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ABSTRACT
In this paper, a novel tracking control strategy is proposed to address the problemof stabilization
of a class of nonlinear time delay systems with time-varying full-state constraints. The effect of
the nonlinear system resulting from the time delays is canceled out with the utilization of the
novel iterativeprocedures optimizedbydynamic surface control (DSC) and the appropriate time-
varying asymmetric barrier Lyapunov functions (ABLFs) are employed to stem the violation of
time-varying states constraints. Finally, it is proved that theproposed controlmethodguarantees
the uniformly ultimate boundedness of all the signals in the closed-loop system, meanwhile, the
tracking errors converge to a small interval. The effectiveness of the presented control strategy
is confirmed by a simulation example provided in this paper.
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1. Introduction

Constraints are significant factors leading to instabil-
ity and undesirable performance existing ineluctably
in a wide variety of practical engineering systems.
Among the numerous effective research results on
constraint-handling approaches promoted by practi-
cal requirements, such as reference governors [1,2]
model predictive control [3,4] and the set invariance
notions [5], the barrier Lyapunov function (BLF) is
the leading method to handle the constraint prob-
lems. An adaptive controller based on asymmetrical
Barrier Lyapunov Functions was first proposed in [6]
to handle parametric uncertainties meanwhile deter
constraints from being breached. Subsequently, some
different forms of novel adaptive controllers based on
Integral Barrier Lyapunov Functionals (IBLF) and tan-
gent BLFs (TBLFs) were proposed for nonlinear single-
input single-output (SISO) output-constrained systems
in [7–9] respectively. A BLF-based backstepping was
presented in [10] for strict-feedback systems with par-
tial state constraints to deal with the control design
problem. The full state constraint control problem of
nonlinear systems in pure-feedback was addressed in
[11,12]. Relying on the combination of neural networks
(NNs) and BLF, adaptive controllers were designed
in [13–15] for full state constrained systems. Mean-
while, time delay, which has an impact that can not
be neglected on the performance of control systems
and even leads to the deterioration of system stabil-
ity, is also frequently encountered in many practical

engineering systems, such as spacecraft attitude control
systems [16], active suspension system, vehicle control
system [17,18], microwave oscillators.

The issue of time-delay systems has received con-
siderable critical attention. With regard to the robust
stability proof for systems affected by time delay, two
theorems are employed by a large proportion of effec-
tive methods, one is the Lyapunov–Krasovskii theorem
[19–23], the other is the Lyapunov–Razumikhin theo-
rem [24–27], and a great deal of research based
on Lyapunov–Krasovskii functionals (LKFs) and Lya-
punov–Razumikhin functions (LRFs) has been done
on how to deal with time delay problems. In [28], LRF
was combinedwith an adaptive stability control scheme
designed by backstepping to process a class of nonlin-
ear time-delay systems with a state feedback control
problem. In [29], aiming at the input-to-state stability
(ISS) of nonlinear time-delay systems, a class of LRFs
with amore relaxed requirement on derivative was con-
structed for the first time. Based on this, the stability
of a class of event-triggered stabilization of switched
nonlinear time-varying systems was studied. An iter-
ative robust controller for a class of SISO nonlinear
time-delay systems had been designed with the novel
use of Lyapunov–Krasovskii functionals see [30]. In
[31,32], unknown functions containing time-delayed
states could be resolved into a series of continuous
functions with the utilization of the separation tech-
nique, which canceled out the constraints of assump-
tion about the functions containing delayed states. The
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desired control performance of nonlinear time-delay
systems was achieved in [31,33] due to the combina-
tion of LKFs and adaptive NNs backstepping. A class
of strict-feedback nonlinear systems with time delays
were presented in [32,34,35] and adaptive fuzzy con-
trol based on the backstepping technique as well as
LKFs had been developed to handle the problem of
output tracking. In practice, time delay and state con-
straints usually exist in practical engineering systems
simultaneously, how to address the control problem of
nonlinear systems with both the state constraints and
time delay remains urgent.

It is noteworthy that the problem of symmetric con-
stant state constraints in time delay systems can be
solved by using the tangent barrier Lyapunov function
(TBLF) in [9], or NNs based on BLF in [31,33,36].
However, symmetric and non-time-varying state con-
straints considered in [30,31,33,36] were just some spe-
cial cases of our scheme and may not meet the require-
ments when applied to the actual engineering systems.
And the method proposed in [30,31,32,33], which used
a traditional backstepping algorithm, suffered from a
large amount of calculation caused by repetitive differ-
entiations. To overcome these problems, the dynamic
surface control (DSC) technique, which obtained the
information of the virtual control by introducing a first-
order low-pass filter at each step of the design proce-
dure was presented in [37,38] and adopted in [39–43].
Therefore, through the study of previous papers, it can
be concluded that there are few works combining DSC
technology to solve the problem of time delay and time-
varying full-state constraint at the same time, which
motivates our research.

