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External force estimation for industrial robots using configuration optimization

Yan Lu , Yichao Shen and Chungang Zhuang

School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China

ABSTRACT
External force estimation for industrial robots can be applied to the scenes such as human–robot
interaction and robot machining. Themodel-basedmethods have gained the attention of many
researchers because they only need motor signals. However, the performance of the above-
mentionedmethods depends on the accuracy of robot inverse dynamicmodel (IDM). Traditional
methods focus on improving the accuracy of IDM to obtain a better estimation performance.
However, suppressing the negative impact ofmodelling error can be achievedwithout reducing
the modelling error. Thus, this article proposes an external force estimation method that uses
the semi-parametric friction model and applies configuration optimization based on Jacobian
condition number (JCN) to reduce the modelling error and its negative impact. First, the IDM is
identified. Second, the semi-parametric frictionmodel refines the traditionalmodel in the torque
observer to improve the estimation accuracy. Third, the JCN is used as an evaluating indicator
to optimize the robot configurations. Finally, several simulations and experiments on a 6-DoF
industrial robot demonstrate the validity of the proposed method. This method can enhance
the performance of online force estimation by up to 48.28%. In addition, the application of the
proposed method is verified on the laboratory-developed machining platform.

ARTICLE HISTORY
Received 22 February 2022
Accepted 2 January 2023

KEYWORDS
External force estimation;
configuration optimization;
semi-parametric friction
model; Jacobian condition
number; industrial robots

1. Introduction

In recent years, industrial robots have been widely
applied to non-interacting operations like palletizing,
welding and spraying [1]. However, on the report of
the International Federation of Robotics, only some
industrial robots perform the contact applications, such
as grasping, assembling and machining, where indus-
trial robots must interact with the environment and
sense external force [2]. To achieve a compliant and
safemovement when interacting with the environment,
the force-sensing capabilities are required for industrial
robots [3–6]. However, most industrial robots don’t
possess joint torque sensors. The Force/Torque sen-
sors are often used to acquire external force informa-
tion. Nevertheless, a costly sensor will increase system
cost and decrease the entire system stiffness because
of the potential unstable mechanical integration of the
Force/Torque sensor [7]. Therefore, the sensorless tech-
niques have attracted more researchers, which will be
of great use in the physical human–robot interaction,
robot assembly and robot machining fields.

In the industrial scenes, the contact between the
industrial robot and the environment often occurs on
the robot end-effector, such as robot machining and
end-effector hand guiding. The contacts which occur
in other locations of the industrial robot are usually
unexpected. Therefore, estimating the external force
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acting on the end-effector is of great significance for
industrial applications. Zhang et al. [8] established a
sensorless hand guiding scheme for industrial robots
by estimating the external force. Linderoth et al. [9]
proposed an external force perception method for the
assembly operation. Katsumata et al. [10] proposed a
fast robot identificationmethod based on optimal excit-
ingmotion and applied themethod to the external force
estimated in contact painting tasks. A virtual force sen-
sorwas implemented on the industrial robot to estimate
the polishing force when the robot is machining [11].

The model-free force estimation methods impose
restrictions such as imprecise accuracy [12] and nec-
essary prior experience [13]. Various force observers
have been designed to estimate the external force
based on the robot inverse dynamic model (IDM). The
extended state observer [14], the extended slidingmode
observer [15], and the high-order finite time observer
[16] were transferred to handle the application of con-
tact force estimation. Recently, some works in [17–20]
have made lots of achievements in sensorless interac-
tion force estimation using the Kalman filters. Roveda
et al. [21] proposed the estimation algorithms based
on the extended Kalman filter that estimated not only
the external force but also the environment stiffness,
which are very helpful for the application of robot force
control. An external force estimation method [22] was
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presented to estimate any external torque, which was
even not applied at the end-effector. This method has
strong applicability. The sensorless techniques [14–22]
enriched the design methods of interaction force esti-
mation and obtained the accurate estimation of time-
varying complex external force. The algorithm com-
plexity and the difficulty in parameter tuning should
be considered in the real-time force estimation. The
generalizedmomentum observer (GMO) [23] took less
computing cost to estimate the external force in joint
space without joint acceleration so that the differen-
tial noise was not introduced into the estimation result.
Furthermore, it is worth mentioning that the observer
gain of GMO is easy to tune.

The estimation performance of the above methods
depends on the modelling error. Because of the non-
linear effects [24] including backlash, elasticity, or fric-
tion, the factors that cause the IDM inaccuracy cannot
be ignored. Among these factors, friction is the most
dominant one. The robot joint friction is impacted by
various factors, such as joint loading, motion direc-
tion and other nonlinear factors [25–27]. The differ-
ent joint friction models were designed to improve the
IDM accuracy. As the extension work to [26], Roveda
et al. [28] compensated friction by optimizing its mod-
elling parameters using the Bayesian optimization. This
method minimized the required number of the param-
eter tuning and contributed to the robot control per-
formance. The internal joint temperature variation was
considered by adding temperature dependency in the
joint friction model [29]. Madsen et al. [30] described
the dynamic characteristics of the robot joint friction
by using the refined generalized Maxwell model. The
existing models can only be utilized under specified
situations and with specific accuracy criteria. To some
extent, using the complex friction model can increase
the accuracy of friction modelling, but it makes the
identification of dynamic parameters more difficult.
Reducing the influence of other factors on the fric-
tion model improved the identification accuracy of
the friction model. Thus, a local IDM identification
method was proposed to improve the joint torques pre-
diction accuracy [31]. This approach solved the inter-
ference caused by the interaction between the joints’
friction and the robot configurations while sacrificing
theworking space of industrial robots. A simple friction
model can reduce the online computing cost, which is
conducive to the control algorithm with the real-time
requirements. The classical Coulomb-Viscosity model
is usually assumed to be the main components of the
robot joint friction. In [32–36], the classical friction
model was used in the related robotic researches such
as control, identification, and estimation.

