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ABSTRACT

In this paper, we propose an adaptive sliding mode-based fault tolerant control for mobile
robots. While a mobile robot is tracking a given trajectory, several fault cases may occur, such as
sensor model and controller faults, changes in the dynamic equation due to robot body shape
or weight changes, and loss of actuator effectiveness. Disturbance signals are caused by the
actuator faults and, for various reasons, can be considered the primary issue for the robots. In
real-time applications, the Sliding Mode Controller (SMC) is insufficient if the robot parameters
are unknown, the robot model is non-linear, and the overall system is subject to disturbances. An
adaptive law is used to support the SMC to maintain the sliding surface and solve the problems
of unknown system parameters, actuator faults, and disturbances. Besides SMC, the kinematic
controller is also used, and its gain values are optimized using a neural network and a kine-
matic controller. The stability of the overall system is proven by using the Lyapunov theory.
Besides actuator faults, the system is disturbed by defining a disturbance signal, which is added
to the control signals. To show the effectiveness of the proposed controller, it is compared with
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traditional SMC and PID.

Introduction

Autonomous systems, including mobile robots, are
widely used for many different tasks, such as search and
rescue, monitoring, human-robot interaction tasks,
etc. As the usage of these systems increases, the
expected performance of these systems also increases.
There are two major categories to consider for mobile
robots: non-holonomic and holonomic. Wheeled Mobile
Robots (WMR) are electromechanical systems that use
activation torques to drive their wheels and are classi-
fied as non-holonomic. Autonomous systems, includ-
ing mobile robots, are vulnerable to faults and external
disturbances. Actuator, sensor, and controller (system)
faults are the three major categories into which these
faults can be divided. These faults can be amplified
during the process of the system. It is crucial that the
robot be able to behave tolerantly in the event of actu-
ation and/or sensor faults. Therefore, Fault-Tolerant
Control (FTC) systems are widely used today in a vari-
ety of fields, including the automotive and electronic
industries, unmanned vehicle control, and even space
research [1].

From its initial position and orientation, the WMR is
expected to reach its target position and orientation. In
order to accomplish this, one of the important aspects
is the Trajectory Tracking (TT) control system. Thanks
to the TT control, WMR is able to maintain track of its
reference trajectory even if it changes over time [2].

In TT, the WMR must advance from the initial posi-
tion point until it reaches the reference trajectory line
at high torque. After obtaining the reference trajectory,
WMR should reduce its torque and maintain a stable
and precise trajectory track [3]. Such a TT controller
was proposed by Kanayama et al. [4]. The stability of
the proposed system and the control rule were proved
using the Lyapunov approach. In addition, this study
examined the effects of kinematic controller gains on
the system state.

The Adaptive Sliding Mode Control (ASMC) was
proposed as an FT'C system for the TT problem, con-
sidering the uncertainties, nonlinear dynamic model,
and artificial noises by Mevo et al. [5]. In that study,
a nonlinear dynamic model structure was applied, and
the designed controller overcame the uncertainty of
robot parameters, as in Refs. [6] and [7]. ASMC reduced
actuator faults in a Differential Drive Mobile Robot
(DDMR) by using the sliding surface diagram for Loss
of Effectiveness (LOE) actuator fault as suggested in
Ref. [1]. Also, a similar FT'C scheme was used in Jin
et al. [8]. Actuator faults and unknown parameters
degrade the driving performance of the mobile robot.
To achieve asymptotic system stability for partial LOE
and bias-actuator faults, novel adaptive fault-tolerant
control strategies were developed. To address faults of
partial loss of control effectiveness in DDMR, sliding
mode control [9-11], model predictive control [12],
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and a fault diagnosis-based approach [13] were used.
The nonlinear model predictive based FTC scheme was
proposed for an omnidirectional mobile robot with
four mecanum wheels. The fault scenario was defined
as the wheels not receiving commands and rotating
freely [14]. Fault diagnosis was provided with a state
transition scheme.

For trajectory tracking, neuro-fuzzy type artificial
intelligence methods were employed. Mohareri et al.
detailed the process of calculating the gain values using
the direct Neural Network (NN) model while devel-
oping the kinematic controller [15]. In this work, a
kinematic model-based backstepping controller was
designed, as well as a non-linear kinematics-based con-
troller and another controller based on the NN inverse
model. On the other hand, a fuzzy rule-based fault-
tolerant control was proposed for an omnidirectional
mobile robot with four wheels [16]. The controller was
responsible for not only the generation of an obstacle-
free path but also providing an adaptive solution for a
combination of one or more of the wheel’s faults. The
kinematic and dynamic controllers were used in con-
junction with Internet of Things (IoT) and NN-based
algorithms, and they demonstrated significant advan-
tages in parameter uncertainty and roller skid [17]. Fur-
thermore, learning-based algorithms such as iterative
learning and distributed controllers were also consid-
ered as FT'C to provide satisfactory transient and steady
state performance [18,19].

The use of the adaptive law on the sliding mode con-
troller is a correct method for time-varying trajectories
and faults. However, if the gain values of the kinematic
controller, which is another controller, are not adjusted
properly, the results may not be satisfactory. Therefore,
in this work, an artificial NN-based backstepping con-
troller has been added to the system. The main objective
of this study is to present an overview of recent devel-
opments in theory and methodology and develop a
control strategy with improved transient and steady-
state characteristics by reviewing the literature for FTC
systems in DDMR. After evaluating the approaches in
the literature on the simulation results, it is aimed to
achieve the desired system behaviour faster by devel-
oping the controller structure within the scope of this
study. The first controller system is the kinematic con-
troller, which allows the use of reference velocity sig-
nals given by low-level feedback control to the DDMR
wheels. Velocities are obtained by the kinematic con-
troller by using the position errors and reference veloc-
ities of the DDMR. The Lyapunov stability method was
used to prove the stability of the kinematic controller
rule.

The second controller system is an artificial NN-
based controller that optimizes the gain coefficients of
the kinematic controller. Since the trajectory changes
with time, constant gain values are insufficient. Besides,
TT error by modelling a proper tracking system is

not a convergent function. The proposed NN-based
control algorithm provides variable gains according
to the instantaneous changing trajectory of the kine-
matic controller-based backstepping controller. Since
the gains have an effect on the torque values in the
wheels, the initial value of the gains should be suitable.