In this paper, the time-varying asymmetric Bar-
rier Lyapunov Functionals (ABLF)-based control is
employed to stabilize a class of nonlinear strict-
feedback systems with the time-delays and the time-
varying full state constraints. The main contributions
of this paper are summarized as follows: (i) Based on
the separation technique, a novel unified framework
is proposed, in the meantime, time delay and the full
state time-varying constraint problems are taken into
account more comprehensively in this current work,
which means that the limitation on initial conditions
can be relaxed and is able to satisfy the constraint
requirements of the state variables better in practical
engineering systems. (ii) Compared with approaches
using traditional iterative backstepping, repetitive dif-
ferentiation of stabilizing functions, which will lead
to tedious and complicated calculation, especially in
higher order systems, can be averted by choosing the
DSC strategy. (iii) With the utilization of the time-
varying asymmetric BLFs, all the states are always
within the prescribed time-varying scopes.

The rest of this paper is organized as follows: Section
2 formulates the problem, and some necessary prelimi-
nary knowledge is provided in this section as well. The

design process of the controller and stability analysis
are given in Section 3. The effectiveness of the pro-
posed approach is illustrated by the example provided
in Section 4. The conclusions are drawn in Section 5.

2. Problem formulations and preliminaries

2.1. Problem formulation

Consider the following strict-feedback nonlinear time-
delay systems with output constraints⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = f1(x1) + g1(x1)x2(t)
+h1(x1(t − τ1))

ẋi = fi(x̄i) + gi(x̄i)xi+1(t)
+hi(x̄i(t − τi)), i = 2, · · · n − 1

ẋn = fn(x̄n) + gn(x̄n)u(t)
+hn(x̄n(t − τn))

y = x1

(1)

where x̄i = [x1, x2, · · · xi]T ∈ Rn, i = 1, 2, . . . n repre-
sents system states, y ∈ R, u ∈ R are system output and
control input respectively; gi(x̄Ti ) and fi(x̄i) are smooth
functions; hi(·) are unknown smooth functions affected
by time delays; τi,i = 1, 2, · · · n denote time-delay con-
stants. The control objective of this paper is to design an
adaptive controller u for system (1) to ensure that the
system output y tracks the desired trajectory yd, while
all signals in the close-loop system remain bounded and
all the corresponding constraints kci < xi < k̄ci,∀t ≥ 0
are not violated.

The necessary Assumptions for establishing con-
straint satisfaction and performance bounds are as
follows.

Assumption 2.1 ([31]): For the uncertain non-linear
time-delay functions, the following inequality holds

|hi(x̄i(t − τi))| ≤
i∑

j=1
|sj(t − τi)|qij(s̄j(t − τi)) (2)

where qij(·) are known continuous functions, s̄i(t) =
[s1(t), s2(t), · · · si(t)]T .

Assumption 2.2 ([39]): The functions gi(x̄i), i = 1,
. . . , n are positive and there exists a class of posi-
tive constants gimin and gimax such that 0 < gimin ≤
gi(x̄i) ≤ gimax.

Assumption 2.3 ([11]): There exist constants Kci, K̄ci,
dcij , d̄cij i, j = 1, . . . n satisfying kci(t) > Kci and k̄ci(t) ≤
K̄ci and their time derivatives satisfy |k(j)

ci (t)| ≥ dcij ,

|k̄(i)
ci (t)| ≤ d̄cij .

Assumption 2.4 ([11]): There exist function Y0(t) :
R+ → R+, Ȳ0(t) : R+ → R+ satisfyY0(t) > kc1(t) and
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Ȳ0(t) < k̄c1(t), ∀t > 0. Furthermore, there exist posi-
tive constants Yi, i = 1, . . . , n such that the reference
signal yd(t) and its time derivatives satisfy Y0(t) ≤
yd(t) ≤ Ȳ0(t) and |yid(t)| ≤ Yi,∀t > 0.

2.2. Preliminaries

Lemma2.1 ([44]): For all |ξ | < 1 and any positive inte-
ger p, the inequality log 1

1−ξp < 1
1−ξp holds in the set

η ∈ N, and σ , c are positive constants, then si(t) remain
in the open set Si,∀t ∈ [0,∞).

Lemma 2.2 ([31]): For 1 ≤ j ≤ n, define the set �c1 as
�c1 = {sj||sj| < 0.5549vj} with vj is a design constant.