The neural networks [37–39] have achieved some
success in robot applications due to their advantages in
data-driven reasoning. Especially, the neural networks
can be applied to the error compensation. Zuo et al. [40]

proposed a sensorless external force detection method,
in which the back propagation neural network (BPNN)
is used to compensate for the joint torque error of the
humanoid robot. Tu et al. [41] proposed a data mod-
elling method that established the relationship between
friction, joint velocity and load, by utilizing the BPNN.
This method could approximate the nonlinear func-
tions with arbitrary precision. However, a BPNN-based
model of fitting the residual nonlinear part of complex
friction to enhance the identified frictionmodel has not
been reported.

Formachining tasks, such as milling, drilling, grind-
ing, and polishing, five degrees of freedom are required,
the task path and the normal at each surface point
are given. However, due to the large workspace of the
robot, the midpoint of the task path and the normal
of the end-effector at the start surface point relative
to the base frame can be adjusted and optimized. The
robot can achieve better configurations when perform-
ing the machining task by adjusting the relative rela-
tionship between the task path and the robot base
frame. Guo et al. [42] presented a posture optimiza-
tion method to strengthen the stiffness of the indus-
trial robot in drilling processing. Mousavi et al. [43]
improved the robot’s dynamic behaviour during the
milling process and enhanced the robotic machining
stability by controlling the robot configuration. Lin
et al. [44] optimized the spindle configuration of the
robot end-effector to minimize the end-effector defor-
mation.

As indicated in [45–49], 6-DOF industrial robots
have a redundant degree of freedom when complet-
ing the above machining tasks. Even if the relative
relationship between the task path and the robot base
frame can’t be adjusted, the robot configuration opti-
mization can still be achieved. Due to the existence
of a redundant degree of freedom, industrial robots
have a redundant angle. For curved surface machin-
ing with more constraints, the robot configurations can
be optimized by choosing the optimized redundant
angle.

The robot Jacobianmatrix is often used to character-
ize the manoeuvrability at a certain point. For instance,
the Cartesian stiffness matrix of the robot depends on
the Jacobian matrix [50]. The Jacobian condition num-
ber (JCN) is one of the important characteristics of
the Jacobian matrix and can be used as an evaluation
indicator in robot configuration optimization. Zargar-
bashi et al. [51] chose the JCN as a dexterity index of
the conventional industrial robot. A small JCN led to
a smoother joint-rate time history, which contributed
to the stability of robot processing. Zhang et al. [52]
used the JCN to calculate the kinetostatic conditioning
index which could be used to quantitatively assess the
kinematics performance of the industrial robot. How-
ever, the relationship between the JCN and the force
estimation error has not yet been investigated. And the
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improvement of the force estimation accuracy has not
been reported through configuration optimization too.

In this article, an external force estimation method,
that uses the semi-parametric friction model and
applies configuration optimization, is proposed to
refine the force estimation performance. Themain con-
tributions are listed as follows:

(1) The proposed configuration optimization builds
the relationship between the JCN and the exter-
nal force estimation error. The configuration
optimization reduces the JCN, which effectively
improves the accuracy of force estimation by sup-
pressing the impact generated by the modelling
error and noise.

(2) The semi-parametric friction model refines the
identified friction model by the BPNN-based
model, which improves the external force esti-
mation accuracy. A dataset generation method
without additional torque sensors is given for the
BPNN-based model.

(3) Numerical simulations and experiments verify the
effectiveness of the proposed method. The exter-
nal force estimation error is reduced, which shows
the feasibility of the proposed method in practical
application.

The rest of the article is arranged as follows. Section
2 introduces the preliminaries. Section 3 proposes the
external force estimation method for specific tasks
using the GMO. Section 4 provides the simulation and
experimental results. Subsequently, the applications in
polishing and grinding are demonstrated in Section 5.
At last, Section 6 concludes the article and provides
further ideas for future works.

2. Preliminaries

2.1. The robot inverse dynamicmodel and
identification

When the robot moves in free space and does not con-
tact the external environment, the joint torques vector
τd can be calculated by the n joints robot IDMwhich is
a function of joint positions and their derivatives:

M(q)q̈ + C(q, q̇)q̇ + G(q) + f = τd (1)

whereM(q) ∈ �n×n is the inertia matrix of robot links,
C(q, q̇) ∈ �n×n is the Coriolis/centrifugal matrix,
G(q) ∈ �n is the gravity vector, f ∈ �n is the joint
friction vector, and q, q̇, q̈ ∈ �n are the joint position,
velocity, and acceleration vectors respectively. For the
ith joint, the joint friction torque is usually described
by the traditional friction model which is only related
to velocity:

fi = Fcisgn(q̇i) + Fviq̇i
= [

sgn(q̇i) q̇i
] · [

Fci Fvi
]T (2)

where Fci is the Coulomb’s friction, Fvi is the vis-
cous friction coefficient. Many friction models can be
selected, and it is worth studying to choose a suitable
friction model to improve the accuracy of IDM.

The dynamic parameter identification method can
be found in the previous works [53,54]. The joint
torques can be predicted when the minimal parame-
ter set is identified. It can be assumed approximately
that the dynamic parameters of the robot except for the
friction are accurately identified. The IDM expressed
in Equation (1) can be solved by the method proposed
in [55], though the dynamic parameter identification
obtains a linear IDM with the minimal parameter set.

2.2. The generalizedmomentum observer

To meet the requirements of real-time estimation, the
GMO is chosen due to its advantages in computing cost
and parameter tuning. As mentioned in [23], the GMO
is constructed based on the robot IDM.

Considering the requirements for industrial scenes,
this article focuses exclusively on the external force act-
ing on the robot end-effector and overlooks the external
force acting on other locations of the industrial robot.
When an external force is exerted to the end-effector,
the joint torques of the robot are expressed as:

τ J = τ ext + τd (3)

where τd is the torques generated by the robot’s own
motion and the gravity field, τ J is the total joint torques
which can be obtained by the motor current, τ J con-
sists of two parts, one of which is used to offset the joint
torques τ ext generated by the external force, and the
other one is used to generate τd which drives the link
to move.

