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ABSTRACT
This paper presents an online adaptive approximate solution for the optimal tracking control
problem ofmodel-free nonlinear systems. Firstly, a dynamic neural network identifier with prop-
erly designed weights updating laws is developed to identify the unknown dynamics. Then an
adaptive optimal tracking control policy consisting of two terms is proposed, i.e. a steady-state
control term is established to ensure the desired tracking performance at the steady state, and
an optimal control term is proposed to ensure the optimal tracking error dynamics optimally.
The composite Lyapunovmethod is used to analyse the stability of the closed-loop system. Two
simulation examples are presented to demonstrate the effectiveness of the proposed method.
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1. Introduction

The basic idea of the classical adaptive control is to
update the model parameter and control law directly or
indirectly, such that the control error can beminimized.
However, it is generally not optimal. On the other side,
the main drawback of the classical optimal control
approach lies in that the system dynamics must be pre-
cisely known for solving the Hamilton-Jacobi-Bellman
(HJB) equation in an off-line manner [1]. Hence, by
merging the knowledge from adaptive control and opti-
mal control, the adaptive optimal control approach has
been developed during the past decade and a survey of
this research can be found in [2–4].

To develop an online adaptive optimal control, Wer-
bos [5] introduced the general actor-critic (AC) frame-
work for adaptive optimal control. The critic neural net-
work (NN) approximates the evaluation function,map-
ping states to an estimated measure of the value func-
tion, whereas the NN approximates an optimal control
law and generates the actions or control signals. Since
then, various modifications to adaptive optimal control
algorithms have been proposed as model-based meth-
ods (heuristic dynamic programming – HDP [6] and
dual heuristic programming-DHP [7]) and model-free
methods (action-dependent heuristic dynamic pro-
gramming – ADHDP [8] and Q learning [9]). How-
ever, most of the previous works on adaptive optimal
control have focused on discrete-time systems. The
extensions of these adaptive optimal control research
to continuous-time systems pose challenges in proving
stability, convergence and ensuring the online updating
law with model free [10].

Discretizinging the continuous time system is gen-
erally not accurate, especially for the high-dimensional
systems that prohibit the learning process. Hence, the
online policy iteration-based algorithms are proposed
to solve the linear [11] and nonlinear [12] continuous-
time infinite horizon optimal control problems, which
involve synchronous adaptive of both actor and critic
NN. Furthermore, ref. [10] extended the idea in refs.
[11,12] by designing a novel AC-identifier architecture
to approximate the HJB equation without the knowl-
edge of system drift dynamics, but the knowledge of the
input dynamics is required. The recent research in [13]
cancels this requirement by using the experience itera-
tion technique. Based on ref. [10], a simply identifier-
critic structure-based optimal control method is pro-
posed in [14,15], where just a critic NN is used to
approximate the solution of the HJB equation and to
calculate the optimal control action. In [16], an optimal
control method for nonzero-sum differential games
of continuous-time nonlinear systems is designed
directly from the critic NN instead of the action-critic
dual network, which greatly simplifies the algorithm
architecture.

Most of the existing adaptive optimal research stud-
ies mainly focus on dealing with regulation problems
rather than trajectory tracking problems. The com-
bined consideration of two aspects can ensure not
only the realization of trajectory tracking and sta-
bilization but also satisfying the prescribed perfor-
mance index (such as minimization of the trajectory
error, fuel consumption, etc.). In [17] a new data-
based iterative optimal learning control scheme is
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developed to solve a coal gasification optimal track-
ing control problem in the discrete-time domain.
For continuous-time systems, linear quadratic track-
ing control of partially-unknown systems using rein-
forcement learning is present in [18] and a nonlinear
approximately optimal trajectory trackingmethodwith
exact model information is developed in [19]. To relax
the requirement of an explicit model, a steady-state
control conjunction with an optimal control for non-
linear continuous-time systems is developed in [20],
which stabilizes the error dynamics in an optimal
way.

Most of the above-mentioned adaptive optimal con-
trol method is based on the affine nonlinear system,
to the best of our knowledge, only [21] addressed
the adaptive optimal control of unknown non-affine
nonlinear systems in the discrete-time domain and
[22] introduces an adaptive recursive control for the
model-based non-affine nonlinear continuous system.
The optimal control of an unknown non-affine nonlin-
ear continuous-time system is still a challenging task,
which is the motivation of this paper.

The main contributions of this paper are listed as
follows.

(1) The optimal tracking control of unknown non-
affine nonlinear systems based on the critic iden-
tifier architecture is first proposed in this paper.
Model-free property is achieved by a neuro iden-
tifier in conjunction with the novel updating laws
for both the weights and the linear part matrix
which is usually assumed to be a known Hurwitz
matrix for the conventional black-box nonlinear
system identification.

