
quick approach to create a complete model that com-
putes final classification labels from input image pixels.
Because large datasets are necessary for deep networks
with vectorization to gain significant properties. Med-
ical databases usually have a shortage of photos since
getting them is notoriously difficult. To directly handle
a small dataset, a deep model has been used. In addi-
tion to these problems, it is shown that the model’s
interpretability is weak, and training this prototype
generally involves a significant quantity of processing.
A new model combines convenient features with deep
networks to instantly retrieve high-level features for
medical image classification. This model does not fully
benefit from conventional doctors’ experiences, but it
does address the issues with conventional methods
compared to deep models.

2. Contribution
This paper’s primary contributions are reviewed as fol-

lows:

(i) High-level characteristics are used with common
features to categorize medical photos. A multilayer

vectorization is used in the pre-processing step
to several pixels being trained using the deep
CNN referred to as the coding network to recover
high-level detailed aspects of the image rather
than the suggested domain-transferring convolu-
tional neural networks (DT-CNNs). The suggested
model’s performance and interpretability might be
improved by including common aspects of medical
images.

(ii) There are two alternative methods for combining
high-level and standard features. The typical pro-
cedure is cumbersome, time-exhausting, and dif-
ficult to execute. Therefore, one result is to offer
a fixed argument representation among high-level
and standard features. Another approach is pre-
sented to deal with these issues: a revolutionary
design that cannot incorporate features but may
nevertheless change their dimensions on its own.

3. State-of-the-Art

Two sorts of techniques — standard systems and deep
model systems - are offered to handle these challenging
image classification problems. Support vector machines
and random forests are a few examples of traditional
methods, as are colour and texture [13-15]. We'll begin
by providing a thorough summary of earlier studies
on image classification. Feature integration for image
categorization issues will be assessed in the literature
[16-18].

In the suggested random forests utilizing single-
photon emissions computerized tomography (SPECT),
the image categorization is carried out [19] to assist
in the diagnosis of Alzheimer’s disease (A.D.). They
started by using partial least squares to obtain score
features from datasets. The method regressively classi-
fies the image to the closest centroid until the classified
image is obtained. Incremental learning is the key com-
ponent of this approach that can be understood from
earlier models without needing to collect images from
nothing.

A tailored CNN is created to classify images of lung
patches. Compared to SIFT includes, rotating-invariant
localized binary pattern features and unsupervised fea-
ture extraction using the restrained Boltzmann system,
this model employed a single convolutional layer to
obtain detailed features and had the best classification
result (RBM). Principle component analyzing network
(PCANet), a fundamental deep learning technique cre-
ated by the researchers, has been used by [20] in com-
bination with colour image spatial dispersion data to
achieve cutting-edge classification accuracy across sev-
eral databases [21]. To identify different types of ill-
nesses in chest X-ray images, the researchers employed
a CNN trained using ImageNet. They were able to
get the greatest accuracy results by combining infor-
mation pulled from CNN with tailored features. It is



detailed how medical imaging is used to convey learn-
ing. They also showed how their discoveries might be
used to diagnose interstitial lung disease and identify
thoracoabdominal lymph nodes (L.N.s) (ILD). Initially,
localized binary patterns (LBP) and localized quinary
patterns (LQP), which are robust to minute deflections
during lung cancer diagnosis, were combined with the
scattering transformation to extract features [22, 23].
They also evaluated the 2D-Hela and Pap smear perfor-
mance effectiveness of the useful database. The whole
sliding images (WSI) of breast cancer were validated
using a dataset of 160 patients with infective ductal car-
cinoma (IDC) and reached balanced precision of 84.23
percent [24]. A deep learning approach is proposed for
automatically recognizing IDC regional tissue.

A broader road vectorization approach is created by
fusing and improving the methods described in their
earlier work [25]. Utilizing interactive CIS, road pixels
are being carefully extracted. The researchers devel-
oped a single-pass parallel sequence tracing algorithmic
strategy for identifying road width and format, increas-
ing the temporal complexity of the parallel pattern
tracing approach. Road centerlines were then produced
using morphological procedures based on the chosen
format and width. Since the operators of the thinning
bend the routes at crossings, the method examines
the road routes inside the impacted regions. At road
junctions, location upgrades have been made using the
traced paths. To retrieve the vector information, the
road centerlines are then traced using the exact coordi-
nates of the road intersections. This approach depends
on the diversity of road features, for vectorization is a
disadvantage. Because their breadth is smaller than the
width of the bigger road, some small road connections
are accidentally demolished.