From Equation (3), when the current information
is obtained and the IDM calculation is completed, the
joint torques generated by the external force can be
expressed through:

τ ext = τ J − τd (4)

Substituting Equation (1) into Equation (4) yields:

τ ext = τ J − M(q)q̈ − C(q, q̇)q̇ − G(q) − f (5)

From Equation (5), it is obvious that the signal-to-
noise ratio of joint acceleration will make the calcula-
tion of τ ext unreliable. The GMO method is used to
address the above problem, as presented in Figure 1.
The GMO method utilizes the difference between the
model generalized momentum and the measured gen-
eralizedmomentum to construct a torque observer. The
joint torques τ ext can be observed as:

τ̂ ext = K0(p̂ − p) (6)
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Figure 1. The framework of the GMO.

where K0 is the observer gain matrix. The measured
generalized momentum is defined as:

p = M(q)q̇ (7)

Derivative on both sides of Equation (7), the follow-
ing formula can be obtained:

ṗ = Ṁ(q)q̇ + M(q)q̈ (8)

Using Equation (4) and integrating, the model gen-
eralized momentum can be constructed as:

p̂ =
∫

[τ J − τ̂ ext + Ṁ(q)q̇ − C(q, q̇)q̇ − G(q) − f ] dt

(9)
Ṁ(q) − 2C(q, q̇)q̇ is a skew-symmetric matrix, and the
symmetry ofM(q) implies:

Ṁ(q) = C(q, q̇) + CT(q, q̇) (10)

Substituting Equation (10) into Equation (9) yields:

τ̂ ext = K0

(∫
[τ J − τ̂ ext + CT(q, q̇)q̇ − G(q) − f ]dt

− M(q)q̇
)

(11)

3. The proposed external force estimation
method

The proposed method contains two parts: the GMO
with a semi-parametric friction model and task-
oriented configuration optimization based on JCN, as
shown in Figure 2. After the dynamic parameter iden-
tification, the GMO is constructed based on the robot
IDM.The semi-parametric frictionmodel enhances the

identified friction model and is added to the GMO to
improve the performance of the external force estima-
tion. The configuration optimization based on the per-
formance index using the JCN suppresses the impact
of the modelling error on the external force estimation.
The robot moves along the optimized task path and
estimates the external force in the movement process.

3.1. The semi-parametric frictionmodel

Compared with works in [37–40], the semi-parametric
friction model refines the identified friction model by
the BPNN-based model, which is used to learn and fit
the residual nonlinear parts in the complex friction, as
shown in Figure 3. The semi-parametric frictionmodel
is composed of different models when the joint velocity
belongs to different intervals. Furthermore, the dataset
generationmethod is introduced, which is used to train
the BPNN in the semi-parametric friction model.

When the robot joint velocity is not near-zero, the
joint friction is described by the traditional friction
model which is previously identified. The BPNNmodel
is used to establish the mapping relationship between
joint friction torque and joint velocity when the joint
velocity is near-zero. The input is the joint velocity. The
output is the joint friction torque. An input layer (1
output neuron), a hidden layer (10 hidden neurons),
and an output layer (1 input neuron) constitute the
BPNN model. The hyperbolic tangent sigmoid trans-
fer function and the linear transfer function are selected
for the activation function of the hidden layer and the
output layer respectively. The number of hidden layers
and the number of neurons in the hidden layer repre-
sent the complexity of the network. The above suitable
sizes of the hidden layer and the neuron are chosen
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Figure 2. The proposed method with semi-parametric friction model and configuration optimization.

Figure 3. Structure of the semi-parametric friction model.

through multiple training trials to prevent the over-
fitting phenomenon. Since the semi-parametric fric-
tion model is a local supplement to the identified fric-
tion model, it is dispensable to use the neural network
with complex structure to learn the friction character-
istics when the joint velocity is near-zero. BPNN has
its advantages in the complexity of the neural network
structure and the real-time requirements of the robot
controller. Then, the traditional friction model and the

BPNN model are merged into a semi-parametric fric-
tion model, expressed as:

τfi(q̇i) =
{

BPNN(q̇i) |q̇i| ≤ q̇crit
Fcisgn(q̇i) + Fviq̇i |q̇i| > q̇crit

(12)

where τfi(q̇i) denotes the friction torque of ith joint
described by the semi-parametric friction model,
BPNN(q̇i) denotes the ith joint friction calculated by
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the BPNNmodel at near-zero velocity, and q̇crit denotes
the critical joint velocity.

For each joint, an independent BPNN model is
trained and applied to predict the joint friction torque.
The generation of dataset is an important step to train-
ing the BPNN model, which needs the friction data
and the velocity data of the robot joint when the joint
velocity is near-zero. The joint friction torque can be
obtained through characteristics of the IDM and the
design of the robot configuration and kinematic state.
Themotor of each joint of industrial robots is equipped
with encoders, so the joint velocity can be directly read.
Next, the method of obtaining joint friction torque
from the total joint torques is introduced.

As mentioned in [55], the (u, v) element of the
matrix C(q, q̇) is defined as:

C(q, q̇)uv =
n∑

i=1

1
2

×
{

∂[M(q)uv]
∂qi

+ ∂[M(q)ui]
∂qv

− ∂[M(q)iv]
∂qu

}
q̇i

(13)

The terms M(q)uv denotes the (u, v) element of the
matrixM(q). FromEquation (13), it can be derived that
the Coriolis/centrifugal matrix satisfies:

C(q,−q̇)(−q̇) = C(q, q̇)q̇ (14)

For simplicity, it can be assumed that the joint fric-
tion torques are only related to the magnitude and
direction of joint velocity:

τ f (−q̇) = −τ f (q̇) (15)

Assume two robot configurations, q1, q2 meet the
following conditions:

q1 = q2 = φ

q̇1 = −q̇2 = φ̇

q̈1 = −q̈2 = φ̈

(16)

Substituting Equation (16) into Equation (1), it can
be obtained that:

τ J1 = M(φ)φ̈ + C(φ, φ̇)φ̇ + G(φ) + τ f (φ̇)

τ J2 = M(φ)(−φ̈) + C(φ,−φ̇)(−φ̇)

+G(φ) + τ f (−φ̇)

(17)

Substituting Equation (15) into Equation (17), it can
be found that:

τ J1 − τ J2 = 2M(φ)φ̈ + 2τ f (φ̇) (18)

According to Equation (18), it can be obtained that:

τ f (φ̇) =
τ J1 − τ J2

2
− M(φ)φ̈ (19)

From Equation (19), the joint friction torque at near-
zero velocity is separated from the measured joint
torque. The joint friction torque corresponding to the
joint velocity can be obtained.