(2) Adaptive optimal tracking control policy consist-
ing of two terms is proposed, i.e. a steady-state
control term is established to ensure the desired
tracking performance at the steady state, and an
optimal control term is proposed to ensure the
optimal tracking error dynamics. Online solution
of the optimal control term is obtained directly
by a single critic NN to approximate the opti-
mal cost function of the HJB equation instead
of the conventional action-critic dual network,
which greatly reduces complexity and saves cal-
culation time. A novel learning law driven by fil-
tered parameter error is proposed for critic NN.
The stability of the entire closed-loop system is
proved by the properly designed composite Lya-
punov method.

The main organization of the paper is as follows.
The problem formulation is given in Section 2. The
DNN identifier is designed in Section 3. Then, the
optimal control strategy, based on the critic-identifier
architecture, is present in Section 4. Two simula-
tion examples are presented to verify the proposed

scheme in Section 5 and the conclusion is drawn in
Section 6.

2. Problem formulation

Consider the following non-affine nonlinear
continuous-time systems

ẋ(t) = f (x(t), u(t)) (1)

where x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn is the state
vector, u(t) = (u1(t), u2(t), . . . , um(t))T ∈ Rm is the
control input vector and f (·) is an unknown continuous
nonlinear smooth function for x(t) and u(t).

The objective of the optimal tracking control prob-
lem is to design an optimal controller (1) to ensure that
the state vector x(t) tracks the specified trajectory xr(t)
and minimize the infinite horizon performance cost
function as follows:

V(e(t)) =
∫ ∞

t
r(e(τ ), ue(e(τ ))dτ (2)

where the tracking error is defined as e(t) = x(t)−
xr(t), the utility function with symmetric positive def-
inite matrices Q and R is defined as r(e(t), u(t)) =
eT(t)Qe(t)+uT(t)Ru(t).

From the basic optimal control theory, we define the
Hamiltonian of (1) as

H(e, ue,V) = VT
e [f (x(t), u(t))] + eTQe

+ uT(t)Ru(t) (3)

whereVe
�= ∂V

∂x denotes the partial derivative of the cost
function V(e(t)) with respect to e(t).

The optimal cost function V∗(e(t)) is given as

V∗(e(t)) = min min
u∈ψ(�)

∫ ∞

t
r(e(τ ), ue(e(τ ))dτ (4)

and it satisfies the HJB equation

H(e, u∗,V∗) = V∗T
e [f (x(t), u∗(t))] + eT(t)Qe(t)

+ u∗T(t)Ru∗(t) (5)

where the control u is defined to be admissible for (2)
on a compact set� ∈ Rn, denoted by u ∈ ψ(�).

Theoretically, the optimal control for nonlinear sys-
tem (1) can be obtained from Equations (4) and (5).
However, optimal control cannot be obtained in prac-
tical systems due to two reasons: 1). The optimal
cost function V∗(e(t)) should be obtained by solv-
ing the HJB equation (5). However, it is usually diffi-
cult to solve the high-order nonlinear partial differen-
tial equation (PDE) for general nonlinear systems via
analytical methods. Moreover, the unknown nonlinear
dynamic f (·) makes the solution unavailable for HJB
Equation (2). The idea of optimal control u∗(t) can-
not be derived by solving ∂H(e,u∗,V∗)

∂u∗ = 0 due to the
unavailability of V∗(e(t)).
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In this paper, we develop a critic-identifier to solve
the optimal control of an unknown non-affine nonlin-
ear continuous-time system, all the learning processes
can be updated online.

3. Adaptivemodel-free identifier

We employ the following dynamic neural network
(DNN) model to approximate the nonlinear dynamic
system (1)

˙̂x(t) = Ax̂(t)+ W1σ(V1[x̂(t)])+ W2φ(V2[x̂(t)])u(t)
(6)

where x̂(t) ∈ Rn is the state of the DNN, W1 ∈
Rn×m,W2 ∈ Rm×n are the weights in the output layers,
W1 ∈ Rn×m,W2 ∈ Rm×n are the weights in the hid-
den layer, A ∈ Rn×n is the matrix for the linear part of
NNs, u(t) = (u1(t), u2(t), . . . , uk(t), 0, . . . , 0)T ∈ Rm is
the control input, the active function σ(·) (as well
as φ(·)) is the sigmoidal vector function which is
defined asσ(·) = a/(1 + e−bx)− c, where a, b and c are
constants.

Remark 3.1: If we define W = [W1,W2], 	 = {σ(V1
[x̂(t)]),ϕ(V2[x̂(t)])u(t)}, then (6) can be written as
˙̂x(t) = Ax̂(t)+ W	. It has been proved in [23] that
DNN with the form ˙̂x(t) = Ax̂(t)+ W	 can approxi-
mate the nonlinear system (1) to any degree of accuracy
if the hidden layer V is large enough. Here, to simplify
the analysis process, we consider the simplest structure
(i.e.m = n,V = I,φ(·) = I).