The third controller for this system is the ASMC
which is an adaptive system that provides a predictive
control scheme for DDMR with a nonlinear dynamic
model, noise, uncertainties, and error. ASMC is a spe-
cial case of variable structure control systems that have a
complex structure that uses decision-making rules and
feedback control laws together. The decision rule model
chooses a specific feedback control structure based on
conditions affecting the system’s behaviour. This system
is called the switching function. The ASMC structure
is designed to be driven into the sliding surface in the
system state space. Once the sliding surface is reached,
ASMC tries to keep the states on the sliding surface
boundary [20]. The Lyapunov stability approach was
used to test the stability of the ASMC rule.

The last proposed controller system is the traditional
PID and SMC, which has been added to the system to
discuss the differences between ASMC, SMC, and PID.
By using a PID controller or SMC instead of an ASMC
in the same mobile robot system without modifying it,
the stability of the PID controller in FTC is emphasized
and compared [21].

The rest of this paper is organized as follows: The
kinematic model and the nonlinear DDMR model are
presented with kinematic constraints and the Lagrange
approach in chapter 2. Chapter 3 gives kinematic, NN-
based, adaptive sliding mode, and PID controllers. The
asymptotic stability of this system is demonstrated by
Lyapunov theory, which is discussed in Chapter 4. In
chapter 5, numerical simulation results are given. Con-
cluding remarks are given in chapter 6.

Mathematical model

This section presents the mathematical model of the
DDMR structure. The designed DDMR structure has
three wheels. The two wheels on the front of the robot
body are the driven wheels. There are two actuators
attached to these wheels. The wheel behind the robot
body is non-driven and only exists for mobile robot
balance.

The robot system described above, and the coordi-
nate systems are shown in Figure 1. The midpoint “A”
on the axis between the wheels is the origin of the robot
frame. Point “C”, which is the robot’s centre of mass, is
on the axis and is at a distance “d” from point “A”. L
is the distance between the wheel and the centre point.
The wheel radius is shown as “R”. Although the veloc-
ity of each wheel can change, the DDMR must turn
around a point along the common wheel axes for the
DDMR to fulfil its rolling movement [22]. The point
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Figure 1. DDMR structure and coordinate systems.

around which the robot rotates, which is called the
Instantaneous Center of Curvature (ICC), is shown in
Figure 1.

There is a coordinate system on point “A” of the
robot body, as can be seen in Figure 1. This frame can be
called a robot coordinate system or moving frame since
this coordinate system is displaced according to the
mobile robot’s movement. The other coordinate system
is the inertial coordinate system, which is used when
working on the position of the robot. These frames are
represented as three-dimensional vectors as follows:

XL x"
d=\|y |l.ad=|» (1)
0! or

A transformation matrix obtained as follows to work
on two frames by transforming robot coordinate frame
(q") with respect to the inertial coordinate system (g")
[23]:

cosf sinf 0
Rot(0) = | —sinf cosf O (2)
0 0 1

Frame-to-frame conversion is done with the follow-
ing equation by using the orthonormal rotation matrix
(Rot(0)):

g = Rot(6) 1§ (3)

Kinematic model

The forward kinematics of the robot is related to the
relationship between the positions, velocities, accelera-
tions of the robot and its physical structures. The equa-
tions given in Refs. [1,5] are used to develop the kine-
matic model structure. By changing the velocities of
the two wheels, the trajectory of the robot can change.
Assuming that both wheels must have the same angu-
lar velocity (w) around the ICC, the following equations

AUTOMATIKA 469

can be derived using Figure 1 [24]:

VR = w(R; + L) = Rgp

Vi = w(Rq — L) = Ry )

Let the position vector at point “A” be (x,, y,). The
position vector for the ICC is obtained as shown in the
triangle in Figure 1:

ICC = (x, — Rysin(0), y, + R,cos(0)) (5)

Vg and V[, are the right and left wheel linear velocities.
R, is the distance from the ICC point to the midpoint
“A” between the wheels. At any time, v and w can be
solved as follows:

o (VR+ V1) _ R(¢r + ¢1)
2 2

o VrR=VD) _ R(¢r — ¢1)
2L 2L

(6)

Due to the wheel structure, the robot body cannot
move along the y" axis in the moving frame. Thus, the
velocity at point “A” is calculated as follows:

i R/2  R/2 .
| = 0 0 < YR ) )
or R/2L —R/2L ¥L

In Equation (7), the rotational velocities of the
wheels can be shown as in Equation (8):

o wr \ _ [ ¢r
—()-(x)

The velocity vector in the robot frame is transformed
to the inertial frame using the orthogonal rotation
matrix Rot(0) as follows [25]:

5cf4 cos® —sinf 0 Xy
j{ﬁ = sinf cos® 0 yg
6} 0 0 1 o
R cosf R cos
— R szinQ R szinQ ( PR ) (9)
3 R oL
2L 2L

If the velocity terms for the DDMR body given
in Equation (9) are replaced with the terms given in
Equation (6), the forward kinematic model equation
becomes as follows [26]:

x}{x cos 0 y
yg = sin6 0 ( " ) (10)
oL 0 1

The kinematic model is then derived by fault mod-
elling. In this work, Loss of Effectiveness (LOE) is
selected for fault modelling. The fault model is designed
to account for the power loss in the motors. This is
because there is no sensor model in the designed mobile
robot. The LOE parameters are defined as 0 < kr, kp <
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1 are multiplied by ¢r and ¢r, respectively, as follows

[1]:
( WRf ): ( kror ): ( PR + Awp ) (11)
wLf kgL gL+ Awr
Awg = (kr — D¢r
where { Awyp = (kp — Dor
The fault values of right and left wheel angular veloc-
ities are obtained by wgs and wiys, respectively. The

combination of the fault values with the kinematic
model is given as follows:

XA cosf 0 y cosf 0
)'{A = sinf 0 ( w >+ sinf 0
64 0 1 0 1
R
5 (Awg + Awr)
12
) ( R (Awg — Awy) 12

The purpose of using the kinematic model of DDMR
in the system is to express the current position of the
robot body relative to the inertial coordinate system by
using the velocities obtained from the nonlinear model
structure.