3.2. Task-oriented configuration optimization

Based on the JCN, the task-oriented configuration opti-
mization is applied to refine the force estimation per-
formance. It is assumed that only the tool centre point
(TCP) of the robot end-effector is in contact with the
environment. The transformation relation [56] of exter-
nal force in Cartesian space and joint space can be
expressed as follows:

J(q)TFext = τ ext (20)

where J(q)T is the transpose of the robot Jacobian
matrix, Fext is the external force applied to the end-
effector in Cartesian space.

According to the properties of condition number
[57] and Equation (20), the error of external force esti-
mation δFext satisfies:

||δFext||
||Fext|| ≤ ||[J(q)T]−1||||J(q)T|| ||δτ ext||

||τ ext|| (21)

Moreover, the JCN is defined as cond (J(q)T) =
||[J(q)T]||−1||[J(q)T]||, δτ ext is defined as δτ ext =
τ̂ ext − τ ext , and denotes the estimation error of the
joint torque τ ext in Equation (11), δFext denotes the
estimation error of the external force. From Equation
(11), τ̂ ext depends on the IDM accuracy. Therefore, it
is assumed that δτ ext is generated by robot dynamic
modelling error, and bounded and less than the max-
imum value of the modelling error. When the robot
IDM is established and identified, the ratio of δτ ext to
τ ext remains basically the same. The 2-norm is cho-
sen as the Jacobian matrix norm. Obviously, when the
values of modelling error in the different configura-
tions are the almost same, a smaller JCN will lead to a
smaller error in force estimation. Even if the modelling
error is not reduced, the force estimation error can be
suppressed by reducing the JCN.

FromEquation (20), the external force applied to the
TCP can be reconstructed as:

F̂ext = [J(q)T]−1τ̂ ext (22)

Considering a common machining scene where the
robot performs a polishing task along a linear path. For
this scene, the direction of the path can be regulated and
the end-effector pose in the base frame can bemodified
too. By changing the path and the end-effector pose, the
robot can obtain an averageminimumJCNon this path,
so as to minimize the force estimation error on this
path. The configuration optimization problem can be
transformed into a constrained optimization problem
which will be explained as follows.

The path is determined by the direction vector n and
themidpoint coordinatem in the base frame which can
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be expressed as:

n = [nx, ny, nz]T

m = [mx, my, mz]T
(23)

where n denotes the direction vector, m denotes the
midpoint coordinates of the path. Suppose the length
of the path is a, the path can be divided into k parts
of equal length by evenly inserting k + 1 interpolation
points. The coordinates of the ith interpolation point
on the path can be described as:

pi =
[
mx + 2i − k

2k
anx, my + 2i − k

2k
any, mz + 2i − k

2k
anz

]T
(24)

where i = 0, 1, 2, . . . , k. Assuming that the end-effector
pose does not change during the polishing process, the
end-effector pose at the ith interpolation point can be
described as:

Ri = R (25)

with R ∈ �3×3 being the rotation matrix representing
the initial end-effector pose, which is relative to the
base frame. The rotation matrix R can be described in
the axis-angle representation as θr = θ

[
rx, ry, rz

]T,
θ is the size of the rotation angle, and r indicates the
direction of the rotation axis.

From Equations (24) and (25), the homogeneous
transformation matrix of the end-effector correspond-
ing to each interpolation point on the path can be
expressed as:

Ti =
[

Ri pi
0T 1

]
=

[
R pi
0T 1

]
(26)

According to Equation (26), the corresponding robot
configuration qi can be obtained through the robot
inverse kinematics. The average JCNon this path can be
obtained and taken as the objective function. Thus, the
configuration optimization problem can be expressed
as follows:

find : nx, ny, nz,mx,my,mz, θ , rx, ry, rz
minimize : f = ∑k

0 cond(J(qi)
T)/k

subject to : qi ∈ S
: (nx)2 + (ny)2 + (nz)2 = 1
:
[
mx,my,mz

]T ∈ V
: θmin ≤ θ ≤ θmax
: (rx)2 + (ry)2 + (rz)2 = 1

(27)

where qi ∈ S denotes that each interpolation point on
the path belongs to the robot’sworkspace, [mx,my,mz]T ∈
V denotes that the position of the midpoint is con-
strained. This constraint is related to the mutual posi-
tional relationship between the workpiece and the
robot, and θmin ≤ θ ≤ θmax is the range of the rota-
tion angle.Other constraints indicate the normalization
conditions of the unit vector. The constrained opti-
mization problem (27) can be solved by the PSO-GA

Figure 4. Overall approach for task-oriented configuration
optimization.

algorithm. The solving process of task-oriented con-
figuration optimization is shown in Figure 4. When
the relative relationship between the task path and the
robot base frame can be adjusted, (27) can be solved.
If the above requirements are not met, the configura-
tion optimization can still be achieved by the redundant
angle optimization. The final output is the optimized
configuration.

4. Simulations and experiments

In this section, several simulations are completed to
verify the validity of the proposed method. Based on
the simulation results, the experiments are applied to
the STS-SRE4-600 industrial robot. As shown in Figure
5, the kinematic model of the STS-SRE4-600 is estab-
lished by the standard DH convention. The parameters
of the standard DH convention are shown in Table 1.
The DH parameters are calibrated by using the Leica
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Figure 5. STS-SRE4-600 industrial robot.