Line drawings are vectorized. Initial vectorization
techniques identified geometric primitives, such as
ellipses, straight lines, Bézier curves, and B-splines
[26-28]. Line illustration vectorization is created by
converting scanned technical drawings into electric
schematics. Recognition-based algorithms can gener-
ate compact parametric curves using fitting techniques,
but the vectorization’s robustness seems dubious. For
instance, extra treatments are necessary to avoid over-
fitting errors such as layer segregation when the lines in
the input image have varied thicknesses.

4. System model

Since the complete presentation of LeNet-5 has high
efficiency, CNN is commonly applied in image cate-
gorization, object recognition and video surveillance.
CNN’s often have convolutional, pooling, fully con-
nected, and softmax layers. Convolutional and pooling
layers are referred to as the softmax layer for feature
extraction. The Convolution Layers are the first layers
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used to extract characteristics from an image. It main-
tains the link between pixels by learning characteristics
from a small set of input data. It is a mathematical
concept with two inputs: an image matrix and a ker-
nel or filter. Using receptive fields, the convolutional
layer detects (many) patterns in different sub-regions
of the input field. Padding is essential in the devel-
opment of CNN. The image’s initial size is reduced
after the convolution technique. In addition, there are
numerous convolution layers in the image classifica-
tion task, and our original image is shrunk after each
step, which we do not desire. Second, as the kernel
goes over the original image, it passes through the
central layer more than the edge layers, causing an
overlap. To address this issue, a new idea known as
padding was established. It is an additional layer that
can be added to the boundaries of an image while
maintaining the original image’s size. The pooling layer
is another fundamental part of a CNN that is essen-
tial in image pre-processing. If the image is too large,
the pre-process compresses it by reducing the num-
ber of parameters. The pixel density is reduced when
the image is shrunk, and the downscaled image is
produced from the previous layers. The pooling layer
reduces the spatial size of the representation, the num-
ber of parameters and the amount of processing in the
network, and hence controls overfitting. The pooling
layer summarises the features in a region of the feature
map produced by a convolution layer. Max pooling is
a rule that takes the maximum of a region and helps
to proceed with the image’s most important elements.
It is a sample-based method for converting continu-
ous functions to discrete equivalents. Its major goal
is to downscale an input by lowering its dimension-
ality and rejecting assumptions about characteristics
included in the sub-region.Soft-max function to clas-
sify an object with probabilistic values 0 and 1. The
softmax function is chosen as the activation function
in the output layer of neural network models that pre-
dict a multinomial probability distribution. The pro-
posed primary design principles include: first, image
processing is carried out, in which the image is vec-
torized into several 2D pixels by removing the mean
ZCA and RGB blanching; next, the appropriate stim-
ulation function is chosen; and finally, initial weights
are determined. When the initial weights appear too
small or too large, the proposed deep network cannot
learn, and the initial weights will diverge. Augmenting
data also involves collecting random patches after the
input image and flipping it horizontally, which is signif-
icant in medical image processing. Dropout is also used
to prevent overfitting, and local normalized response
reduces error rates. Decide on the best information
gain. The suggested multilayer vectorization and clas-
sification architecture have been used to accomplish
the most common practice, which is for the informa-
tion gain to decline with each epoch. The following



358 (&) D.HEMANANDETAL.

method is used to extract the detailed image feature
information.

4.1. Image processing and vectorization

The pre-processing step comprises elimination and
binarization based upon the organization of the input
image. The source input image’s red, green, and blue
channels are typically combined into one channel and
normalized. The vectorization of the image is then car-
ried out. The image is separated into several pixels,
and each pixel is independently examined using CNN
networking to more precisely obtain the information.