Kinematic constraints

Kinematic constraints of the robot are caused by some
assumptions, which are the wheel movement of the
robot in the horizontal plane, the point of contact
between the wheels and the ground, and the absence of
friction for rotation around the wheel, etc. [15].

The velocity of the centre point “A” (in Figure 1) is
zero along the lateral axis since the DDMR cannot move
laterally [27,28]:

T =0 (13)

Using the orthogonal rotation matrix Rot(f), the
velocity in the inertial frame is:

Ya cos(0) — xgsin(f) =0 (14)

Ensure that the point of contact with the ground
is on the left and right wheels respectively, labelled P.
Thus, the velocities of the contact points in the robot
coordinates are as follows:

VpR = Ror

VpL = Ror, (15)

Velocities in the inertia frame can be calculated as a
function of the velocities at point 'A’.

XpR = %q + LOcos(0)
YpR = Ya + LOsin(0)

XpL = %, + LOcos(6)

. . . 16
YpL = Ya + LOsin(0) (16)

The rolling constraint equations are obtained using
Equation (16) as follows:

Xpr €08(0) + yprsin(@) — Rpr = 0 (17)
Xpr cos(0) + ypr sin(0) — Rpp =0

Constraint terms Equations (14) and (17) can be
written in a matrix form as follows:

—sin(0)
cos(0)
cos(0)

cos(@) O 0 0
sinf) L —R 0
sin) —L 0 —R

A(g)q =

Xa
Ja
X 6, =0 (18)
¥R
oL

Dynamic model

The dynamic analysis of the DDMR structure can be
defined as the examination of the relationships between
the torque or force magnitudes applied to the wheels
by the actuator and the position, velocity, and accel-
eration of the DDMR with respect to time. The main
difference between dynamic and kinematic modelling
is that the kinematic model examines motion only with
the geometric relations governing the system, without
considering the forces affecting the motion [16,29].
The dynamic model of the system is derived from
the Lagrangian dynamic approach [16,28]. The general
form of the Lagrangian equation is obtained as follows:

d (0L dL !
——]-— )= Aiaii i 19
dt (aq,) (3%‘) ]:Zl i+ Q- (19)

Above, Q; refers to nonconservative forces in the
system, and the Lagrange multiplier is denoted by ;.

L=T-V (20)

Equation (20) is the Lagrange function, which is the
difference between the kinetic (T) and potential (V)
energies of the system. In our case, the potential energy
is zero because there is no height state in the system, so
Lagrange is equal to the kinetic energy for this system
(Figure 2).

The kinetic energy formula of the mobile robot body
without wheels is as follows:

1 1 .
TC = Emcvcz + 51592 (21)

In here, m, refers to the mass of the DDMR with-
out the driving wheels and actuators, I, refers to the
moment of inertia of the DDMR about the x, axis
through the centre of mass.
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Figure 2. Coordinates of points on DDMR.

The kinetic energy of the right and left wheels and
actuators of the robot is as follows:

Tyr = Smyvir® + 11,02 + 11,03 )
Ty = %mesz + %Iméz + %Iwﬁb%

Here, m,, refers to the mass of each driving wheel,
including the actuator. v,,g and v, are right and left
linear velocities, respectively. I,, refers to the moment
of inertia of each driving wheel with an actuator about
the wheel axis, and I,,, refers to the moment of inertia
of each driving wheel with an actuator about the wheel
radius [27].

The kinetic energy of the robot body in Equation
(21) is obtained as follows:

1 . . co .
T, = Emc(xﬁ +y§) — mcdl (x4 sin(0) — ¥4 cos(6))
1 252, Lo o
+ —md°0° + -1.0 (23)
2 2
Here, x,, 4, and 0, refer to the position vector of the
midpoint of the mobile robot frame.
The kinetic energy of the right and left wheels in
Equation (22) of the robot:
1 . . - .
Twr = Emw(xﬁ + 72) 4 my, L6 (k4 cos(8) + 4 sin(B))
1 . 1. . 1. .
+ EmWL292 + Elmez + Elwwﬁ
1 . . - .
Ty = Emw(xﬁ —I—yﬁ) — myLO (x4 cos(0) + y, sin(0))
1 ., 1 . 1

The total kinetic energy of the mobile robot is
obtained using Equations (23) and (24), as follows:

1 . .
T=Tc+Twr+ Ty = <§mc + mw) (xé +)’§)

— mdf (34 sin(0) — y, cos(6))
1 1\ -
+ (mWL2 + Iy + 5mcd2 + 5@) 62

1 :
+ S (@R + 01) (25)

The total mass and equivalent inertia of the mobile

robot:

(26)
(27)

m = m.+ 2m,,
I =I.+ md® + 2m,,L?> + 21,

The Lagrange equation is given as follows using
Equations (26) and (27):

1 .
L= 5m(jcﬁ + 72) — medf (, sin()
. 1 .,
— yacos(9)) + 519

1 :
+ S Lv(@r + 1) (28)

A step-by-step approach is used to find the dynamic
model equations using generalized coordinates and the
Lagrangian equation. As a result, the Lagrange equa-
tions are obtained as follows:

d (0L aL .. =
a\ox ) o = mx, — m.dfsin(f)

— med6*cos(0) = C;

% (2?_;;) — 88_){; =my, + mcdécos(e)
— medf?sin(9) = C,
4 (3_L) _ O 5 media sing9)
dt \ 96 a0
+ mcdy, cos(6) = Cs
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d ( oL ) B oL
dt \ dgr dPR

d (oL oL . c
) - = =17 +
dt \ 0¢r QL wiL L >

=1wr =1+ C4

(29)

Here, C;, Cy, C3, C4 and Cs refer to the coefficients
related to kinematic constraints that can be written in
terms A Lagrange multiplier vectors.