Table 1. Standard DH parameters of STS-SRE4-600.

Link αi(
◦) ai(mm) di(mm) θi(

◦)

1 90 29.90 379.50 0
2 0 270.60 0 90
3 90 69.27 0 0
4 –90 0 323.30 0
5 90 0 0 0
6 0 0 130.64 0

Absolute TrackerAT960. The robot controller is a Beck-
hoff industrial computer C6930. The data of the torque,
position, and velocity in all joints can be collected in
real time. The sample frequency for all data and the
control frequency are 1 KHz.

4.1. Experiment of the IDM identification

The force estimation observer is designed based on
the robot IDM. The precise dynamic parameters of
the robot are essential to the force estimation results.
The identificationmethods introduced inworks [53,54]
are used to obtain the dynamic parameters. The fric-
tion model used in the identification experiment is the
classical Coulomb-Viscous friction model. The exci-
tation trajectory is designed based on the optimized
fifth-order Fourier series. The robot executes the exci-
tation trajectory, then collects the joint kinematics state
and current signal to complete the IDM identification.
A new trajectory is used for the cross-validation of
the identification results. The five-order Butterworth
low-pass filter is used for the raw data collected in
the dynamic parameter identification experiment. The
filter has a cut-off frequency of 7.5 Hz, which is 15
times the highest frequency of the excitation trajec-
tory. The designed filter can ensure the accuracy of
the collected data while removing the noise. The IDM
identification result is shown in Figure 6. The predic-
tion error is assessed by the root mean square error
(RMSE). The prediction errors for each joint torque
are 3.2926, 3.5804, 2.2578, 0.5272, 0.7846, and 0.3602
N·m, which are all within the allowable ranges. The

similarity between the joint torques calculated by the
IDM and the measured joint torques based on the cur-
rent signal is more than 90%. The remaining errors are
difficult to reduce only using the dynamic parameter
identification.

4.2. Simulations of the JCN distribution

The simulations verify the influence of the JCN in
the external force estimation. To illustrate the effec-
tiveness of the configuration optimization, the robot’s
workspace and the distribution of the JCN correspond-
ing to the robot configuration are obtained.

The JCN is affected not just by the position of the
end-effector, but also by its orientation. When the end-
effector is in the same position, the JCN value will be
different due to the different orientations of the robot
end-effector. The different configurations contain dif-
ferent positions and orientations. Half a million robot
configurations are randomly generated byMonte Carlo
method to obtain the robot’s workspace and the JCN
corresponding to each configuration. Figure 7 shows
the distribution of the JCN in the robot’s workspace.
The colourbar is used to represent the numerical value
of the JCN corresponding to each configuration.

The average value of the JCN corresponding to each
configuration is 1052.9. Theminimumvalue of the JCN
is 9.1675. It can be seen that the JCNs correspond-
ing to 96.55% of the robot configurations are greater
than 11. There is still much room for improvement by
optimizing the robot configuration to reduce the JCN.

4.3. Simulations of the configuration optimization
for linear task paths

In Section 3.2, the task-oriented configuration opti-
mization needs to obtain the optimized task path and
the optimized end-effector pose by solving (27). For
simplicity, the length of the task path is set as one metre
in simulation. The base frame coincides with the robot
base frame (frame 0) in Figure 5. The following direc-
tion vector, midpoint coordinate and rotation matrix
are all described in the base frame.

The initial direction vector of the path is set as nin =
[0, 1, 0]T. The initialmidpoint coordinates of the path is
set asmin = [0.5, 0, 0.45]T. Referring to the commonly
used end-effector pose [47] in robot machining, the
initial end-effector pose is set as:

Rin =
⎡
⎣ 0 0 1

0 −1 0
1 0 0

⎤
⎦ (28)

Several local optimal solutions will be obtained by
solving (27). It is necessary to select the appro-
priate solution or adjust the local optimal solution
according to the actual task scene and the machining
processing. The optimized direction vector is solved
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Figure 6. IDM identification result.

Figure 7. Distribution of the JCN: (a) robot’s workspace and the JCN corresponding to each configuration, and (b) the probability
distribution function of the JCN.

as nop = [−0.1720, 0.9851, 0]T. The optimized mid-
point coordinates of the path are solved as mop =
[0.2345, 0.0393, 0.3892]T. The optimized end-effector
pose is chosen as:

Rop =
⎡
⎣ 1 0 0

0 −1 0
0 0 −1

⎤
⎦ (29)

For the determined polishing task, when the end-
effector pose changes, the flange connecting the end-
effector also needs to be replaced.

The following two simulations, as shown in Figure
8, are used to verify the influence of task-oriented con-
figuration optimization on the force estimation. It is
supposed that a constant force is exerted at the end-
effector when the robot moves back and forth along
the task path. The constant force is set as Fext =
[−3N, 0N, 25N, 0.5N · m, 1.5N · m, 1N · m]T. In the
first simulation, the robot performs the task with the
initial configurations along the initial path. In the sec-
ond simulation, the robot completes the task with the
optimized configurations along the optimized path.
The blue line in Figure 8 shows the JCN value at each
point on the task path.
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Figure 8. Simulations of configuration optimization: (a) before optimization, and (b) after optimization.

In the simulations, it is assumed that the model
uncertainty and the noise present a random noise dis-
tribution. The mean value of random noise is 0. The
amplitude of random noise is 15% of the torques in
the joint space generated by the preset constant force.
At sample point 0, the robot begins to move at the
start point. At sample point 1500, the robot moves to
the end point of the task path. At sample point 3000,
the robot returns to the start point of the task path.
The robot trajectory is planned by uniform acceleration
and deceleration. The estimation results are shown in
Figure 9. The comparison of the estimation error is
shown in Figure 10.