Lemma 2.3: Even function k(·) : R → R

k(x) = x2 cosh(x)
1 + x2

, ∀x ∈ R (3)

is continuous, and monotonic, i.e. for any |x| > c, where
c is a positive constant, k(x) ≥ k(c).

Remark 1: Observing the system studied in this paper,
each state variable has a separate derivative expression,
so we design a BLF function for each state variable
based on the backstepping technique, and the function
will involve the constraint boundaries of that state vari-
able, the LKFs, and the design terms of the dynamic
surfaces. The controller is then designed based on the
derivatives of each BLF so that the final overall BLF
derivative satisfies our requirements.

3. Controller design and stability analysis

In this section, a combination of backstepping DSC
design and ABLF will be proposed to develop a con-
troller for strict-feedbacknonlinear time-delay systems.
The specific design process is shown below.

Step 1:
Suppose the tracking error as s1(t) = x1 − yd, its

time derivative according to the first equation of (1) is
given by

ṡ1(t) = f1(x1) + g1(x1)x2(t) + h1(x1(t − τ1)) − ẏd
(4)

then the virtual error of the next step is defined as
s2(t) = x2 − z2, simultaneously, letting a designed sta-
bilizing function α1 passing through a first-order filter
that contains a time constant ϑ2 in the following way

α1(s)
1

ϑs + 1
= z2(s) (5)

and the corresponding time domain expression

ϑ2ż2 + z2 = α1, z2(0) = α1(0) (6)

wherefore we could get the first-order filter error χ2 =
z2 − α1, the derivative of z2 can be defined as

ż2 = α1 − z2
ϑ2

= −χ2

ϑ2
(7)

then, referring to [6] we choose the time-varying asym-
metric barrier function candidate as

V1 = 1
2
(1 − q(s1)) log

k2a1(t)
k2a1(t) − s21

+ 1
2
q(s1)

× log
k2b1(t)

k2b1(t) − s21
+
∫ t

t−τ1

s21(τ )q211(s̄1(τ ))dτ

+ 1
2
χ2
2 (8)

where

q(•) =
{

0, • ≤ 0
1, • > 0 (9)

for ease of notation, we abbreviate q(•) by qi through-
out this paper, unless otherwise stated. And the time-
varying barriers in the above formula are given by{

ka1(t) = yd(t) − kc1(t)
kb1(t) = k̄c1(t) − yd(t)

(10)

and due to assumptions 2.3 and 2.4, we know that
positive constants kb1, k̄b1, ka1, k̄a1 exist, which leads to

ka1 ≤ ka1(t) ≤ k̄a1, kb1 ≤ kb1(t) ≤ k̄b1, ∀t > 0 (11)

Remark 2: log(·) denotes the natural logarithm of ·,
define a set �s := {s = (s1, . . . , sn)T ⊂ Rn,−kai(t) <

si(t) < kbi(t), i = 1, . . . , n, ∀t > 0}, where kai(t), si(t),
kbi(t), i = 2, . . . n.

It is clear thatV1 is positive definite and continuously
differentiable, then the time derivative of V1 is given by

V̇1 =
(

1 − q1
k2a1(t) − s21

+ q1
k2b1(t) − s21

)
s1

×
(
ṡ1 − k̇a1(t)

ka1(t)
s1(1 − q1) − k̇b1(t)

kb1(t)
s1q1

)

+ s21(t)q
2
11(s̄1(t)) − s21(t − τ1)q211(s̄1(t − τ1))

+ χ2χ̇2 (12)

similarly, for ease of notation, the following notation
definitions will be used⎧⎨
⎩ μ1 =

(
1−q1

k2a1(t)−s21
+ q1

k2b1(t)−s21

)
λ1 = (1 − q1) · (k2a1(t) − s21) + q1 • (k2b1(t) − s21)

(13)

where the time-varying gain is given by

k̄1(t) =

√√√√
(1 − q1)

(
k̇a1(t)
ka1(t)

)2

+ q1

(
k̇b1(t)
kb1(t)

)2

+ β1

(14)
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and denote K̄1(t) as follows

K̄1(t) = k̄1(t) + k̇a1(t)
ka1(t)

(1 − q1(s1)) + k̇b1(t)
kb1(t)

q1(s1)

(15)

in (14), β1 is a positive constant, which ensures that
K̄1(t) > 0 even when k̇a1(t) and k̇b1(t) are both zero.
We choose G1

G1 =
∫ t

t−τ

s21(τ )q211(s̄1(τ ))dτ (16)

Design stabilizing function α1 as

α1 = 1
g1(x1)