For the multilayer vectorial portrayal of the source
input image, I include the following layer during the
pre-processing step.

e A supportive domain D covers an input image’s
pixels subset.

e C(p) is a colour gradient function that assigns an
RGB colour to each pixel in the image; peD.

e A(p) defines the functional opacity gradient that
assigns a value of opacity per pixel p € D.If p ¢ D,
then set A(p) = 0.

Via recursive a-blending of the ordered multilayers, the
output image I, is provided from an n-layer depiction.

In(p) = An(P)Cn(P) + (1 - AH(P))Infl(p) (1)

Whereas the formulation above is generic, the colour
gradient and opacity gradient are limited to linear pat-
terns with an identical orientation that conforms to
the SVG format’s 2 linear gradients. The colour vector-
ization includes C(p) = co + ¢1O'p as well as A(p) =
ao + a10'p wherein ¢y as well as ¢; are colour vectors
concerning opacity scalars (ag, a;); O represents the
vector orientation. Though linear gradients became less
descriptive rather than more sophisticated primitives as
gradient combined and diffused curves, it is quite easier
to manage due to their modest parameters. It is handled
by nearly every vector graphics application.

4.2. Coding network

The input medical image possesses a 140 x 140 fixed-
size RGB image, which initially undergoes the removal
of the median RGB value per pixel by vectorization
before transmitting the medical image to the coding
network. A succession of pooling layers and convolu-
tional layers make up the coding networking. A pixel
of 7 x 7,8 x 8, 10 x 10; stride, and padding of 1 and 0
pixels, are being utilized in this convolutional layer. The
following is the definition of the convolution operation:

¥ =f(b}+zw;j—1 *x;> )
Where the coding network with the r-th layer is rep-
resented by r, as well as the activation function has

Table 1. The coding network’s comprehensive structure.

Type of Layer Size of Patch/Stride Resultant Size
Convolution Layer 10 x 10/1 132 x 132 x 30
Convolution Layer 10 x 10/1 122 x 122 x 30
Max pooling Layer 4 % 4/2 60 x 60 x 30
Convolution Layer 8 x 8/1 52 x 52 x 62
Max pooling Layer 4 x 4/2 25 x 25 %62
Convolution Layer 7x71 18 x 18 x 126
Convolution Layer 8 x 8/1 10 x 10 x 254
Convolution Layer 7x71 2x2x254
Rasterize - 2x2x4
Final Softmax Layer - 2x2x4

been represented by f’; The i-th input, as well as j-th
output feature maps, are represented as x; and yj; the
convolution kernel connecting x; as well as y; equals to
wjj; the bias has been represented by bj; * represents
convolution operational symbol

The pooling layer was created via max-pooling using
4 x 4 windows and 2 strides, indicating an overlapping.
The operational pooling is described as

max .
0<mmn<4 (x;‘4+m,k'4+n) (3)

)’},k =
Here, the 4 x 4 input feature map x' is locally overlap-
ping to produce every component in the y* output qual-
ity map. Softmax classifier is present at the final layer
of the coding system to categorize the medical image
based on the detailed vectorization to obtain the fea-
tures. The coding network’s comprehensive structure is
shown in Table 1.

Activation Function: The functional sigmoid f(x) =
(14 e *)~! as well as the functional f(x) = tanh(x)
are the fundamental activation functions; its deriva-
tives are expressed by themselves, and they may transfer
the greater variation outcomes into a small distance.
The two functions are similar issues of slower conver-
gence rate; hence, there is a diffusion gradient issue.
f(x) = max(0,x), Rectified Linear Units (ReLUs) func-
tional activation of the coding network is computation-
ally efficient and limit the diffusion impact of gradient.
Furthermore, ReLUs are used to converge quicker in
comparison with sigmoid or tanh.

Softmax Layer: In the proposed network, the final
layer is linked with a softmax layer via which “n” var-
ious classes are predicted by estimating the probability
of each classification. The feature is rasterized into x,

«_»

where “x” denotes the column feature vector:

Py =jlx,0) = (4)

T
Zj=1 er X

Here, GjT denotes weight vector; the objective goal com-
prises k classes.