After optimization, the average JCN of the task path
has dropped from 20.2378 to 10.8713, with a 46.28%
decrease. The maximum JCN in the path has dropped
from 59.5668 to 17.5814, with a 70.48% decrease.
The estimation accuracy in Y-direction is significantly
affected by the JCN than that in other directions.
Figure 9 illustrates that when the robot moves along
the task path, the larger the JCN at the point on the
task path, the larger the external force estimation at
that point, especially in Y-direction. From Figure 10,
themaximum estimation error has dropped from 24.86
N to 7.30 N after the optimization, with a 70.63%
decrease. However, the estimated external torques in
X- and Y-directions are insensitive to the configuration
optimization.

4.4. Simulations of the configuration optimization
for task paths on the surface

When the relative relationship between the task path
and the robot base frame can’t be adjusted, the robot
configuration optimization can still be achieved. Due
to the existence of a redundant angle, the robot config-
urations can be optimized by choosing the optimized

redundant angle. The redundant angle optimization
is based on the orthogonal decomposition method as
introduced in [49].

The comparisons of the JCN, robot end-effector
poses, and robot joint positions before and after the
configuration optimization are shown in Figures 11–13,
respectively. From Figure 11, the JCN at each point on
the task path is reduced. From Figure 12, the robot
configuration optimization is accomplished when the
task path and the normal of the end-effector are pro-
vided. The optimized robot trajectory maintains the
same position and the same normal as the initial tra-
jectory at each sample point. The above configura-
tion optimization can be applied to the curved surface
machining.

4.5. Experiments of force estimationwith the
task-oriented configuration optimization

Based on Section 4.3, the same settings, such as the
end-effector pose and the task path, are used for exper-
imental verification of the configuration optimization
effect. The joint torque prediction error generated by
the IDM comes from the model uncertainties and the
noise. Thus, the control variates method is used to ver-
ify the influence of configuration optimization on the
performance of external force estimation.

The design of the experiment should satisfy the joint
torque prediction error generated by the IDM is con-
sistent when the robot performs external force esti-
mation before and after configuration optimization.
The requirement can be achieved by multiple round
trip movements of the robot along the same path. The
experimental setup is shown in Figure 14, which con-
tains 5 components: an industrial robot, anATIGamma
Force/Torque sensor, oneOPT polishing tool serving as
the end-effector, and two flanges.
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Figure 9. Estimated external force results: (a) the result before optimization, and (b) the result after optimization.

Figure 10. Estimation error comparison.

Figure 11. The comparisonof the Jacobian conditionnumber on the same task pathbefore and after the configurationoptimization.



376 Y. LU ET AL.

Figure 12. Robot end-effector poses comparison for the same task path: (a) before optimization, and (b) after optimization.

Figure 13. Robot joint positions comparison for the same task path: (a) before optimization, and (b) after optimization.

Figure 14. Experimental setup.

The following experiments are shown in Figure 15.
First let the robot move back and forth along the ini-
tial path with the initial pose, and record the joint
torques in the first cycle. The robot doesn’t have con-
tact with the external environment or the experimenter

in this process. The joint torques are used to maintain
the robot’s own motion. When the robot’s movement
enters the second and subsequent cycles, the torques
recorded in the first cycle are regarded as the torques τ d
in Equation (4). The torques τ J in Equation (4) can be
obtained by the real-time motor current information.
From Equations (4) and (20), the external force applied
to the end-effector can be estimated. Similarly, when the
robot moves back and forth along the optimized path
with the optimized pose, the experiment can be per-
formed again. In this way, the joint torque prediction
error remains consistent in the two experiments.

In the first set of experiments, no external force
is exerted to the end-effector. The estimation error is
directly obtained when the robot moves along the task
path. At 0 s, the robot starts tomove at a constant speed.
At 200 s, the robot moves to the end point of the task
path and begins to move in reverse. At 400 s, the robot
returns to the start point of the task path. From Section
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Figure 15. Experiments of configuration optimization.

4.3, the estimation accuracy in Y-direction is signifi-
cantly affected by the JCN than that in other directions.
In the subsequent display of experimental results, the
estimation results and the measurement results in Y-
direction are used to evaluate the effect of the configu-
ration optimization. The force estimation results before
and after the configuration optimization are shown in
Figure 16.

Figure 16 shows that the maximum value of the esti-
mation error in Y-direction has dropped from 49.3864

N to 14.9596 N, with a decrease of 69.71% after the
configuration optimization. The RMSE of the estimated
external force has dropped from 3.2520 N to 2.0449 N,
with a decrease of 37.12%. The experiment results are
consistent with the simulation results in Figure 9.

Repeat the above experiments, the difference is that
the external force is applied to the end-effector through
the human hand. In the subsequent experiments, the
reference value of the external force is measured by
the ATI F/T sensor. To remove the high-frequency

Figure 16. External force estimation result: (a) the result before optimization, and (b) the result after optimization.
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measurement noise, the cutoff frequency for low-pass
filtering is chosen as 18 Hz. The force estimation results
before and after the configuration optimization are
shown in Figure 17.

Figure 17(a) shows that when the JCN is large, the
result of external force estimation is unreliable under
the samemodelling error and noise. In 0–20 s, 190–210
s, 390–400 s, the robot is near the start and end of the
task path, the JCN corresponding to the robot configu-
ration is near the maximum, and the measured force is
almost submerged in the noise of the estimation. Figure
17(b) shows that the estimation error at the start and
end of the task path has been reduced after the con-
figuration optimization. This suggests that when the
robot is in a good configuration, the force estimation
result will be better. After removing the abnormal data
points, the RMSE of the estimated external force has
dropped from 4.0661 N to 3.2274 N, with a decrease
of 20.93%. The maximum estimation error has also
dropped from 46.8357 N to 14.4221 N, with a decrease
of 66.39%. Finally, the results suggest that even if the
modelling error and noise are not reduced, the task-
oriented configuration optimization can suppress the
force estimation error.