(
−f1(x1) + ẏd − (k̄1(t) + k1)s1 − 1

4
μ1s1

−s1λ1q112(s̄1(t)) − cosh(s1)ε1λ1G1
s1

1 + s21

)
(17)

where k1 and ε1 are positive design parameters, sub-
stituting (12), (13), (15), and (17) into (11), we could
obtain that

V̇1 = −(k1 + K̄1(t))μ1s21 − 1
4
μ2
1s
2
1 − μ1s21λ1q11

2

× (s̄1(t)) − μ1 cosh(s1)ε1λ1G1
s21

1 + s21
+ μ1s1h1(x1(t − τ1)) + μ1g1s1s2 + μ1s1g1χ2

+ s21(t)q
2
11(s̄1(t)) − s21(t − τ1)q211(s̄1(t − τ1))

+ χ2χ̇2 (18)

where μ1λ1 = 1 and the function D1 is designed as

D1 = h21(x1(t − τ1)) − s21(t − τ1)q211(s̄1(t − τ1))

(19)

with respect toχ2χ̇2, according to first-order filter error
χ2 = z2 − α1 and (3), we have the time derivative of χ̇2

χ̇2 = ż2 − α̇1 = −χ2

ϑ2
+ B2 (20)

where B2(x1, yd · · · ) = −α̇1, due to assumptions 2.3
and 2.4, we note that |B2| ≤ M2, which means that
B2 is bounded and continuous with a maximum abso-
lute value. Thus, we can rewrite χ2χ̇2 with following
Young’s inequality

|B2χ2| ≤ 1
2o2

χ2
2B

2
2 + 1

2
o2 ≤ 1

2o2
χ2
2M

2
2 + 1

2
o2, o2 > 0

(21)

we have

χ2χ̇2 = χ2

(
−χ2

ϑ2
+ B2

)
= χ2B2 − χ2

2
ϑ2

≤ 1
2o2

χ2
2M

2
2 + 1

2
o2 − χ2

2
ϑ2

(22)

combining (22) and the following Young’s inequality{
μ1s1h1(x1(t − τ1)) ≤ 1

4μ
2
1s
2
1 + h21(x1(t − τ1))

μ1s1g1(x1)χ2 ≤ μ1g1max(x1)(s21 + 1
4χ

2
2 )

(23)

we obtain

V̇1 ≤ μ1g1s1s2 − μ1s21(k1 + K̄1(t) − g1max(x1))

− χ2
2

(
− 1
2o2

M2
2 + 1

ϑ2
− 1

4
μ1g1max(x1)

)

− cosh(s1)ε1G1
s21

1 + s21
+ 1

2
o2 + D1 (24)

In order to guarantee the closed-loop stability,
the design of constant gain k1 and time-delay con-
stant τi should make sure k1 + K̄1(t) − g1max(x1) > 0
and − 1

2o2M
2
2 + 1

ϑ2
− 1

4μ1g1max(x1) > 0, and the term
μ1g1s1s2 will be canceled in the subsequent step.

Step i, 2 ≤ i ≤ n − 1
Define the tracking error as si+1(t) = xi+1 − zi+1,

we introduce a filtering virtual control zi+1 and let
designed stabilizing function αi passing through a first-
order filter that contains a time constant τi+1, similar to
step 1,Where αi is a stabilizing function to be designed.
The first-order filter error in this step is χi+1 = zi+1 −
αi. Thus we could obtain

żi+1 = αi − zi+1

ϑi+1
= −χi+1

ϑi+1
(25)

choose the time-varying asymmetric barrier function
candidate as

Vi = Vi−1 + 1
2
(1 − qi) log

k2ai(t)
k2ai(t) − s2i

+ 1
2
qi log

k2bi(t)
k2bi(t) − s2i

+
∫ t

t−τi

s2i (τ )q2i1(s̄i(τ ))dτ

+ 1
2
χ2
i+1 (26)

noting that Vi is positive definite and continuously
differentiable, then the differentiating of Vi yields

V̇i = V̇i−1 +
(

1 − qi
k2ai(t) − s2i

+ qi
k2bi(t) − s2i

)
si

×
{
ṡi − k̇ai(t)

kai(t)
si(1 − qi) − k̇bi(t)

kbi(t)
siqi

}

+ s2i (t)q
2
i1(s̄i(t)) − s2i (t − τi)q2i1(s̄i(t − τi))

+ χi+1χ̇i+1 (27)

for ease of notation, we have following notation
definitions

μi =
(

1 − qi
k2ai(t) − s2i

+ qi
k2bi(t) − s2i

)
(28)
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λi = (1 − qi)(k2ai(t) − s2i ) + qi(k2bi(t) − s2i ) (29)

where the time-varying gain k̄i(t) and K̄i(t) are given by⎧⎪⎨
⎪⎩
k̄i(t) =

√
(1− qi(si))