Thus, the colour instant, as well as texture features,
are employed as traditional features. Statistically, a tex-
ture distribution feature can be used to explain an



image’s inherent features. Rather than single pixels, it
uses many pixels area processing. The colour instant
depends on a specific pixel and isn’t highly reactive to
the image’s size or angle.

To estimate the texture features, the gray-level “G”
co-occurrence matrix is obtained from the image to
estimate the statistical pairs of neighbouring pixels. The
angular secondary moment (ASM), entropy (ENT),
contrast (CON), and correlation (COR) are used to rep-
resent the texture properties that may be extracted from
the matrix G fixing the distance between one to two pix-
els with an angle of 0-135 degrees. The following are the
descriptions:

ASM = XS: 25: G(i, ) (5)
i

Here, G represents the matrix of gray-level co-
occurrence; s represents G’s size; and G(3, j) denotes the
row (i) and the column (j) component of the G matrix.

In matrix G, the angular secondary moment is
defined as the addition of each square element. It rep-
resents the image’s uniformity as well as the texture’s
hardness. The ASM value is minimal when there is an
identity element in matrix G, which is huge if this does
not happen.

ENT = =" G(i, j)log(Gi, ) 6)

L

Entropy is defined as an uncertainty measurement that
can be utilized to represent the image’s ambiguous
data. The image includes the most quantity of unclear
data depending on the maximum ENT value if all the
components in matrix G remain the same. The distri-
bution of grey-value in the image becomes extremely
convoluted at this point.

CON =Y "% (i—j)’G(,j) (7)
i

Contrast measurement is involved in eventually
spreading the data in an image and how clear the image
appears. The image is viewed when the CON value is
higher.

S 2iGG, ) — paik
COR:ZZJJ P~ Bally
i

0x0y

(8)

Here, ity and u, represent the mean value of G’s dis-
tribution whereas oy and o represent the standard
deviation of G’s distribution.

The mean and standard deviation are estimated with
each other after computing ASM, CON, ENT, and
COR, resulting in a textural feature vector. With these
traditional features, it will be combined with the colour
instant.
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The basic deviation, mean, and third-order colour
instant must be used to illustrate colour features. The
darkness or lightness of the image is obtained via mean;
the image’s colour dispersal range is obtained via stan-
dard deviation; the third-order colour moment will
reveal the image’s colour distribution symmetry. As
a result, this method yields a colour momentary fea-
ture vector. The following is the description of a colour
moment:

1 N
A= ;P(i,j) (10)
1 N
Vi = N}Z(P(i,j)—Ai)z (11)
3 1 - P 3
Si = N N ; (PGi,j) — Ay) (12)

Here, P denotes the image’s matrix representation; N
denotes the number of pixels; A;, Vi, S; represent the
mean, variance, and skewness of the input image’s ith

channel and P(i, j) represents the pixel j in i channel.

Feature Fusion: Two alternative fusion methods are
designed to integrate the features after isolating the
high-level and traditional features. The first strategy, R
feature fusion, is to specify fixed proportions. The fol-
lowing is how the categorization of integrated features
is calculated:

NF=A-LF+(1—2)-HF (13)

Here, NF denotes the fusion feature; L.F. indicates the
traditional features, whereas H.E. indicates the high-
level features. The weighted parameter A indicates the
relative relevance of two separate qualities. Since it
is globally weighted, this approach is quite simple to
execute. There are zero requirements to recalibrate as
the parameter X is being obtained. Softmax used the
integrated feature to complete the final classification
process.

Furthermore, this method applies to linear feature
integration and obtaining the parameter A needed via
a considerable series of experiments. Most importantly,
fusing the features to portray the images adequately is
tough. Furthermore, the identical experiment must be
repeated when the dataset is changed to retrieve the
parameter A.