4.6. Experiments of force estimationwith the
semi-parametric frictionmodel

The GMO with a semi-parametric friction model is
used for the real-time external force estimation. In the

robot controller, the GMO algorithm is executed every
millisecond. The external force is applied to the end-
effector through the human hand. The observer gain
matrix is set as a diagonal matrix with diagonal ele-
ments to 20. The result of the semi-parametric fric-
tion model is shown in Figure 18. It is assumed that
the actual friction torque can be obtained from the
total joint torque by the proposed separation method.
Through the cross validation, the semi-parametric fric-
tion model is closer to the separated friction when the
joint velocity is near-zero.

The estimation results using different friction mod-
els are shown in Figure 19. It is observed that the GMO
with a semi-parametric friction model has a better esti-
mation performance than theGMOwith the traditional
friction model when the joint velocity is near-zero. The

Figure 18. Semi-parametric friction model.

Figure 17. External force estimation result: (a) the result before optimization, and (b) the result after optimization.
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Figure 19. External force estimation result: (a) estimation result with different friction model, and (b) estimation error and joint
velocity.

RMSE of the external force estimation in Z-direction
has dropped from 8.1579N to 5.4073N, with a decrease
of 33.72%. When the time is around 50 s, the estima-
tion error presents peak value. From the zoomof Figure
19(a), the maximum error of external force estimation
has also dropped from 49.7432 N to 20.4279 N, with a
decrease of 58.93%.

4.7. Experiments of real-time external force
estimation

The proposed external force estimation method that
uses the semi-parametric friction model and applies
the configuration optimization is validated in the fol-
lowing experiments. In the first experiment, the GMO
with the traditional friction model is used to estimate
the real-time external force when the robot performs
the task with the initial configurations. In the second
experiment, the GMO with the semi-parametric fric-
tion model is used to estimate the real-time external
force when the robot performs the task with the opti-
mized configurations. In the above experiments, the
robot moves uniformly from the start point of the task
path to the end point in 100 s. The performance of the
external force estimation is evaluated by the RMSE and
the correlation coefficient ρ. Figures 20 and 21 show
the comparison of the estimation results in X-, Y-, and
Z-directions.

Through the proposed method, the RMSE of the
external force estimation in X-, Y-, and Z-directions

decreases from 12.6891, 14.3286, and 4.6852 N to
6.5627, 7.6607, and 4.3901 N, respectively. The maxi-
mum error of the external force estimation in X-, Y-,
and Z-directions decreases from 75.2268 N, 52.4015 N,
and 38.7453 N to 51.0333 N, 32.3707 N, and 18.6869 N,
respectively. The correlation coefficient of the estima-
tion result in each direction has increased. When the
time is around 97 s, the robot is near the end point.
After the configuration optimization, the JCN is signif-
icantly reduced, which is at the sample point near the
path end. Thus, the force estimation errors are effec-
tively suppressed in X- and Y-directions according to
the zoomof Figures 20 and 21.When the time is around
50 s, the robot is near themidpoint of the task path. The
peaks of the estimation error in X- and Z-directions are
reduced due to the semi-parametric friction model.

4.8. Discussion for the force estimation
experiments

To select more appropriate observer gains, improve the
rapidity and accuracy of force estimation, and reduce
the interference of noise, the bandwidth of GMO is
analysed. As mentioned in [23], the GMO is essen-
tially equivalent to a first-order low-pass filter. Take
the derivative on both sides of Equation (11), and then
carry out Laplace transform, yield:

τ̂ext = K0

s + K0
τext (30)
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Figure 20. Estimation result without the proposedmethod: (a) external force in X-direction, (b) external force in Y-direction, and (c)
external force in Z-direction.

By adjusting the different values of K0, the ampli-
tude–frequency curves of theGMOare shown in Figure
22. The bandwidth analysis shows that choosing a larger
observer gain K0 will obtain a wider bandwidth for the
estimated force. However, larger observer gains usually
bring stronger observation noise. The GMO estima-
tion results with different observer gains are shown in
Figure 23.

The result of force estimation is related not only to
the observer gain but also to the type of external force.
The impact of distinct external force types (step, ramp,
and sine) and observer gains on external force estimate
performance are explored as follows. The change rate of
step-type external force can be considered as 0 after the
step is completed, which can be well estimated without
a high feedback gain. The change rate of the ramp-type

force is a constant value. The estimation result will have
a delay with a small observer gain. The change rate of
sine-type force is a changing trigonometric function.
There will be hysteresis and clipping in the estimation
result when the observer gain is not inappropriate.

The proposed method, combined with specific
machining tasks, applies configuration optimization to
a new field, which can improve the force estimation
accuracy without improving the IDM accuracy. Unlike
previousworks [50–52], a newparadigm to enhance the
estimation accuracy is present which contributes to the
index design for the robot configuration optimization.
The proposed method assumes the force location, and
can directly reconstruct the external force acting on the
end-effector, which is of great significance for the con-
trol and feedback in robotic machining. Considering
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Figure 21. Estimation result with the proposed method: (a) external force in X-direction, (b) external force in Y-direction, and (c)
external force in Z-direction.

Figure 22. Bandwidth analysis of the GMO.
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Figure 23. GMO estimation results with different observer gains: (a) external force in X-direction, (b) external force in Y-direction,
and (c) external force in Z-direction.

the typical robotic machining scenes [46], the exter-
nal torque has little influence on the machining, this
study mainly focuses on the external force estimation.

Compared with the previous force estimation methods
[18–22], the limitations of this study are that only the
external force information can be estimated, not the
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environmental information, and it also encounters dif-
ficulties when multiple forces are acting on different
positions of the robot.

5. Application of the proposedmethod in
robotic machining

In this section, the proposedmethod is used to estimate
the tangential force andnormal force of the end-effector
in machining. The impedance control algorithm is
arranged on the robot controller, whichmakes the robot
and the workpiece keep a desired force contact state on
the contact surface. This can ensure that the contact
force between the robot and the workpiece remains rel-
atively stable, which is conducive to the stability of the
implementation of the force estimation algorithm.

