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Fault diagnosis and fault-tolerant control design for neutral time delay system

Benjemaa Rabeb, Elhsoumi Aicha and Abdelkrim Mohamed Naceur

National Engineering school of Gabes, MACS, Gabes University, Zrig Eddakhlania, Tunisia

ABSTRACT
This paper presents a new approach of fault-tolerant control (FTC) for the transmission line as a
neutral variable time-delay system. Themain goal of this work guarantees faulty neutral variable
time delay system stabilization using the state feedback control design based on Lyapunov func-
tion and the LinearMatrix Inequality resolution. The use of the FTCmethod is to achieve actuator
and sensor fault compensation. This method is based on two steps. The first one is the synthe-
sis of a nominal control, which remains to maintain the closed-loop system stability. The second
step is based on adding a new control law to the nominal one to compensate the fault effect
on system behaviour and maintain the desired performance in the closed loop system. Then, a
conception of an adaptive observer is used to detect and estimate the fault. Finally, the devel-
oped approach is applied for the transmission line. The given results are presented to prove the
effectiveness of this approach.
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1. Introduction

Time delay, as a source of instability and poor perfor-
mance, often appears in many dynamic systems. Neu-
tral systems, as a special type of time delay systems
appear in many dynamic systems: chemical systems,
nuclear reactors and transmission line systems [1–14].

In this work, we are interested in the transmission
line as a neutral variable time-delay system. The pres-
ence of variable time delay induces poor performance
and instability in control systems. In addition, the fault
can occur during the system operation that can be a
source of degradation of its performance. Therefore, it
is necessary to introduce a fault-tolerant control (FTC)
strategy to maintain the system behaviour.

Benjemaa et al. [1], interested in the FTC of trans-
mission line system with variable delay and actua-
tor fault based on robust approach and PIM method,
proved that the robust control is able to reduce the fault
effect but it fails to make system output converged to
desired one. The PIM method was used. It was found
that the error between the closed loop system output
and the nominal one minimized.

This method requires a reference model to modify it
and design a control law for the fault-free system such
that the closed-loop behaviour follows the reference
model.

This work compensates the fault effect on sys-
tem behaviour applied for two types of faults, sensor
and actuator fault using a new type of FTC (additive
control).

This FTC is designed by adding a new control law
to the nominal one. The results of FTC application
for transmission line system are compared with results
given in [1].

The simulation results show that the actuator
fault compensation is better than the methods pre-
viously used, because it allows to minimize the fault
effect on system behaviour more than the two other
approaches. In addition, this approach is not used only
for actuator fault compensation but also for sensor
fault.

This paper is organized as follows: Section 2 presents
the problems statement where the transmission line is
modelled as a neutral variable time delay system. In
Section 3, the main results of the proposed method; a
synthesis of FTC law for the case of sensor fault and
actuator fault, and a conception of an adaptive observer
are given.

Section 4 gives the simulation results of control
application for neutral variable time delay transmission
line system. The last part is the conclusion.

Notation: Consider the following notations: Rn and
Rn×m are respectively the n-dimensional Euclidean space
and the space of all real matrices, the transpose is denoted
by the superscript “T” and LMI denote Linear Matrix
Inequality. I is the identity matrix of appropriate dimen-
sion and “∗′′ is used to denote the transposed elements in
the symmetric position.
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Figure 1. Transmission line circuit.

2. PROBLEMS STATEMENT

Consider the transmission line shown in Figure 1, at
one end (x = 0) there is a constant voltage source E
and at the other end (x = l), a capacitor is connected
in parallel with a tunnel diode. The current i(., .) and
the voltage v(., .) are functions of t and x, which satisfy
the telegraph equation, a partial derivative equation of
the hyperbolic type:

L
∂i
∂t

+ ∂v
∂x

= 0, C′ ∂v
∂t

+ ∂i
∂x

= 0,

t � 0, 0 ≤ x ≤ l
(1)

where l is the length of the line, L and C′ are the induc-
tance and capacitance of the conductor per unit length,
R is the resistance at the input and Cd is the capacitance
in parallel with the tunnel diode.

The conditions cited in [1] give the following neutral
linear system:

d�
d�

(�) − D
d�
d�

(
� − r′

) = R� (�) + S�
(
� − r′

)
(2)

where

R =
m −

√
C′
L

Cd
, S = −

(√
L
C′ − R0

)(
m +

√
C′
L

)
(√

L
C′ + R0

)
Cd

D =
(√

L
C′ − R0

)
(√

L
C′ + R0

) , r′ = 2l
√
LC′

� = t − bl, b =
√
LC′

m and R0 are respectively a positive constant and an
equilibrium resistance.