Then the nonlinear system (1) can be modelled by
the DNN as follows:

ẋ(t) = A∗x(t)+ W1
∗σ(x(t))+ W2

∗u(t)+ ξ1 (7)

where A∗, W1
∗,W2

∗ are the nominal unknown matri-
ces and W1

∗,W2
∗ are bounded as W1

∗�1
−1W1

∗T ≤
W1,W2

∗�2
−1W2

∗T ≤ W2 (�1
−1,�2

−1 are any posi-
tive definite symmetric matrices), and ξ1 is regarded as
the modelling error or disturbance and is assumed to
be bounded.

Assumption 3.1: The identification error is defined
by �x = x(t)− x̂(t). The difference in the activa-
tion function σ̃ = σ(x(t))− σ(x̂(t)) satisfies the gen-
eralized Lipshitz condition σ̃T�σ̃ <[�x]TD[�x] =
�xTD�x, and D = DT > 0 is the known normalizing
matrices.

Then from (6) and (7), we can obtain the error
dynamic equation

�ẋ = A∗�x + Ãx̂(t)+ W1
∗σ̃ + W̃1σ x̂(t)

+ W̃2u(t)+ ξ1 (8)

where Ã = A∗ − A W̃1 = W1
∗ − W1, W̃2 = W2

∗ −
W2,

Lemma 3.1 ([24]): A ∈ �n×n is a Hurwitz matrix,
R,Q ∈ �n×n R = RT > 0,Q = QT > 0 if (A,R1/2) is
controllable, (A,Q1/2) is observable and ATR−1A −
Q ≥ 1

4 (A
TR−1 − R−1A)R(ATR−1 − R−1A) is satisfied,

the algebraic Riccati equation ATX + XA + XRX +
Q = 0 has a unique positive definite solution X =
XT > 0.

Theorem3.1: Consider the identification scheme (6) for
(1), the following updating law

Ȧ = −k1�xx̂T , Ẇ1 = −k2�xσ1T(x̂),

Ẇ2 = −k3�xuT (9)

where k1, k2 and k3 are positive constants, can guarantee
the following stability properties:

(1) For a precise identifier case i.e. ξ1 = 0

Ŵ1,2, Â ∈ L∞,�x ∈ L2 ∩ L∞, lim
t→∞�x = 0.

(2) For bounded modelling error and disturbances i.e.
ξ1 ≤ ξ1

�x, Ŵ1,2, Â ∈ L∞.

Proof: Consider the Lyapunov function candidate

LI = �xTP�x + 1
k2
tr{W̃T

1 PxW̃1} + 1
k3
tr{W̃T

2 PxW̃2}

+ 1
k1
tr{ÃTPxÃ} (10)

�

Hence, differentiating (11) and using (8) yield

L̇I = �xT(A∗TP + PA∗)�x + 2�xTPÃx̂

+ 2�xTPW̃1σ(x̂)+ 2�xTPW̃2u

+ 2�xTPW∗
1 σ̃ + 2�xTPξ1 + 2

k1
tr{ ˙̃AT

PÃ}

+ 2
k2
tr{ ˙̃WT

1 PW̃1} + 2
k3
tr{ ˙̃WT

2 PW̃2} (11)

By using the updating laws (9) and taking the facts
˙̃A = −Ȧ, ˙̃W1,2 = −Ẇ1,2, into consideration, then (11)
becomes

L̇I = �xT(A∗TP + PA∗)�x

+ 2�xTPW∗
1 σ̃ + 2�xTPξ1 (12)

Using the following matrix inequality

XTY + (XTY)T ≤ XT�−1X + YT�Y (13)

where X,Y ∈ Rj×k are any matrices and � ∈ Rj×k is
any positive definite matrix. From Assumption 3.1, one
obtains

2�xTPW∗
1 σ̃ ≤ �xTPW∗

1�
−1W∗

1P�x + σ̃T�σ̃
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≤ �xTPW̄1P�x +�xTD�x

2�xTPξ1 ≤ �xTP�−1
ξ P�x + ξT1 �

−1
ξ ξ1 (14)

Then substituting (14) into (12) obtains

L̇I ≤ �xT(A∗TP + PA∗ + PW̄1P + D + Q0)�x

−�xTQ0�x +�xTP�ξP�x +�ξT1 �
−1
ξ �ξ1

(15)

By defining R = W1,Q = D + Qo, then if we can
select proper Qo so that Q satisfies the conditions in
Lemma 3.1, there existsmatrixP satisfying the equation
A∗TP + PA∗ + PRP + Q = 0.