5.1. Real-time external force estimation in robotic
polishing

For the scene of the robot polishing aluminium plate,
the tangential force of the polishing head is estimated by
the proposed method. Before the experiments, the pol-
ishing is planned in the simulation environment. The
robot moved back and forth along the straight path to
polish the aluminium plate at a constant speed. The
motion simulation and experiment of robotic polishing
are shown in Figure 24.

The normal contact force between the end-effector
and the aluminium plate is set as 40 N, the polish-
ing path length is 0.27 m. The end-effector carries out
three experiments at different velocities. In the polish-
ing experiments, the time for the end-effector to move
from the start point to the end point of the polishing
path is 15 s, 30 s and 60 s respectively. The tangen-
tial force is estimated and measured respectively. The
experimental results of tangential force estimation are
shown in Figure 25.

In the three experiments of the normal force estima-
tion, the correlation coefficients of the tangential force
estimation and the measured results are 0.9534, 0.9538
and 0.9415 respectively, and the RMSE of the external
force estimation are 3.0845 N, 3.5468 N and 4.7082 N
respectively.

5.2. Real-time external force estimation in robotic
grinding

For the scene of the robot grinding wind turbine blade,
the normal force estimation experiments of the grind-
ing head are conducted. Before experiments, the grind-
ing is planned in the simulation environment. The
robot moves back and forth along the desired path to
grind the wind turbine blade at a constant speed. The
motion simulation and experiment of robotic grinding
are shown in Figure 26.

The normal contact force between the end-effector
and the wind turbine blade is set as 40 + 20sinϕN,
where ϕ is related to the position of the end-effector. In
the process of the end-effector moving from the begin-
ning to the end of the grinding trajectory, the desired
normal force changes in sine form for two cycles. There
are two reasons for setting the desired normal force
as a variable force. On the one hand, it is difficult to
keep the normal force constant due to the influence of
the curved surface in the actual grinding. On the other
hand, setting the desired normal force as variable force
can better evaluate the performance of the proposed
method.

The grinding path length is 0.27 m. The robot car-
ries out three experiments at different velocities. In the
grinding experiments, the time for the robot to move
from the start point to the end point of the grinding
path is 15 s, 30 s and 60 s respectively. The normal force
is estimated and measured respectively. The experi-
mental results of external force estimation are shown
in Figure 27.

Figure 24. Simulation and experiment of robotic polishing: (a) robotic polishing motion simulation, and (b) robotic polishing
experiment.
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Figure 25. Estimation result of the tangential force in the polishing: (a) the polishing trajectory is completed in 15 s, (b) the polishing
trajectory is completed in 30 s, and (c) the polishing trajectory is completed in 60 s.

Figure 26. Simulation and experiment of robotic grinding: (a) robotic grinding motion simulation, and (b) robotic grinding experi-
ment.

In the three experiments of the normal force esti-
mation, the correlation coefficients of the normal force
estimation and the measured results are 0.7901, 0.5772

and 0.4614 respectively, and the RMSE of the normal
force estimation are 12.9954 N, 19.2482 N and 22.9833
N respectively.
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Figure 27. Estimation result of the normal force in the grinding: (a) the grinding trajectory is completed in 15 s, (b) the grinding
trajectory is completed in 30 s, and (c) the grinding trajectory is completed in 60 s.

5.3. Discussion for the force estimation
applications of roboticmachining

The above experimental results show that the force esti-
mation accuracy is improved when the speed of the
end-effector increases. When the robot moves faster,
the modelling torques that drive the links to move
increase compared with the unmodeled dynamic inter-
ference. The force estimation accuracy in curved sur-
face grinding is lower than that in polishing. One pos-
sible explanation is that the joint velocities and joint
accelerations of the robot in curved surface grinding are
not as smooth as that in polishing, which may intro-
duce disturbances and noises, resulting in the decline
of the estimation accuracy. Furthermore, the grinding
processing is different from the polishing processing,
which may cause some stronger interference to estima-
tion results. The low-pass filter is used to process the
force signals collected by the force sensor, and eliminate

the partial interference caused by the different machin-
ing processes.

In practical applications, the common limitation is
that the dynamic parameters of the end-effector need
to be previously given or identified. Changing the end-
effector will impact the estimation results.

6. Conclusion

In this article, an external force estimation method that
uses the semi-parametric friction model and adopts
configuration optimization is proposed to improve the
estimation accuracy. A semi-parametric friction model
is introduced into the GMO to enhance the estimation
performance by up to 33.72%. The dataset generation
method for the BPNN model in the semi-parametric
friction model is then given. The configuration opti-
mization is applied to the external force estimation for
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the first time. The robot can obtain an average mini-
mum JCN on the task path, which can minimize the
external force estimation error on this path. In the real-
time external force estimation, the RMSE of the pro-
posed method in X-, Y-, and Z-directions are 6.5627,
7.6607, and 4.3901 N, respectively. Compared with the
initial external force estimation, the estimation accu-
racy has been greatly improved with 48.28%, 46.53%,
and 6.30%. For robotic polishing and grinding appli-
cations, the best correlation coefficient and RMSE of
the proposed method in tangential force estimation are
0.9534 and 3.0845 N, respectively, and the best corre-
lation coefficient and RMSE of the proposed method
in normal force estimation are 0.7901 and 12.9954 N
respectively. The application test shows that the pro-
posed method is feasible for robot machining. The lim-
itation of this work is that when the force applied to the
robot changes abruptly, the force estimation results can-
not be quickly achieved and effectively converge to the
stable value, which may cause the steady-state error of
the real-time control. In addition, the semi-parametric
friction model is designed based on the classical fric-
tion model for real-time performance, which would
reduce the generalization of the neural network and
increase the training time. Future work will focus on
further improving the estimation performance of the
proposed method by enhancing the friction model and
the observer structure. More accurate friction models
will be used to characterize the main components of
joint friction with inspiration from [26,28], reducing
the model training time and improving model gener-
alization ability.
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