To address these issues, a new approach can
autonomously alter the percentage of high-level charac-
teristics to conventional features, avoiding the tedious
and time-consuming procedure of parameter calcula-
tion. The method entails training a perceptron neu-
ral network that possesses multiple numbers of layers
and is capable of fusing nonlinear space features. This
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feature integration operation is as follows:

n m
RF = max | 0, Z wil; + Z wihj + b (14)

! J

Here, LF = {I}, b, ..., I, . ..., I} representing the tra-
ditional featuresas wellas HF = {hy, ha, ..., hiy. ..., hy)
representing the high-level features, respectively, and b
denotes bias. In the case of feature classification, the
multilayer perceptron has a fully connected layer fol-
lowed by a softmax layer is utilized. The kernel func-
tional concept aims to convert low-dimensional data
into high-dimensional data. As a result, it can obtain
more discriminative detailed features rather than lin-
ear space features. In the tests, this technique will be
clearly illustrated. Furthermore, because it will not try
to estimate the identical parameter many times, it might
significantly minimize the computation amount.

5. Result and discussion

A Matlab toolkit, namely MatConvnet, creates mul-
tilayer vectorization and convolutional neural net-
works for constructing the coding network model to
retrieve the high-level features and traditional features
depending on texture and colour moment. Leveraging
two standard medical imaging datasets, the ISIC2017
dataset and HIS2828 dataset, a series of tests are deter-
mined to evaluate the usefulness of our technique. All
tests were performed on a machine using a 3.2 GHz
CPU i5-6500, 32 G.B. of main RAM, and a GTX1060
GPU.

The HIS2828 dataset contains four different image
types representing various tissue types, wherein each
image possesses 720 * 480 RGB images. This dataset
comprises 2828 images, 1026 nerve tissue images, 484
images of connective tissue, 804 images of epithelial
tissue, and 514 images of muscle tissue. The Interna-
tional Skin Image Collaboration (ISIC2017) has pro-
duced a skin lesions dataset. It contains 2000 images,
wherein 374 images of malignant skin cancers are
termed “melanoma” while 1626 images of benign skin
tumors are termed “nevus and seborrheic keratosis.”
The binary input image vectorization and classifi-
cation are quite challenging to differentiate between
Melanoma and Nevus of Seborrheic Keratosis. This
dataset is handled because each image has a different
resolution.

The output quality of the multilayer vectorization
is assessed in two ways. Because of primary concern
with the visual component of vectorization of the input
images from these two datasets, the output vectorized
images are evaluated in terms of features is a fundamen-
tal concern of this research. The degree of detailed focus
is determined by pixel vectorization. The categorization
parameters are determined; however, the control point
choice precise parameter of vectorization processes is

fixed to be (1/100). Using any classification approach
with this vectorization allows for creating style ranges.
(Figure 1)

Additional evaluation component, the image’s mem-
ory efficiency of vectorization methods is considered.
Some regular sample medical images are vectorized
using the appropriate parameters to provide visual out-
puts. Figure 2 illustrates that each layer’s vectorized
medical tissue images have identical Peak Signal-to-
Noise Ratio (PSNR) values. However, at this stage, the
algorithm’s efficiency is determined by the bits-per-
pixel (bpp) rate. Figure 3 shows the bpp ratings of
various vectorized pixel tissue image datasets. The mul-
tilayer vectorization method ranks significantly higher
in efficiency. This is owing to the established opera-
tional requirements of detailed medical image features
in hospitalization applications.

Every dataset is classified under training, valida-
tion, and testing processes in 7:1:2 ratios. Then, all the
approaches are tested utilizing 10-fold cross verifica-
tion. The images are vectorized into many pixels from
the actual dataset to create fixed size 140 x 140 images
fed as an input into the coding network. Every image
of the HIS2828 dataset is randomized to 420 x 420 pix-
els and then restored to 140 x 140 image sizes. Before
downsizing to 140 x 140 for the ISIC2017 dataset,
randomized patches are extracted with two-thirds of
the actual image’s height and width of various res-
olutions. This saves a significant amount of image
data while reducing processing difficulty. These works
retrieve the fixed-size input images and supplement
them. The image is flipped horizontally or vertically to
enhance the image datasets even more. Simultaneously,
the network provides an estimate per patch and aver-
ages the softmax layer’s estimation when the patches
are from the identical image. Further, the augmented
image impact on accuracy and its running time is
addressed.