Using the Lagrange equations above, general dynamic
equation is given in Equation (30) where M(q) is the
symmetric positive definite inertia matrix, V(g,q) is
the centripetal and Coriolis matrix, G(q) is the grav-
itational vector, 7; denotes the bounded unknown
disturbances or noises, including unstructured unmod-
elled dynamics, B(q) is the input transformation
matrix, T is the input torque vector, A* (q) is the matrix
associated with the constraints, and A is the vector of
the constraint forces.

M(q9)q+ V(g 99+ F(q) + G(q)

+ 74 =B(g)t — AT ()2 (30)

g, q and g specify position, velocity, and acceleration
vectors, respectively. Since the DDMR system moves
in the horizontal plane and the system is only tested
in simulation, the gravitational force G(g) is neglected.
Since gravity is neglected and wheel frictions are given
to the system with the fault defined in the kinematic
model, F(g) is neglected. In addition, since the distur-
bance value is added to the ASMC signal, 74 is neglected
in the dynamic model. After these assumptions, the
dynamic model is obtained as follows:

M(@q+ V(g 9q=B(@t —A"(9r  (31)

By expanding the system in Equation (9), g vector
can be written as follows. The velocities (q) and accel-

erations (4) in Equation (31) can be found using the in
Equation (32).

X4 %cos@ %cos@

Va 5sinf  7sinf .
. ] _ R R ¥R
AR & 21t

@R 1 0

oL 0 1

(32)

Here, to express Equation (31), the energy-based
Lagrangian approach, which is the dynamic model of
the robot, is used.

Using Equation (29), the structure in Equation (31)
is obtained as follows:

m 0 —medsinf 0 0
0 m mcdcosf 0 0
M(g) = —mcdsin®  mcdcosf 1 0 0
0 0 0 L, O
0 0 0 0 I,
0 0 —medfcost 0 0
0 0 -—mcdfsing 0 0
Vigg =] 0 0 0 0o o0 |,
0 0 0 0 0
0 0 0 0 0
0 0
0 0
Bg=| 0 o
1 0
0 1
—sinf  cosf  cosf A
cosd sinf  sinf A2
AT(g).x = 0 L —L |.] %
0 —R 0 A
0 0 R As
(33)

Since the Lagrange multipliers A are not known,
the constraint term A®(q)A in Equation (33) must be
eliminated by defining the reduced vector.

The S(g) matrix is used for the reduction. TheS(q)
matrix is a modified forward kinematic matrix relat-
ing the distance between the robot’s centre of gravity
and the wheel axis, as seen in the forward kinematic
equation [18].

q="S(qn (34)
The acceleration matrix is obtained by taking the
time derivative of Equation (34) as follows:

4= S8(q)n+ S

The S(g) matrix is in the null space of the kinematic
constraint matrix A(g), which means ST(q)AT(q) = 0.

Hence:
R R R
5c059 Esme 3T 1 0
Reos Bsing —R 0 1

(35)

2 2 2L
—sinf cosf cosH
cosf  sinf  sinf
X 0 L —L =0 (36)
0 —R 0
0 0 R

As can be seen in Equation (36), the constraint term
of the dynamic model can be eliminated.

The dynamic model should be revised accordingly.
77, and 1R are left and right torques respectively, used
in the new dynamic equation. It can be expressed as

follows:
e (2)-(5)
U TR — TL

Using Equations (34) and (37), the dynamic model
of DDMR is modified as follows:

M@)[S(@)n + S(@n] + V(g 9)[S(g)n]
= B(g)t — A" ()2

(37)

(38)



If the equation is reordered, the following equation
is obtained:

(M(@)S@)i + M(@)S(9) + V(g,9)S(9)n

— B(q)t — AT(@)h (39)

Both sides of the Equation (39) are multiplied by
transformation matrix ST (9):

ST(@QM(g)S(@)n + (ST(9M(g)S(g)

+ 8T V(g )S@)n = ST(q)B(g) — ST(PAT (9)r
(40)

The dynamic model terms in Equation (40) can be
represented as follows:

M(q) = ST (@M(9)S(q)
V(g9 = ST (@M(@S(q) + ST (@ V(g PS(q)
B(q) = ST(9)B(g)T
(41)
By reordering the Equations (40) and (41), the new

dynamic model of DDMR becomes:
M(q)n + V(g @)n = B(g)t (42)

If the matrix multiplications shown in Equation (41)
are done, the following matrix terms are obtained:

2 2
g =| ™ +257<mL2 +1 fﬁ(rzwﬁ o))
Bml2 =D L+ & mL*+1)
R? j
_ R mcdd
V(g q) = AL
@) —%mcdé 0

Blo) = [ - ]
(43)

Using the velocity in Equation (6), Equation (42) can
be converted to an alternative form. This structure in
Equation (44) is the nonlinear model of DDMR.

mg O Vv 0 —mcdw v

0 I w + medw 0 w
1

-| (44)

mgy = (m + R-;“)
) .

Io = (I n ZRLZIW>
Note that the Lagrange approximation considers the
mass and inertia of the wheels and not the robot as a sin-
gle rigid body. With the nonlinear model, linear velocity

and angular velocities are obtained by using Equation
(44).

where

Controller approaches
Kinematic controller

The kinematic-based backstepping controller was pro-
posed in the literature for a non-holonomic DDMR
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[4,15]. In that approach, a stable TT control rule for
a non-holonomic mobile robot that neglects DDMR
dynamics is based on the steering system. A mobile
robot system has two postures, which are the reference
position vector P, and the current position vector P,.
They are three-dimensional vectors and include the x,
y, and 6 postures. The error is obtained by taking the
difference between the reference and current position
vectors.

The difference between P, and P, gives the error
value in the base frame. This value is multiplied by the
rotation matrix to obtain the error posture in the robot
coordinate system.