Hence (15) becomes

L̇I ≤ −�xTQ0�x +�xTP�−1
ξ P�x +�ξT1 �

−1
ξ �ξ1

(16)
Case 1: For precise identifier case i.e. ξ1 = 0, (16)
becomes

L̇I ≤ −�xTQ0�x ≤ −λmin(Qx)‖�x‖2Qx
≤ 0 (17)

From (17) we get �x, Ŵ1,2, Â ∈ L∞. Furthermore,
from the error dynamics (8) we have �̇x ∈ L∞. By
integrating (17) on both sides from 0 to ∞, we
have

∫∞
0 [−λmin(Qx)||�x||2Qx

] ≤ [V1(0)− V1(∞)] <
∞, which implies that �x ∈ L2. Since �x ∈ L2 ∩
L∞ and �̇x ∈ L∞, using Barbalat’s Lemma we have
lim
t→∞�x = 0.

Case 2: For bounded modelling error and distur-
bances i.e. ξ1 ≤ ξ̄1. Equation (16) can be represented
as

L̇I ≤ −�xTQ0�x +�xTP�−1
ξ P�x +�ξT1 �

−1
ξ �ξ1

≤ −α(‖�x‖)+ β(‖ξ1‖) (18)

where α(‖�x‖) = (λmin(Q0)− λmax(P�ξP))‖�x‖2
β(||ξ1||) = λmax(�

−1
ξ )||ξ1||2.

Since αx, βx, αy, βy are K∞ functions, LI is the ISS-
Lyapunov function. Using Theorem 3.1 in [24], the
dynamics of the identification error (8) is input to state
stable, which implies�x,W1,2,A ∈ L∞. This completes
the proof of Theorem 3.1.

4. Optimal control design

In this section, adaptive optimal control is designed
based on the DNN identifier. From Section 3, we know
that a nonlinear system (1) can be represented by DNN
with the updating law (9) as follows:

ẋ = Ax̂ + W1σ(x̂)+ W2u + ξ1 (19)

where themodel error ξ1 is still assumed to be bounded
ξ1 ≤ ξ̄1.�x andW1,2 are bound as Theorem 3.1.

Then (19) can be further rewritten as

ẋ = Ax + W1σ(x̂)+ W2u + ξ2 (20)

where ξ2 = ξ1 + Ax̂ − Ax = ξ1 − A�x. For bounded
ξ1 and�x, ξ2 is bounded as well i.e. ξ2 ≤ ξ̄2.

To achieve optimal tracking control, the control
action u is designed as u = ur + ue where ur is the
steady-state control which ensures that the tracking
error is at the steady state, and ue is the adaptive optimal
control which is used to minimize the infinite hori-
zon performance index function optimally. ur should
be designed to compensate for the nonlinear dynamic
in (20). Hence, let ur be

ur = W+
2 [ẋd − Ax − W1σ(x)− Ke] (21)

where e = x − xr denotes the state tracking error, K
is the feedback gain and W+

2 denotes the generalized
inverse ofW2.

From (20) and (21), the error dynamic equation
becomes

ė = −Ke + W2ue + ξ2 (22)

In this case, the tracking problem with (20) is trans-
ferred to the regulator problem of (22). The adaptive
optimal control ue is designed to stabilize (22) opti-
mally. Hence rewrite the infinite horizon performance
cost function (2) as

V(e(t)) =
∫ ∞

t
r(e(τ ), ue(e(τ ))dτ (23)

where r(e, ue) = eTQe + uTe Rue is the utility function
with the optimal control ue.

According to the optimal regulator problem design
in [25], an admissible control policy ue should be
designed to ensure that the infinite horizon cost func-
tion (23) related to (22) is minimized. So, design the
Hamiltonian of (22) as

H(e, ue,V) = VT
e [−Ke + W+

2 ue + ξ2]

+ eTQe + uTe Rue (24)

where Ve = ∂V(e)
∂e is the partial derivative of the value

function with respect to e.
Then we define the optimal cost function as

V∗(e(t)) = min
ue∈ψ(�)

(∫ ∞

t
r(e(τ ), ue(e(τ ))dτ) (25)

and it satisfies the following HJB equation

min
ue∈ψ(�)

[H(e, u∗
e ,V

∗)] = 0 (26)

The last optimal control value u∗
e for (22) can be

obtained by solving ∂H(e,u∗
e ,V∗)

∂u∗
e

= 0 from (24)

u∗
e = −1

2
R−1[W2]T

∂V∗(e)
∂e

(27)

where V∗(e) is the solution of the HJB equation (26).
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From (27), we can learn that the optimal control
value u∗

e is based on the optimal value function V∗(e).
However, it is difficult to solve the nonlinear partial
differential HJB equation (26) to obtain V∗(e). The
usual method is to get the approximate solution via a
critic NN as [4,5,25]. A single-layer NN will be used to
approximate the optimal value function

V∗(e) = W∗T
3 φψ(e)+ ξ3 (28)

and its derivative is

∂V∗(e)
∂e

= ∇ψT(e)W∗
3 + ∇ξ3 (29)

whereW∗
3 ∈ RI is the nominal weight vector,ψ(e) ∈ RI

is the active function and ξ3 is the approximation error,
I represents the number of neurons. ∇ψ(e) = ∂ψ(e)

∂e
and ∇ξ3 = ∂ξ3

∂e are the partial derivatives of ψ(e) and
ξ3 with respect to e, respectively.