Table 1 shows the coding network topology in con-
text. It is possible to converge following 45 epochs.
Eventually, the ReLUs activation function is employed
for each convolutional layer. Aside from that, batch
normalization is used to speed up the deep network
training. The accuracy rate and algorithmic running
time on two medical image datasets are examined. The
percentage of properly categorized medical images has
been used to measure accuracy. The receiver opera-
tional characteristic (ROC) curve is used to assess the
model and properly contrast the algorithms. The ROC
curve represents a graphical representation that is cre-
ated by comparing the true-positive rates (TPR) and the
false-positive rates (FPR) using various thresholds, with
TPR as well as FPR defined as follows:

TP

TPR= ———
TP + FN

(15)
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Figure 1. The proposed architecture model.
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Fp
FPR= —— (16)
FP+ TN

Here, T.P. denotes true positive; EP. denotes false posi-
tive value; EN. denotes false negative, and T.N. denotes
true negative. The image classification technique’s per-
formance is evaluated using it. Before the enhancement
of the deep learning system, the SVM method is eval-
uated to be the preferable machine learning classifier;
thus, the SVM concatenation of traditional and deep
features is compared with the proposed CNMP model.
To train a multiclass classifier, radial basis function-
ing (RBF) kernel and LibSVM-3.17 library are utilized.
The coding network requires illustrating the usefulness
of integrating features. In addition, when contrasted to

KPCA feature integration, the CNMP has a superior
feature integration strategy. KPCA includes the RBF
kernel to combine features since it can trace the nonlin-
ear feature space. The integrated feature vector will be
sent into softmax to complete the categorization pro-
cess. Figure 4 shows the test accuracy result on the
HIS2828 dataset and the ISIC2017 dataset. The pro-
posed technique gets 91% and 92% accuracy rates, cor-
respondingly. The coding network is also used to cate-
gorize the medical image leads to better results. Thus,
the medical images are better represented using high-
level features than traditional features. SVM is supe-
rior to coding networks, and SVM contains traditional
features. Furthermore, R feature integration and KPCA
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Figure 4. Classification accuracy of the various techniques.

feature integration are compared with the proposed
model; the autonomous feature integration achieves
superior results and eliminates the time-consuming
procedure of manually modifying the parameters.

The ROC curve is represented for TPR and FPR
derivation by varying the thresholds. Because the
binary dataset includes an imbalanced sample problem,
its classification technique’s performance is evaluated.
With this ISIC2017 dataset, the comparison of vari-
ous techniques’ ROC curves is illustrated in Figure 5,
wherein the performance raises with curve closeness.

Figure 6 illustrates the comparison of various run-
ning times. SVM will run faster as the result of several
causes. (1) It utilizes only a little quantity of image data
while discarding an image’s large portion of the spa-
tial information. (2) Compared to the deep learning
model, this method needs to train fewer parameters.
The next quickest method is coding networks. How-
ever, it takes much longer to execute than SVM since the
deep model needs to train many parameters to increase
its generalization capabilities. Furthermore, combining

the multilayer features uses practically all informational
features of an image. Moreover, CNMP has the highest
accuracy; its running times are quite long. In addition,
it must surmount excessive dimensionality to acquire
the categorization model. The integration of the various
aspects in the KPCA requires a long period.

6. Conclusion

This study uses a unique architectural model to extract
the fine details from the input medical photos for accu-
rate diagnosis and patient treatment. This model com-
prises the multilayer vectorization and classification of
a medical image to get high-level features. The CNMP
classification approach combines conventional proper-
ties of an input image with high-level extracted features
from a coding network. The medical photos are cat-
egorized based on their specific visual attributes. The
experiment results demonstrate how multilayer vec-
torization of tissues performs in terms of PSNR and
bits-per-pixel on diverse datasets. The proposed CNMP
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outperforms coding network, SVM, and KPCA feature
fusion by a wide margin in terms of classification accu-
racy, achieving a rate of 92 percent on the HIS2828
dataset and 91 percent on ISIC2017 image datasets. The
approaches mentioned above’ running times are also
examined. This technique will eventually be used as
a productive pruning strategy to reduce the parame-
ters significantly. The multilayer vectorization makes
the ability to extract images with greater accuracy.
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