Xe cosd sinf O Xr — Xc
ep=1| Ye | =| —sinf cost® 0 Yr— e
0, 0 0 1 0, — 6,

(45)

The current velocities are obtained as follows:

> (46)

Ky, K, and Ky are positive gain values. These gains
are very important for the system to work satisfactory.
Since DDMR system needs slow and a non-oscillating
response, the kinematic controller gains must be well
tuned [15]. For this reason, Neural network-based
algorithm is employed for determining the gains.

ve '\ vrcoste + Kyxe
we )\ wr + vi(Kyye 4 Kpsing,)

Neural network based adaptive backstepping
controller

The proposed control algorithm provides the back-
stepping controller with parameters and adaptive gains
that vary with reference trajectory [30,31]. The control
structure adapts the kinematics-based controller gains
to minimize the following cost function [15,32].

J = % D gexe + gyyet + gt (47)

In here, g, gy and gy are neural network gains. Error
values can be seen from Equation (45). Ky, K, and
Ky are considered part of the cost function above and
they are optimized and updated according to the gra-
dient descent method. The kinematic controller gains
are represented by the vector . The partial derivative
of the cost function with respect to o:

0J 0X, 3Ye 00, T
— = gxxea +gyye_ +g99e£

o da
where o = [K; K, Kg].

The matrix form of the g value here is shown as
follows:

& 0 0
g=1| 0 g O (49)
0 0 g
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In Equation (48), if e, is replaced by Equation (45):

0J Ta(Te(Qr —qc)) T 99
o 8 T ae T w xexTexgy
(50)

Since the vector g is the reference position consist-
ing of fixed values, its derivative is zero. As the chain
rule indicates, the following equation can be written:

0gc _ dac v,

= — 51
do v, o 1)

After the Equation (51) given above is obtained, the
desired derivative expression in Equation (52) is written
as follows:

9q Jacyi  Jacyz
Cc
ol Jacy1  Jacn
Jacyz1  Jacyn
0 0
X [ Ex . ] (52)
0 wvrey vysiney
The derivative of the cost function with respect to

the controller gains %i is rewritten as follows:

o
NN ENENEN,
da [ dK, 3K, 0Ky

]:—epTxnge

0
x Jac, X e (53)
do

The representation of the derivative of the cost func-
tion with respect to the controller gains in matrix form
is written as follows:

aj_[ajﬂﬂ]__[x 6 |
0K, 0K, 0Ky | L 7¢ e

da

¢« 0 O cos®  sinf 0

x| 0 g 0 |x| —sinf cos® 0
0 0 g 0 0 1
[ Jac  Jacu

x | Jacy1 Jacm
| Jacws1  Jacyz

«| & 0 0 ] (54)
| 0 wvre, vsineg

The algorithm for calculating the Jacobian matrix
using the NN model is as follows: The initial weight val-
ues should be the most suitable for the model. Weights
are tuned by training the model using the back propa-
gation algorithm. It is essential to have incorrect values
to use back propagation. Thus, the forward propaga-
tion method is used first. The forward propagation
algorithm is used to obtain the prediction data gen-
erated by the NN. Since it is predicted data, there is
a difference between the estimated value and the real
value. The difference between these two values is used
to determine the error value, which propagates from
the output layer to the input layer on the NN, resulting

Figure 3. Two-layer NN model with two layers of neurons.

in “backward propagation” with various derivative pro-
cesses [15]. The NN model with two layers of neurons
is shown in Figure 3.

The first layer of the NN model feeds L neurons, and
the second layer feeds m neurons. The following termi-
nology is used to describe the different parameters of
the neural networks shown in Figure 3: Kinematic con-
troller velocities (v. and w,) are input layers for NN.
X, j/,é are the outputs of the NN. N; and N, are the
number of inputs and outputs of the neural network,
respectively. Nj, is the number of neurons in the hid-
den layer. ¢ and § are the learning and momentum rate,
respectively. o is the activation function. Whereas Whi
values are the weights from hidden layer to input layer,
Woh values are the weights from the output layer to
hidden layer.

According to the defined neural network model
above, the relationship between the inputs and the out-
puts of the network is given as follows:

L n
yi=0 Z Woh;o Z Whijxj + vio | + wio
I=1 j=1
(55)
wherei=1,2,...,mandl=1,2,...,L.
The activation function represented by o is cho-
sen as the sigmoid (logistic curve) function is given in
Equation (56).

o(p) = (56)

I1+e?
The back propagation algorithm needs the deriva-
tive of the activation function. Derivative of the sigmoid
function with respect to p:

5 =0 —f(p)) (57)

4=
do” T Ut er)

The expression p in the Equation (56) above is the
representation of the product of the weight and neuron
values up to the desired layer.



The back propagation algorithm is a weight adjust-
ment algorithm based on the gradient descent method.

Wik +1) = Wa(k) — ¢ 550 (59
Vitk+1) = Vj(k) — ;%E—él’;)

An output signal is given as a reference to the neural
network, and the difference between this output and the
output (y;) produced by NN is an error. The weights are
changed in cycles until the error is minimized by the
network.

ei(k) = Yi(k) — yi(k) (59)
XA
where Yi(k) = | vy,
0a
By using the error function, the cost function is
found as follows:

B = ek (60)

The required gradients of the cost function E(k) by
weights can be easily determined using the chain rule.

OE L2 L2
Wy = ei X (—1) xo(ui)] x z1 = —z;0 (uj)e;

m
aa—f,j = ,:21 (-é(u?)e,-) x Wy x é(u})} X xj
LN (L, o,
= —xjo(u;) Zi <a(ui)e,~> x Wi
Z (61)
In here, z refer to the sigmoid function up to the
hidden layer. The Jacobian matrix is obtained as follows:

r dx 0x
v,  Owg
0 0
jaCV: _y y
v,  Owg
a0 a0
L ov. ow,

x(t) —x(t—1)

ve(t) —ve(t—1)
y» -yt -1
V;(t) - ‘ic(t -1
O(t) —6(t—1)

L ve@® —ve(t—1)

x() —x(t—1)
we(t) — we(t — 1)
) -yt -1
Wg(t) - ch(t -1
o) —0(t—1)
we(t) —we(t—1)
(62)

With the above equations, the kinematic controller
gains change and adapts to make the cost function zero
according to the gradient descent method as follows:

Kyty = Ky(t—1) + AKx
Ky = Kyyyy + 4Ky (63)
Koy = Koe—1) + AKp

Adaptive sliding mode controller

For the ASMC structure, traditional dynamic equations
are used [5,6]. The sliding surface linear and angular
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velocities, which come from the output of the kine-
matic controller and nonlinear model, are used [33].
The velocity error is found by taking the differences
between these velocities [34].