The neutral variable delay system can be written as
follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ (t) = A1x (t) + A2x (t − s (t))
+A3ẋ (t − s (t)) + Bu (t)

y (t) = Cx (t)
x (t) = φ (t) , t ∈ [−s, 0]

(3)

where

A1 = R, A2 = S, A3 = D,

s(t) = bl + r′ = 3l
√
LC′.

x(t) ∈ Rn,u(t) ∈ Rm and y(t) ∈ Rp are respectively the
state, the input and the output vector.

A1, A2, A3, B and C are constant matrices. φ(t) is an
initial function.

The variation in delay is the consequence of the
variation in line length.

3. Main results

The following lemmas are very useful for the main
results of this work.

Lemma 3.1 (Schur complement): Consider constant
matrices ω1,ω2,ω3 with ω1 = ωT

1 and ω2 = ωT
2 � 0

then, ω1 + ωT
3 ω−1

2 ω3 ≺ 0 if:
[
ω1 ωT

3
ω3 −ω2

]
≺ 0 or

[−ω2 ω3
ωT
3 ω1

]
≺ 0.

Lemma 3.2: Increase Lemma:
Given scalar X and Y two matrices of appropriate

dimensions, the following inequality is always true for
any matrix Q>0:

XYT + YXT ≤ XQXT + YQ−1YT . (4)

3.1. Synthesis of an FTC, sensor fault case

Consider the following neutral variable time delay sys-
tem (3) with sensor fault:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ (t) = A1x (t) + A2x (t − s (t))
+A3ẋ (t − s (t)) + Bu (t)

y (t) = Cx (t) + Fsfs (t)
x (t) = φ (t) , t ∈ [−s, 0]

(5)

where fs(t) is the sensor fault and Fs is a constantmatrix,
and it is assumed that the pair (Ai,C) is observable,
i = 1, 2, 3.

3.1.1. Synthesis of a nominal control
The nominal control law remains to maintain stability
of closed-loop system.

A nominal control in case of sensor fault noted
unoms (t) which is represented as follows:

unoms (t) = −Ky (t) , (6)

where K is the feedback matrix gain. The pole place-
ment method is used to determine K.

3.1.2. A strategy of additive control
For the sensor free fault system (3), the nominal con-
trol law remains to maintain stability of the closed-loop
system which satisfies Equation (6).

When the fault occurs, an additive control becomes
necessary to compensate the fault effect.
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For this reason, we suggest adding a new term
uadds (t) to the nominal law to compensate the fault effect
on closed loop system behaviour.

The control, to be effectively applied to the neutral
variable time delay system can be written as

us (t) = unoms (t) + uadds (t) . (7)

The closed-loop state equation can be rewritten as fol-
lows:

ẋ (t) = (A1 − BKC) x (t) + A2x (t − s (t))

+ A3ẋ (t − s (t))

+ Buadds (t) + BFsfs (t) , (8)

where uadds (t) satisfies the following equation:

Buadds (t) + BFsfs (t) = 0 (9)

then

uadds (t) = −Fsfs (t) (10)

or the adaptive observer (21) is trying to estimate the
fault such that limt→∞ f̂s = fs.
where f̂s is the estimate of sensor fault fs.

Also, the error fault equation is described as follows:

ef (t) = f̂s (t) − fs (t) (11)

And, we knew limt→∞ f̂s = fs, so:

ef (t) = f̂s(t) − fs(t) = 0

And f̂s(t) = fs(t).
Therefore, we can replace the sensor fault by its

estimation in the equation (10), which gives

uadds (t) = −Fsf̂s (t) . (12)

3.2. Synthesis of an FTC, actuator fault case

Consider the following neutral variable time delay sys-
tem (3) with actuator fault:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ (t) = A1x (t) + A2x (t − s (t))
+A3ẋ (t − s (t)) + Bu (t) + Fafa (t)

y (t) = Cx (t)
x (t) = φ (t) ; t ∈ [−s, 0] ,

(13)
where fa(t) is actuator fault and Fa is a constant matrix.

3.2.1. Nominal control
The following state feedback controller proposed by (2)
is designed to stabilize the closed loop system:

unoma (t) = −Kx (t) . (14)

3.2.2. Additive control
For the case of actuator fault, the proposed control is
also written as follows:

ua (t) = unoma (t) + uadda (t) , (15)

where uadda (t) satisfies the following equation:

Buadda (t) + Fafa (t) = 0 (16)

which gives

uadda (t) = −B+Fafa (t) (17)

where B+ is the pseudo-inverse of matrix B.
In the same way, we have

ef (t) = f̂a (t) − fa (t) (18)

f̂a(t) is the estimate actuator fault, and we knew
limt→∞ f̂a = fa, so

f̂a (t) = fa (t) . (19)

So, we find the following equation:

uadda (t) = −B+Faf̂a (t) . (20)

The FTC law synthesis needs the determination of sen-
sor and actuator fault estimates respectively f̂s(t) and
f̂a(t). For this reason, an adaptive observer will be used
in the following paragraph to detect and estimate these
faults.