Assumption 4.2: The nominal weight vector W∗
3, the

active function ψ(e) and its derivative ∇ψ(e) are all
bound, i.e ||W∗

3|| ≤ W̄3, ‖ψ(e)‖ ≤ ψ̄1, ‖∇ψ(e)‖ ≤ ψ̄2
||∇ξ3|| ≤ ψ̄3.

Then substituting (28) with (27), one obtains

u∗
e = −1

2
R−1WT

2 (∇φT(e)W∗
3 + ∇ξ3) (30)

The critic NN is approximated as

V(e) = WT
3φ(e) (31)

where W3 is the estimation of the nominal W∗
3.

Then the approximate optimal control can be
obtained from (30) and (31)

ue = −1
2
R−1WT

2 ∇φT(e)W3 (32)

Remark 4.2: The available adaptive optimal control
method is usually based on the dual NN architecture,
where the critic NN and action NN are employed to
approximate the optimal cost function and optimal
control policy, respectively. The complicated structure
and computational burden make it difficult for prac-
tical implantation. In the following, we will calculate
the optimal control action directly from the critic NN
instead of the action-critic dual network.

Substituting (28) with (24), one obtains

0 = W∗T
3 ∇φ(e)[−Ke + W+

2 ue]

+ eTQe + uTe Rue + ξHJB (33)

where ξHJB = W∗T
3 φ(e)ξ2 + ∇ξ3[−Ke + W+

2 ue + ξ2]
is the residual HJB equation error due to the DNN
identifier error ξ2 and NN approximation error ∇ξ3.

Then (33) can bewritten as the general identification
form as

Y = −W∗T
3 X − ξHJB (34)

where X=∇φ(e)[−Ke + W+
2 ue], Y = eTQe + uTe Rue.

According to the least square method learning rules,
one can get the estimation of nominal W∗

3 as W3 =
−(XXT)−1XYT in the case of residual HJB equation
error equals zero. However, ξHJB is not always zero
and it is also difficult to finish the subsequent closed-
loop stability analysis based on the least squaremethod.
Inspired by [14,26], we develop a novel robust estima-
tion method of W∗

3. The following equation is used to
identify (34)

Y = −WT
3X − ξHJB1 (35)

where ξHJB can be assumed to be the model error and
unknown disturbance.

For (35), the filtered version of Y is defined as

ż = τz + Y , z(0) = 0 (36)

where L̇o = W̃T
3 μ

−1 ˙̃W3 = −E(t)W̃T
3 W̃3 + W̃T

3 ςf ≤
−σ ||W̃3||2 − ||W̃3||ς̄f is a positive constant,and z is an
auxiliary variable.

We further define the auxiliary variables zf ,Yf ,Xf
and ξHJB1f as⎧⎪⎪⎨⎪⎪⎩

ηżf + zf = z, zf (0) = 0
ηẎf + Yf = Y ,Yf (0) = 0
ηẊf + Xf = X,Xf (0) = 0
ηξ̇HJB1f + ξHJB1f = ξHJB1, ξHJB1f (0) = 0

(37)

where η is a filter parameter. It should be noted that the
fictitious filtered variable ξHJB1f is just used for analysis.

Then we get

Yf = −WT
3Xf − ξHJB1f (38)

żf = −τzf + Yf (39)

From the first equation in (36), one obtains

żf = (z − zf )/η (40)

According to (38), (39) and (40), we have

(z − zf )/η + τzf = −WT
3Xf − ξHJB1f (41)

Furthermore, we define the auxiliary regression matrix
E ∈ Rl×l and vector F ∈ Rl as{

Ė(t) = −ηE(t)+ Xf XT
f , E(0) = 0

Ḟ(t) = −ηF(t)+ Xf [(z − zf )/η + τzf ]F(0) = 0
(42)

where η is a positive constant as defined in (37).
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The solution of (42) is derived as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E(t) =
∫ t

0
e−η(t−r)X(r)XT(r)dr

F(t) =
∫ t

0
e−η(t−r)X(r)[(z(r)− zf (r))/η

+ τzf (r)]dr

(43)

Finally, we denote a vectorM as

M = E(t)W3 + F(t) (44)

The adaptive law for updatingW3 is provided by

Ẇ3 = −μM (45)

where μ is the learning gain.

Theorem 4.2: For system (34) with the updating law
(44) then the value function weight error W̃3 = W∗

3 −
W3 converges to a compact set around zero.

Proof: The Lyapunov function is selected as

Lo = 1
2
W̃T

3 μ
−1W̃3 (46)

�

Then, by substituting (42) with (44), one obtains

M = E(t)W3 + F(t) = −E(t)W̃3 + ςf (47)

where ςf = − ∫ t0 e−η(t−r)Xf ξHJB1f dr is bounded as
||sf || ≤ ζ̄f .