= (0)-00)-(0) e

In this work, a PI type sliding surface is used for
ASMC as follows:

sw=| 80 |=ew+prama o
s2(t)

In here, 8 must have a positive value (8 > 0) satisfy-
ing the Hurwitz condition. If the system is on the sliding
surface s(t) = 0 and the error e .(t = 00) — 0,5(t) =0
is the necessary condition for the state to remain on the
sliding surface during the trajectory tracking. Taking
the derivative of Equation (65) for this case, it becomes
as follows:

s1(t) = ve() — v(t) + Bey() =0

1) = welt) — () + ey =0 OO

The acceleration terms in Equation (66) can be
expressed as:

v(t) = ve(t) + Bey(t)

(1) = wnelt) + Bew () ©7)

The linearization of the nonlinear dynamic model in
Equation (44) is obtained as follows:

v(t) = —puy

If the acceleration expressions in Equation (67) are
written into Equation (68), it becomes as follows:

Ueql () = P [vc(®) + Bey()]

b (1) = G + Bet)] &)

ueq(t) = {

Here, y and « are used as adaptive model parame-

ters. The following torques force the system to approach
the switching signal faster with gain K.

uw1(t) = Kisy

uy2(t) = Kps 70)

uy(t) = {
where K1, K, > 0.

The discontinuity of the sign function in the ASMC
law and the large 1 value can cause chattering phenom-
ena. To avoid chattering, the sign function has been
replaced by the continuous tank (Hyperbolic tangent)
function. In other words, the tanh function is used as
an estimator of the sign function. The steepness of the
tanh function determines how it can approach the sign
function [34].

uq1(t) = nitanh(s;/e)

ug (t) = natanh(sy/e) (71)

uq(t) = {

where ¢ > 0.
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The control signal is obtained by summing the above
Equations (69), (70), and (71), as follows:

u(t) = ueq(t) + ty(t) + uq(t) (72)

Ueq is the adaptive compensation item, u,, is the feed-
back item, and u, is the robustness item. Disturbances
are added externally to the control signals. In this work,
the disturbances are limited and represented with A;
and Ay: |A| < D < |n|.

The adaptive law is obtained for this system as
proposed in Refs. [34-37]. Using a reasonable priori
knowledge of physical systems, an adaptive robust con-
trol design based on a discontinuous projection map
is obtained to solve the TT control problem. The esti-
mated parameters y and « are revised with the adaptive
law parameters are obtained as follows:

Oj}} [—asi (Ve + Bey)]

)A/ = Pr
o= Proj&[—bsz(wc + Bew)]

(73)

0,if = Ymax and- > 0

Proj,, (A) =1 0,if ¥ = yminand- <0
A, otherwise
0,if & = amax and- > 0
Proj,(A) = { 0,if & = opin and- < 0
A, otherwise
(74)

Maximum or minimum values of ¥ and « can be
calculated as follows:

Ymax, min = MoR.
’ 75
Omax, min = IOR/L ( )

Using the above equation, ASMC law is obtained as:

u(t) = );[Vc(t) + ,Bev(t)]
+Kis1 + nitanh(sy/¢)

u(t) = &[Wc(t) + ,Bew(t)]
+K3s2 + natanh(sy/¢)

u(t) = (76)

PID controller

In this section, a conventional PID controller, which
is widely used in the literature, is added to the system
to compare the two controllers. The proportional term
(P) is used to calculate instantaneous errors, the inte-
gral term (I) provides information about the amount of
previous errors, and the derivative term (D) provides
an estimate of future errors based on the instantaneous
magnitude fluctuation rate [38].

Two PID controllers are used in the system. The first
one produces a control signal with linear velocity errors.
The second one generates a control signal with angular
velocity errors. The following function is used for these

two PID controllers:

ur(t) = Kpey () + K; Jen(tdt + Kale,(t)

u(t) = 0

ur () = Kpew() + K [ e (Dt + Kgde, (1)
0

(77)

Lyapunov stability analysis

Theorem 1: The stability analysis of the kinematic con-
troller is proved by the Lyapunov stability approach in
this section [5,15]. The mobile robot tracking error system
dynamics is given in Equation (45). The time derivative
of the TT position error is:

Xe
Oe
w(ep,q")ye — v(ep,q") + vrcos(be)
= —w(ep, q")Xe + vysin(0e) (78)
wr — w(ep, q")

The position error dynamics can be represented in the
matrix form as follows:

Xe -1 Ve
Ye | =v 0 +wl| —x
0, 0 -1
vycos(6,)
+ | vsin(6,) (79)
Wy

For any initial conditions, all the functions for the mobile
tracking error dynamic system are bounded and go to
zero with time; so lim (xe, e, 6.) = 0.

t—00

Proof: Except for the Lyapunov theorem, the LOE cho-
sen as the fault model effect on the DDMR model can
be seen from the equations as follows:

e 6 6
" Avcos?6 + Awle + VrFOS Aw

Ve = —xe%‘, + v, sin %v (80)

Xe =

0
96=—m+wr

For the above Equation (78), the scalar function (Vy),
which is the positive definite Lyapunov function for the
kinematic controller analysis, is suggested as follows:

_ (xez +J’e2) n 1- COS(}’e))

Vi
° 2 K,

(81)

Vo ZOandifep =0,V :0.Also,ifep7é0, Vo > 0.
The time derivative of Vj is:

Yesin(y,)

K, (82)

VO = XeXe +)"e)/e +



Substituting (45) and (78) in (82), it is obtained as
follows:

v,Kgsin?(6,) -

VO = _Kxxez -
Ky

0 (83)
For t > 0, Vj is a negative definite function for any
Xe» Yer0e # 0 that indicates the asymptotic stability of
the overall system. Thus, e, goes to zero under the fol-

lowing conditions: reference velocities are continuous
and v, wy, Ky, K, and Ky are bounded [15]. [ |