3.3. Conception of an adaptive observer

The following adaptive observer generates residuals in
order to detect and estimate the fault:

3.3.1. Adaptive observer in the case of sensor fault
Consider the adaptive observer in the case of sensor
fault as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂. (t) = A1x̂ (t) + A2x̂ (t − s (t))
+A3 x̂. (t − s (t)) + Bu (t)

+L
[
y (t) − ŷ (t)

]
+H

[
y (t − s (t)) − ŷ (t − s (t))

]
ŷ (t) = Cx̂ (t) + Fsf̂s (t)
r (t) = y (t) − ŷ (t) .

(21)

Based on [3], consider the estimate sensor fault as fol-
lows:

f̂s (t) = �V1

[
r (t) + σ

∫
r (t) dt

]
, (22)

where x̂(t) and ŷ(t) represent respectively the estimate
state, the output vector and r(t) is the residual vector.
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�,V1 are respectively a positive definite and an arbi-
trary given matrices with appropriate dimension, σ is a
given scalar.

A theorem is proposed in (2) to determine the gains
of the observer L and H.

Theorem 3.1: Given scalar h>0 and if there exist
matrices P1, Q, W,Z1, Z2, Z3,G∈ Rn∗n, and Y1,Y2 ∈
Rn∗p,Mi, Ni ∈ Rn∗n, i = 1,.., 4, such that:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ11 φ12 φ13 φ14 φ15 hM1
∗ φ22 φ23 φ24 φ25 hM2
∗ ∗ φ33 AT

3N
T
4 0 hM3

∗ ∗ ∗ −Z1 −AT
3 P1Fs hM4

∗ ∗ ∗ ∗ φ55 0
∗ ∗ ∗ ∗ ∗ −hZ2
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

hN1 φ18 φ19 φ110
hN2 φ28 φ29 φ210
hN3 0 0 0
hN4 AT

3 P1 hAT
3 P1 0

0 FTs P1 hFTs P1 hFTs P1
0 0 0 0

−hZ3 0 0 0
∗ −P1Z−1

1 P1 0 0
∗ ∗ −hP1Z−1

2 P1 0
∗ ∗ ∗ −hP1Z−1

3 P1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≺ 0 (23)

where

φ11 = P1A1 + AT
1 P1 − Y1C − CTYT

1 + Q + M1

+ MT
1 + N1 + NT

1

φ12 = P1A2 − Y2C − AT
1 P1A3 + CTYT

1 A3

− M1 + MT
2 − N1(A3 + I) + NT

2

φ13 = MT
3 + N1A3 + NT

3

φ14 = MT
4 + NT

4

φ15 = −AT
1 P1Fs + CTYT

1 Fs

φ18 = AT
1 P1 − CTYT

1

φ19 = φ110 = hAT
1 P1 − hCTYT

1

φ22 = −AT
3 P1A2 − AT

3 P1A3 + AT
2Y2C

+ CTYT
2 A3 − Q

+ W − M2 − MT
2 − N2(A3 + I)

− (A3 + I)TNT
2

φ23 = −MT
3 + N2A3 − (A3 + I)TNT

3

φ24 = −MT
4 − (A3 + I)TNT

4

φ25 = −AT
2 P1Fs − AT

2 P1Fs + CTYT
2 Fs

φ28 = AT
2 P1 − CTYT

2

φ29 = φ210 = hAT
3 P1 − hCTYT

2

φ33 = −W + N3A3 + AT
3N

T
3

φ55 = −2FsTP1Fs + G

then

L = Y1P−1
1 (24)

H = Y2P−1
1 . (25)

3.3.2. Adaptive observer in the case of actuator fault
Consider the adaptive observer in the case of actuator
fault to detect and estimate the fault as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂. (t) = A1x̂ (t) + A2x̂ (t − s (t))
+A3 x̂. (t − s (t)) + Bu (t)
+Faf̂a (t) + L

[
y (t) − ŷ (t)

]
+H

[
y (t − s (t)) − ŷ (t − s (t))

]
ŷ (t) = Cx̂ (t)
r (t) = y (t) − ŷ (t)
f̂
.
a (t) = −δaFar (t),

(26)

where δa is a positive definite matrix, it is the learning
rate.