It can be seen from [26] that the persistently excited
(PE) for X can make the matrix defined in (43) is posi-

tive define, i.e. λmin(E) > σ > 0 Then according
.
W̃
3

=
−Ẇ3, the derivative of (46) is calculated as

L̇o = WT
3 μ

−1
.
W̃
3

= −E(t)W̃T
3 W̃3 + W̃T

3 ςf

≤ −||W̃3||(σ ||W̃3|| − ζ̄f ) (48)

Then W̃3 converges into the compact set� : {||W̃3|| ≤
ζ̄f /σ }

Theorem 4.3: For system (1) with an adaptive optimal
control u signal (21) and (32) and adaptive laws (9) and
(45), the tracking error e is uniformly ultimately bound,
and the optimal control ue in (32) converges to a small
bound around its ideal optimal solution u∗

e in (30).

Proof: Design the Lyapunov function as

L = LI + Lo + Lc

where LI can be expressed as (10) and the time deriva-
tive of (18) satisfies the following inequality

L̇I ≤ −(λmin(Q0)− λmax(P�ξP))‖�x‖2

+ λmax(�
−1
ξ )||ξ1||2 (49)

�

Lo is defined as (46) and its derivation is obtained
from (48) such that

L̇o = W̃T
3 μ

−1 ˙̃W3 = −E(t)W̃T
3 W̃3 + W̃T

3 ςf

≤ −σ ||W̃3||2 − ||W̃3||ζ̄f (50)

From the basic inequality ab ≤ a2δ/2 + b2/2δwith δ >
0, we can rewrite (50) as

L̇o ≤ −
(
σ − 1

2δ

)
||W̃3||2 +

δζ̄ 2f

2
(51)

LC is defined as

LC = �eTe + κV∗(e) (52)

whereV∗(e) is the optimal cost function defined in (25)
and �, κ > 0 are positive constants.

Substituting (32) with (22), one obtains

ė = −Ke + W2(−1/2R−1WT
2 ∇ϕTW3)+ ξ2

= −Ke + 1/2W2R−1WT
2 ∇ϕTW̃3 + W2u∗

e

+ 1/2W2R−1WT
2 ∇ϕT∇ξ3 + ξ2 (53)

Then time derivation of (52) can be deduced from (28)
and (53) as

L̇C = 2�eTė + κ(−eTQe − u∗T
e Ru∗

e )

= 2�eT(−Ke + 1
2
W2R−1WT

2 ∇ϕTW̃3 + W2u∗
e

+ 1
2
W2R−1WT

2 ∇ϕT∇ξ3 + ξ2)

+ κ(−eTQe − u∗T
e Ru∗

e )

≤ −[�K + κλmin(Q)− �(||WT
2 R

−1W2∇ϕ||
+ ||WT

2 R
−1WT

2 || + 2)]||e||2

+ 1
4
�(||WT

2 R
−1W2∇ϕ||||W̃3||2

− [κλmin(R)− �||W2||2]||u∗
e ||2

+ 1
2
�||WT

2 R
−1WT

2 ||∇ξT3 ∇ξ3 + �ξT2 ξ2 (54)

Then from (49), (50) and (54), the time derivative of L is
L̇ = L̇I + L̇o + L̇c and satisfied the following inequality

L̇ ≤ −(λmin(Q0)− λmax(P�ξP))‖�x‖2

− [�K + κλmin(Q)− �(||WT
2 R

−1WT
2 ||(‖∇φ‖

+ 1)+ 2)]‖‖2 − [κλmin(R)− �||W2||2]||u∗
e ||2

−
[
σ − 1

2δ
− 1

4
�(||WT

2 R
−1W2∇φ||]||W̃3||2

λmax(�
−1
ξ )||ξ1||2 + 1

2
�||WT

2 R
−1WT

2 ||∇ξT3 ∇ξ3
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Figure 1. Structural diagram of the control scheme.

+ �ξT2 ξ2 +
δζ̄ 2f

2
(55)

If we can choose the appropriate parameters to satisfy
the following condition

λmin(Q0) > λmax(P�ξP)),� <
4σδ − 2

δ||WT
2 R−1W2∇φ||

κ > max

{
�||W2||2
λmin(R)

,

�(||WT
2 R

−1WT
2 ||(‖∇φ‖ + 1)+ 2)
λmin(Q)

}
(56)

Then (55) can be further represented as

L̇ ≤ −h1‖�x‖2 − h2||W̃3||2 − h3‖e‖2 + ϑ (57)

where h1 = λmin(Q0)− λmax(P�ξP) h2 = σ − 1
2δ −

1
4�(||WT

2 R
−1W2∇φ||)h3 = �K + κλmin(Q)− �

(||WT
2 R

−1WT
2 ||(‖∇φ‖ + 1)+ 2ϑ = λmax(�

−1
ξ )||ξ1||2

+ 1
2�||WT

2 R
−1WT

2 ||∇ξT3 ∇ξ3 + �ξT2 ξ2 + δζ 2f
2 are all

positive constants from condition (56).
Then L̇ < 0 if

‖�x‖ >
√
ϑ/h1, ||W̃3|| >

√
ϑ/h2, ‖e‖ >

√
ϑ/h3

(58)
whichmeans the identification error ‖�x‖, the tracking
error e and NN weights error ||W̃3|| are all bound.