Theorem 2: Considering the values of the disturbances
and faults of the mobile robot, an adaptive law is pro-
posed in Equation (76). The stability of the ASMC is
proved by the Lyapunov stability approach in this section,
which is proposed in [5,34]. The positive definite Lya-
punov function is selected as:

(v)=2(3 o)(%)

(84)

Proof: The derivative of Lyapunov function in Equation
(84) is as follows:

(w)-(0 o))
(5 1))

If external artificial noises are added to the Equation
(66), derivative of sliding surface is obtained as follows:

o

(85)

(=R N

s =) = (Lun () + A1) + Ben(t) = 0

52(8) = we(t) — (Lua(t) + Az) + Bew(t) =0
(86)

where ¥(6) = (Lur () + A1), () = (L (0 + 42)
By substituting Equation (86) into Equation (85), the
accelerations become:

Vi=ys [(i/c(t) + Bey(t)) — <%ul(t) + Al)] + %
Vo=as) [(Wc(t) + Bew (1)) — (éuz(t) + Az)] + %5[

Writing the control torques given in Equation (76) into
Equation (87):

. ~ . 2 S1
Vi = =17 () + Bev() — Kisi® = misi tanh (2
1
—Ais1+-yy
a
. ~ . 2 $2
Vy = —saa(wc(t) + Bew(t)) — Kasy” — masz tanh (;)
..
— Aysy + EO[O[ (88)

The inequality can be obtained for every scaler value of
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s (s € R) and positive scaler ¢:

—msitanh (L) < —nils1| + mpe

89
—msytanh (2) < —nalsy| + mapue (89)

where u is the nominal control inputs.
The suitable adaptive law for ASMC is selected from
[5,34]:
? = —as1(vc + Bey) (90)
& = —bs; (e + Bew)
Therefore,

Vi = —Kisi2 — milsi| + mpe + Arsy
—Kis1? +mipe <0

IA

V) = —Kas2> — malsa| + mape + Az

< —Ky55> + e <0 (91)

Since |A] <D, ASMC asymptotic stability is
verified. |
Simulations

The proposed controller algorithms are tested in the
MATLAB/Simulink environment with numerical sim-
ulation. The block diagram containing the whole sys-
tem is given in Figure 4. The reference block shown at
left produces the reference position vector. The error
is obtained by taking the difference between the cur-
rent position vector obtained in the kinematic model
and the reference position vector. Since the error vec-
tor is in the inertial frame, it is necessary to transform
the error vector into the robot frame. The kinematic
controller obtains the current linear and angular veloc-
ities by using the position errors in the robot frame
and reference velocities. The DDMR system needs the
variables Ky, K, and Ky with respect to its position
in the state space. Kinematic controller gain values
in adaptive structures are obtained by the neural net-
work block. ASMC generates a control signal using
current velocities from the kinematic controller, veloc-
ities from the nonlinear model, and wheel angular
velocities from the kinematic model. As illustrated in
Figure 4, the transition between controller strategies,
namely PID, SMC, and ASMC, can be provided by a
switch. Unlike ASMC, the PID controller generates the
control signal without using wheel angular velocities.
Disturbances are added to the output of the control sig-
nals for all controller approaches that we used in this
work. The linear and angular velocities of the robot
are obtained with the nonlinear dynamic model. The
fault structure is modelled in the kinematic model.
The system position vectors are obtained in the block
diagram shown on the far right in Figure 4, and the
LOE factors (ki and kgr) are taken 50%. With these
faults, the wheels of the mobile robot are slowed down.
The maximum and minimum values of mgo and I
are taken as 17.51kg < mg < 37.51kg and 0.57kgm2 <
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Kinematic Controllers

X_1,y_r1, theta _r| < ils &
- » v_e
Y. :’:,‘ 1T—HV_C,W_C ul o
referance - M w_el— ASCMC
theta_e gz v, W 2l :\7
Frame Transformatior T ASMC ASMCSMCL 2
: " | ASMC/SMC/PID :E "ul b T g b
Neural Network *V_C,W_C ul -y | Y
»ex = L dow w ASMC/;MCND 7 :E "u2 w ki thetal
ey i y G Nonlinear Model| | Kinematic Model
veth o g g2
T T »V_C,W_C ul
"V, W u2|
PID
Deltal
Delta2)|
Disturbances I:
Figure 4. DDMR controller and modelling.
Table 1. Controller gains and parameters. Table 2. PID parameters.
Parameter Value Parameter Value PID1 PID2
Xy t my 0.5kg PID Parameter Value Value
Yr sin(t) m¢ 17kg
o, 0 R 0.095 m K, 77.18 5.32
v, 0.06m/s L 0.24m Ky 35.64 21.86
W, Ords™! d 0.05 Kp —0.01 -0.06
Xo 0 I 0537kgm2 54.8 77.51
Yo 0 Im 0.0011kgm?
6o 0 Iy 0.0023kgm?
B 5 & 0.05 . .
a 05 b 05 mobile robot system, to achieve a balance between per-
K 0.171 Ky 0.171 formance and robustness. Here, the balance between
ﬁ* ; fy 150 settling time and robustness is provided with the PID
6

Iy < 4.57kgm?. The mobile robot, which is subject to
both faults and disturbances, tries to follow its reference
trajectory. Ode45 is used to solve non-stift differential
equations in systems with ASMC, SMC, and PID. In
each case, same disturbances which are A; = 0.25 %
sin(3 % t) and A, = 0.75 * cos(2 * t) is used for fair
comparison. Unstable signals, which are disturbances,
are added to the control signals. The noise signals are
more unstable at the beginning of the simulation. For
this reason, the mobile robot has difficulty settling into
the reference trajectory.

Reference and robot parameters are shown in
Table 1.

The initial values of Ky, K, and Ky values are given
in Table 1. For the PID control approach, two differ-
ent PID controllers are used for linear and angular
velocities. PID gain values have different values because
the two systems use two different error values. PID1
and PID2 generate control signals using linear velocity
error and angular velocity, respectively. To determine
PID controller gains, PID tuner application (transfer
function based) is used in the MATLAB/Simulink envi-
ronment. The PID Tuner app automatically tunes the
gains of a PID controller for a SISO plant, which is a

controller gains, which are given in Table 2.