The following theorem is considered to find δa:

Theorem 3.2: Given positive scalar β, if there exist
P>0, Q>0, R, M and V positive matrices such that:⎡

⎢⎢⎣
2P (A1 − LC) + CTZC + Q P (A2 − HC)

∗ − (1 − β)Q
∗ ∗
∗ ∗

PA3 + (1 − β)AT
1 RA3 −PFa

(1 − β)RA3 0
AT
3 (1 − β)RA3 − R 0

∗ M + δ2a

⎤
⎥⎥⎦ ≺ 0 (27)

where

Z = VTV .

Proof: The error dynamic is described by⎧⎪⎨
⎪⎩
ėx (t) = (A1 − LC) ex (t) + A3ėx (t − s (t))

+ (A2 − HC) ex (t − s (t)) + Faef (t)
ey (t) = Cex (t) ,

(28)

where

ex(t)∗ = x̂(t) − x(t)

ey(t)∗ = ŷ(t) − y(t)

ef (t)∗ = f̂a(t) − fa(t).
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The reference model is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ėref (t) = (A1 − LC) eref (t)
+ (A2 − HC) eref (t − s (t))
+A3ėref (t − s (t)) + Faef (t)

rref (t) = VCeref (t)
eref (0) = eref0 ; t ≤ 0.

(29)

The Lyapunov functional is chosen as

V
(
eref , t

)
= eTref (t) Peref (t) +

∫ t

t−s(t)
eTref (θ)Qeref (θ) dθ

+
∫ t

t−s(t)
ėTref (θ)Rėref (θ) dθ

+
∫ 0

−s(t)

(∫ t

t−s(t)
ėTref (θ)Rėref (θ) dθ

)
dσ

+ eTf (t) δ−1
a ef (t) . (30)

The derivative of this functional is

V̇(eref , t)

=
[
2eTref (t)P(A1 − LC)eref (t)

+ 2eTref (t)P(A2 − HC)eref (t − s(t))

+ +2eTref (t)PA3ėref (t − s(t))
]

− 2eTref (t)PFaef (t) + eTref (t)Qeref (t)

− (1 − s(t))eTref (t − s(t))Qeref (t − s(t))

+ 2eTref (t)A
T
1 (1 − s(t))RA3ėref (t − s(t))

+ 2eTref (t − s(t))(1 − s(t))RA3ėref (t − s(t))

+ ėTref (t − s(t))AT
3 (1 − s(t))RA3ėref (t − s(t))

− ėTref (t − s(t))Rėref (t − s(t)) − 2eTf (t)FVCeref (t)

− 2eTf (t)δ−1
a ḟa(t).

The derivative of the estimate actuator fault is given by
.
f̂a = −δaFarref . (31)

By using Lemma 3.2, we end up with the following
inequality:

− 2eTf (t) δ−1
a ḟa (t) ≤ eTf (t)Mef (t) + ḟa (t)

≤ eTf (t)Mef (t) + fa2λmax
(
δ−1
a M−1δ−1

a
)
. (32)

Thus, the derivative of the Lyapunov functional is
increased as follows:

V̇
(
eref , t

)
≤

[
2eTref (t) P (A1 − LC) eref (t)

+ 2eTref (t) P (A2 − HC) eref (t − s (t))

+ 2eTref (t) PA3ėref (t − s (t))
]

− 2eTref (t) PFaef (t) + eTref (t)Qeref (t)

− (1 − β) eTref (t − s (t))Qeref (t − s (t))

+ 2eTref (t)AT
1 (1 − β)RA3ėref (t − s (t))

+ 2eTref (t − s (t)) (1 − β)RA3ėref (t − s (t))

+ ėTref (t − s (t))AT
3 (1 − β)RA3ėref (t − s (t))

− ėTref (t − s (t))Rėref (t − s (t)) + eTf (t)Mef (t)

+ fa2λmax
(
δ−1
a M−1δ−1

a
)
. (33)

Let

J = rTref (t) rref (t) + δ2afa
T (t) fa (t) + V̇

(
eref , t

) ≺ 0,
(34)

where

rTref (t) rref (t) = eTref (t)CTZCeref (t) . (35)

Then, the addition between (33) and (35), Equation
(34) becomes as follows:

J ≤ eTref (t)C
TZCeref (t) +

[
2eTref (t)P(A1 − LC)eref (t)

+ 2eTref (t)(A2 − HC)eref (t − s(t))

+2eTref (t)PA3ėref (t − s(t))
]

− 2eTref (t)PFaef (t) + eTref (t)Qeref (t)