Moreover, we have

ûe − u∗
e = 1

2
R−1WT

2 ∇φTW̃3 + 1
2
R−1WT

2 ∇ξ3 (59)

When t → ∞, the upper bound of (59) is

lim
t→∞ ||ûe − u∗

e ||

≤ 1
2
||R−1WT

2 ||(||∇φT ||||W̃3|| + ∇ ξ̄3) ≤ ζ (60)

where ζ depends on the DNN identification approxi-
mation error and the critic NN weight error W̃3.

The structure diagram of the control scheme is illus-
trated in Figure 1.

A summary of the ADP-based optimal tracking con-
trol algorithm is as follows

(1) Select the proper initial values of active functions
σ (·) and φ(·) in Equation (6) and updating gains
k1, k2, k3 in Equation (9) for the identifier. σ (·) is
usually selected as the sigmoidal function σ(·) =
a/(1 + e−bx)− cwhere a, b and c are the designed
constants. ψ (·) is selected as ψ (·) = I. α,β and
γ are tuned online according to equations (9).
Hence, there is no need to select the initial weight
values of α,β and γ . Meanwhile, select the proper
function φ(·) in Equation (31) and the updating
gain μ in Equation (45) for the critic NN φ (·) is
usually selected as a smooth function consisting
of a different combination between state tracking
errors.

(2) The inputs/outputs data of an unknown non-affine
nonlinear system (1) is used to train the identifier.

(3) Adaptive optimal tracking control law consisting of
the steady-state control law in an equation and the
optimal control law in Equation (32) is obtained
based on the first two steps.

5. Simulations

Weconsider the following two examples to illustrate the
theoretical results in this section.

Example 5.1: Considering the following non-affine
nonlinear system[

ẋ1
ẋ2

]
=
[ −x1 + x2
−0.5x1 − 0.5x2(1 − (cos(2x1 + 2)2)

]
+
[

u1
(cos(2x1 + 2))+ sin(u2)

]
(61)

The matrices Q and R of the performance index func-
tion are chosen as identify matrices. The control objec-
tive is to make the state x1 and x2 follow the desired
trajectory x1r = sin t and x2r = cos(t)− sin(t). First, a
DNN identifier (6) with the updating law (9) is used
to identify the non-affine nonlinear system. Parame-
ters are selected as k1 = k2 = k3 = 1, active function is
selected as σ(·) = 2/(1 + e−2x)− 0.5.

The identification error is shown in Figure 2. We
can see that the proposed identifier can model the non-
affine nonlinear system accurately. Then, with the iden-
tified model, the adaptive optimal tracking controller
is implemented for the unknown non-affine nonlinear
continuous system (61). Define the trajectory error as
e1 = x1 − xr1, e2 = x2 − xr2. The activation function
of critic NN is selected as φ = [e21, e1e2, e

2
2]. The adap-

tive gain of the critic NN is selected asμ = 100, and the
steady control gain is selected as K = 1200. Figures 3
and 4 represent the trajectory tracking, and the conver-
gence property for the weight of the critic NN is shown
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in Figure 5, which demonstrates that the proposed
adaptive optimal tracking controller can ensure satis-
factory tracking performance for an unknown non-
affine nonlinear continue system.

Example 5.2: The classical 2-DOF single-track vehi-
cle model, as shown in Figure 6, is commonly used in

Figure 2. State identification error.

Figure 3. State tracking for x1.

Figure 4. State tracking for x2.

Figure 5. Convergence property for the critic NN weight
x = [β γ ],.

Figure 6. Single-track vehicle model.

Table 1. Description of vehicle model parameters.

Parameters Description

M Vehicle mass
Iz Yaw inertia
lf ,lr Distance from CG to the front axle and rear axle
Cf0, Cr0 Corner stiffness of the front and rear wheel
Cx Longitudinal tire stiffness
H CG height
vx ,vy Vehicle longitudinal and lateral speed

RMS =
√∑n

i=1 e
2(i)/n Vehicle longitudinal and lateral acceleration

Fxi , Fyi Longitudinal and lateral force, i = 1,2,3,4.
Fxwi , Fywi Longitudinal and lateral tire force
Fzi The normal force of the ith wheel
g Gravity acceleration
Rw,Jw Wheel rolling radius, the moment of inertia
ωWi Wheel angular speed
Twi Active brake torque
T Wheel track width
μ The friction coefficient between tire and road
γ Yaw rate about the z-axis
αi , σi The ith wheel slip angle, slip ratio
δf Steer angle of the front wheel

AFS/DYC control design [27]. The parameter notations
are shown in Table 1.