Although the system is subjected to faults and dis-
turbances, as shown in Figure 5, it shows a satisfactory
result in TT with the proposed controller structures. In
the sixth second, a fault occurs in the system, and the
fault continues until the end of the simulation. There-
fore, a deterioration in the condition of the trajectory
tracking occurs after sixth second. If SMC is compared
with the PID system, there are small differences. How-
ever, the ASMC system gives much better results than
the PID and SMC systems in the curved parts of the ref-
erence trajectory, and the ASMC system tracks closer
to the reference trajectory in the linear parts. The sys-
tem with a PID controller settles into the reference
trajectory later than the ASMC and SMC systems. The
three-controller system gives satisfactory results in TT
compared with [6,39-41].

As can be seen in Figure 6, the linear velocity
increases until the DDMR catches the reference tra-
jectory. Afterwards, it progresses stably. When the
fault occurs in the sixth second, linear velocity values
increase in DDMR systems. Because the fault model
in the actuators tries to reduce the wheel velocities of
the DDMR. The controller system does not allow the
robot to stop or slow down by increasing the velocity. If
the linear velocity values in the ASMC system are com-
pared with those in the PID and SMC systems, it is seen
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—Mobile Robot Trajectory = Reference Trajectory
Figure 5. Trajectory tracking.
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Figure 6. Linear velocity.

that the two figures are very similar. The mobile robot
with the PID system initially accelerates to catch the tra-
jectory more slowly than the ASMC and SMC systems.
After the eighth second, it progresses stably, similar to
a sine wave.

In Figure 7, the angular velocity changes abruptly
until it settles onto the reference trajectory. There is
more fluctuation after the sixth second, as does the lin-
ear velocity. The difference between the angular velocity
and the linear velocity is that it can take negative values
according to the direction of the mobile robot. If the
angular velocity values in the ASMC system are com-
pared with the PID and SMC systems, it is seen that the

angular velocity graphs are almost the same due to the
reference trajectory being important for angular veloc-
ity change. The difference here is that the fluctuation is
greater in the PID system due to the structure of the
PID.

In Figure 8, control torques which are generated
for both right and left wheels by each controller can
be seen. Here there are high torque values when the
DDMR starts to move from its initial state and the fault
occurs in the sixth second, so the DDMR moves with
acceleration. This is because the controllers are trying to
push the mobile robot to follow the reference trajectory.
After DDMR catches the reference line, left and right
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Angular Velocity (ASMC)
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Figure 7. Angular velocity.
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Figure 8. Controller torque.

wheel torques decrease, and the control signals for all
three ASMC, SMC, and PID tend to go to zero. All three
systems perform satisfactorily in TT, but SMC and PID
controller have more chattering than ASMC, so ASMC
produces more smooth control inputs.

Figure 9 shows that the error graphs are similar for
all three control strategies. The DDMR system has a
higher error value until the mobile robot catches the ref-
erence line. Afterwards, the error value decreases, and
the process proceeds stably. When the fault occurs in
the sixth second, the error values increase, and then
the error value decreases, and the process proceeds

—Torque at Left Wheel =Torque at Right Wheel

stably again. In DDMRs with fault models, the system
error does not disappear because the actuators are con-
stantly given error values over time and disturbances
are always present when the system is operating.

To compare the results more accurately, Root Mean
Square (RMS) values of the errors for all three systems
are given in Table 3.

As can be seen from Table 3, the ASMC gives bet-
ter results compared to the PID controller and SMC,
but the difference is small since the kinematic and NN-
based adaptive backstepping controllers have effective
operation.
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Figure 9. Trajectory tracking errors.
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Figure 10. RMS error

Table 3. RMSEs average values. x-axis is less than the PID and SMC systems in the sixth

DDMR with ASMC DDMR with SMC DDMRwithpip  second.

Axis Average error Average error Average error In Figure 11, the controller gains are compared with
X 03293 03852 0.4084 each other with respect to the adaptive controller point

Y 0.2097 0.2397 0.2266

of view, Ky, K, and Ky values are not kept constant
for all controllers. The change in the gain values is
small because a big change affects the system oper-
ation and increases the torque value. Looking at the
other changes, it is seen that the gain values do not take
very different values from the initial conditions until
the fault occurs in the sixth second, and then the gain
value decreases and progresses stably again. Here, there
are high torque values when the fault occurs. K, and
Ky values change in very similar ways in ASMC and

Figure 10 shows that the RMS error graphs are sim-
ilar for all three control strategies. It starts at zero and
suddenly reaches a value of one. The RMS error value
decreases and progresses stably until the fault occurs
in the sixth second, and then the error value decreases
and progresses stably again. If the angular velocity val-
ues in the ASMC system are compared with the PID
and SMC systems, it is clear that the RMS error in the



482 M. AYYILDIZ AND U. TILKI
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Figure 11. Kinematic controller gain.

PID. K, values change more in ASMC than in SMC
and PID as the sliding mode controller structure has an
adaptive law. Due to having a fault in the system, the
kinematic controller gain values are high compared to
those without a fault modelling system [5,15,42], so that
the DDMR has high velocity values.

Conclusion

In this paper, first the dynamic and kinematic mod-
els are obtained by using kinematic constraints and the
Lagrangian approach. The proposed control methods
for TT of the DDMR system are ASMC, SMC, and PID
controllers. The effects of disturbances and faults in
the system’s actuators are eliminated, and the DDMR
system follows the reference trajectory by adding kine-
matic controllers and NN-based controllers to the sys-
tem. In the real-time application, the robot model is
nonlinear since the robot parameters are unknown. For
this reason, in this work, an adaptive law is proposed
to maintain the sliding state, solving the problem of
unknown parameters and disturbances. A comparison
is made between the PID controller, which is mostly
used in linear systems, the SMC, and the adaptive SMC
used in nonlinear systems, and responses under faults
and disturbances are examined.
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