− (1 − β)eTref (t − s(t))Qeref (t − s(t))

+ 2eTref (t)A
T
1 (1 − β)RA3ėref (t − s(t))

+ 2eTref (t − s(t))(1 − β)RA3ėref (t − s(t))

+ ėTref (t − s(t))AT
3 (1 − β)RA3ėref (t − s(t))

− ėTref (t − s(t))Rėref (t − s(t)) + eTf (t)Mef (t)

+ fa2λmax(δ
−1
a M−1δ−1

a ) + δ2afa
T(t)fa(t)

≤ eTref (t)
[
2P (A1 − LC) + CTZC + Q

]
eref (t)

+ 2eTref (t) P (A2 − HC) eref (t − s (t))

+ 2eTref (t)
[
PA2 + (1 − β)AT

1 RA3

]
ėref (t − s (t))

− 2eTref (t) PFaef (t) − (1 − β) eTref (t − l (t))

Qeref (t − s (t))

+ 2eTref (t − s (t)) (1 − β)RA3ėref (t − s (t))

+ ėTref (t − s (t))
[
AT
3 (1 − β)RA3 − R

]
ėref (t − s (t))

+ eTf (t)
(
M + δ2a

)
ef (t) + fa2λmax

(
δ−1
a M−1δ−1

a
)

(36)
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J ≤ �T
� ≺ 0, (37)

where

� =
[
eTref (t) eTref (t − s (t)) ėTref (t − s (t)) eTf (t)

]
(38)

and


 =

⎡
⎢⎢⎣

2P (A1 − LC) + CTZC + Q P (A2 − HC)

∗ − (1 − β)Q
∗ ∗
∗ ∗

PA3 + (1 − β)AT
1 RA3 −PFa

(1 − β)RA3 0
AT
3 (1 − β)RA3 − R 0

∗ M + δ2a

⎤
⎥⎥⎦ (39)

�

4. Simulation results

In this section, the transmission line is considered with
the form (3). This system is described by the following
matrices:

A1 = −1; A2 = −0.5; A3 = 0.5; B = 1

C = 1; Fa = 1; Fs = 1.

s(t) = 0.1 sin(10t) + 0.5

fa(t) =
{
0.2 sin(5t) + 0.5; 20 ≤ t ≤ 40
0; otherwise.

fs(t) =
{
0.5 sin(t) + 0.1; 30 ≤ t ≤ 50
0; otherwise.

From Theorem 3.1 and 3.2, we obtain respectively

L = 0.0248 and H = −0.2574

and

δa = 3.8729.

We obtained the feedback matrix gains by pole state-
ment as follows:

K = 0.5

Figures 2 and 3 show that the residual is sensible
to the fault (in the case of actuator and sensor fault).
Figures 4 and 5 show that the adaptive observer can
enhance the performance of fault estimation.

In conclusion, the proposed observer, based on fault
tolerant additive control strategy, is considered as a
good fault compensator for neutral time-delay systems.
The robust and PIM methods in [1] achieve the sta-
bility and the performance system in closed loop. But
the robust controller, Figure 6, cannot achieve the final
value (� 0.6). Using the PIM method, Figure 7, the
error between the faulty system and the reference one

Figure 2. Residual and actuator fault signal.

Figure 3. Residual and sensor fault signal.
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Figure 4. Actuator fault and their estimate signal.

Figure 5. Sensor fault and their estimate signal.

Figure 6. Output signal with robust control law.

Figure 7. Output signal with PIM control.
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Figure 8. Output signal with ua(t) control law.

Figure 9. Output signal with us(t) control law.

is achieved, so the error can be minimized and the
convergence to the final value is obtained.

Unlike the PIM method, the additive control does
not require a reference model. It also allows the fault
to be detected and estimated online.

The effectiveness of the proposed additive control
strategy is thus noted inspite of the presence of an
actuator and sensor fault. It emphasizes the ability
of this strategy to maintain closed-loop performance
(Figures 8 and 9). In addition, it minimizes the fault
amplitude better than the PIM method (amplitude
in PIM � 1) and with additive control in Figure 8,
(0.6 < amplitude < 0.8).

The strategy developed, therefore, shows its ability
to maintain performance in terms of compensation for
the considered fault.

5. Conclusion

In this work, the transmission line is considered as a
neutral variable delay system. The FTC is composed of
two terms as presented in Section 3.

This type of control is better than the PIM and the
robust control. In fact, it is applicable for the sensor fault
and it guarantees the desired performance of the neutral
variable time-delay case systems.

Simulation results demonstrate the effectiveness of
the control strategies developed for the neutral variable
delay transmission line system.
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