Themathematical model of Figure 6 considering the
uncertainty parameters is expressed as follows:

ẋ = (A +�A)x + (B +�B)u + Eδf
y = Cx (62)

where x = [ β γ ] β is the side slip angel, γ is the yaw
rate; u =

[
δc
Mc

]
, δc is the active steer angle, Mc is the

corrective yaw moment and δf is the driver steer input

A =

⎡⎢⎢⎣ −2
Cr + Cf

mvx
−1 − 2

Cf lf − Crlr
mv2x

−2
Cf lf − Crlr

Iz
−2

Cf l2f + Crl2r
Izvx

⎤⎥⎥⎦ ,

B =

⎡⎢⎢⎣
2Cf

mvx
0

2Cf lf
Iz

1
Iz

⎤⎥⎥⎦ ,E =

⎡⎢⎢⎣
2Cf

mvx
2Cf lf
Iz

⎤⎥⎥⎦ ,�A = DFE1,

�B = DFE2, F =
[
ρf 0
0 ρr

]
,C =

[
1 0
0 1

]

D =

⎡⎢⎣ −2Cf�f

mvx
2Cr�r

mvx
−2Cf�f lf

Iz
−2Cr�rlr

Izvx

⎤⎥⎦ ,
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E1 =

⎡⎢⎣ 1
lf
vx

−1
lr
vx

⎤⎥⎦ ,E2 =
[−1 0
0 0

]
.

The main object of vehicle stability control is to design
the proper controller to make the actual vehicle yaw
rate and sideslip to follow the desired responses. The
reference model is usually selected as

ẋr = Arxr + Erδf (63)

where xr = [ βrγr ] ,Ar =
[− 1

τβ
0

0 − 1
τr

]

Er =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 − mlf
2(lf +lr)lrCr

v2x

1 + m
(lf +lr)

(
lf
2Cr

− lr
2Cf

)
v2x

vx
lf +lr

1 + m
(lf +lr)

(
lf +lr)
2Cr

− lr
2Cf

)
v2x

⎤⎥⎥⎥⎥⎥⎥⎥⎦
τr, τβ are the designed time constants of raw rate and
sideslip angle, respectively.

With the assumption that the variation and uncer-
tainty of tire cornering stiffness can be described as{

Cf = Cf 0(1 +�f ρf ), ||ρf || ≤ 1
Cr = Cr0(1 +�rρr), ||ρr|| ≤ 1 (64)

where Cf 0,Cr0 and Cf ,Cr are the nominal and actual
cornering stiffness of the front and rear tires respec-
tively, Cf 0,Cr0 are the deviation magnitude, ρf , ρr are
perturbations.

Simulation parameters of the vehicle system are
selected asm = 1704kg,Cf = 63224N/rad,Cr = 84680
N/rad, Iz = 3048 kgm2, lf = 1.135m and lr = 1.555m.
A 28-degree step steer manoeuvre with an initial
speed (of 80 km/h) is simulated to verify the proposed
method. The time-varying parameters of Cf and Cr
are obtained from (64) by selecting �f , �r as constant
0.5 and ρf , ρr as band-limited white noise with the
amplitude±0.01. As shown in Figures 7 and 8, the pro-
posed method still demonstrates strong robustness and
self-adaptive performance, i.e. less tracking error for
yaw rate and sideslip angle, when encountering time-
varying cornering stiffness in step steer manoeuvre.

To show the identification performance of the pro-
posed algorithm, the performance index-Root Mean
Square (RMS) for the state’s error has been adopted for
comparison.

RMS =
√√√√ n∑

i=1
e2(i)/n (65)

where n is the number of the simulation steps, e(i) is the
corresponding state response at the ith step.

The RMS values of the side slip angle and yaw rate
are 0.915 × 10−4 and 3.173× 10−4, respectively.

Figure 7. Side-slip angle.

Figure 8. Yaw rate.

6. Conclusions

In this paper, we develop an adaptive optimal controller
with a critic-identifier structure to solve the trajec-
tory tracking problem for model uncertain non-affine
nonlinear continuous-time system. First, a model-free
DNN identifier is designed to reconstruct the unknown
dynamic. Then, based on the identification model, an
adaptive optimal controller is presented, which can
realize the trajectory tracking and stabilize the error
dynamic optimally. In addition, a critic NN is intro-
duced to approximate the optimal value function, and
a novel robust tuning law is established to update the
critic NN weight. The stability of the closed-loop sys-
tem is proved by the Lyapunov approach. Simulation
results of two examples are presented to verify the
validity of the proposed approach.
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