(
k̇ai(t)
kai(t)

)2 + qi(si)
(
k̇bi(t)
kbi(t)

)2 + βi

K̄i(t) = k̄i(t) + k̇ai(t)
kai(t) (1 − qi(si)) + k̇bi(t)

kbi(t)
qi(si)

(30)

βi is a positive constant, which ensures that K̄i(t) > 0.
The time-varying barriers kai(t), kbi(t) are given as

kai(t) = zi − kci(t), kbi(t) = k̄ci(t) − zi (31)

As mentioned above, it is easy to know that si(t) =
xi − zi, ṡi(t) = ẋi − żi and żi = −χi

ϑi
, so combining

with the second equation in (1) we have

ṡi(t) = fi(x̄i) + gi(x̄i)xi+1(t) + hi(x̄i(t − τi)) + χi

ϑi
(32)

due to tracking error and first-order filter error, xi+1(t)
can be represented as follows

xi+1(t) = si+1 + χi+1 + αi (33)

stabilizing function is designed as

αi = 1
gi(x̄i)

⎛
⎜⎝

−fi(x̄i) − (k̄i(t) + ki)si − χi
ϑi

− 1
4μisi

−siλiqi12(s̄i(t)) − cosh(si)εiλiGi
si

1+s2i
− gi−1(x̄i−1)μi−1si−1

μi

⎞
⎟⎠

(34)

where ki, εi are designed positive constant. We
choose Gi

Gi =
∫ t

t−τ

s2i (τ )q2i1(s̄i(τ ))dτ (35)

Substituting (31), (32), (34) and (37) into (30), it
leads to

V̇i = V̇i−1 + μisigisi+1 − μi(K̄i(t) + ki)s2i − 1
4
μ2
i s
2
i

− μis2i λiqi1
2(s̄i(t)) − μiλi cosh(si)εiGi

s2i
1 + s2i

− gi−1(x̄i−1)μi−1si−1si + μisigiχi+1

+ μisihi(x̄i(t − τi)) + s2i (t) · q2i1(s̄i(t))
− s2i (t − τi) · q2i1(s̄i(t − τi)) + χi+1χ̇i+1 (36)

where μiλi = 1, and the function Di is designed as

Di = h2i (x̄i(t − τi)) − s2i (t − τi)q2i1(s̄i(t − τi)) (37)

with respect to the term χi+1χ̇i+1, according to first-
order filter errorχi+1 = zi+1 − αi and (19), we have the
time derivative of χ̇i+1

χ̇i+1 = żi+1 − α̇i = −χi+1

ϑi+1
+ Bi+1 (38)

where

Bi+1(x̄i, yd, ẏd, ÿd) = −∂αi

∂ x̄
˙̄x − ∂αi

∂yd
ẏd − ∂αi

∂ ẏd
ÿd (39)

we note that Bi+1 is bounded and continuous with a
maximum absolute value under assumptions 2.3 and
2.4, which can be expressed as |Bi+1| ≤ Mi+1. Thus we
can rewrite χi+1χ̇i+1 with following Young’s inequality

|Bi+1χi+1| ≤ 1
2oi+1

χ2
i+1B

2
i+1 + 1

2
oi+1 ≤ 1

2oi+1

× χ2
i+1M

2
i+1 + 1

2
oi+1, oi+1 > 0 (40)

we have

χi+1χ̇i+1 = χi+1

(
−χi+1

ϑi+1
+Bi+1

)
= χi+1Bi+1 − χ2

i+1
ϑi+1

≤ 1
2oi+1

χ2
i+1M

2
i+1 + 1

2
oi+1 − χ2

i+1
ϑi+1

(41)

combining (41) and the following Young’s inequality{
μisihi(x̄i(t − τi)) ≤ 1

4μ
2
i s
2
i + h2i (x̄i(t − τi))

μisigi(x̄i)χi+1 ≤ μigimax(x̄i)(s2i + 1
4χ

2
i+1)

(42)

we can simplify (36) as

V̇i ≤ V̇i−1 + μigisisi+1 − μis2i (ki + K̄i(t) − gimax(x̄i))

− χ2
i+1

(
− 1
2oi+1

M2
i+1 + 1

ϑi+1
− 1

4
μigimax(x̄i)

)

− cosh(si)εiGi
s2i

1 + s2i
+ 1

2
oi+1 + Di (43)

In order to guarantee the closed-loop stability, the
design of constant gain ki and time-delay con-
stant τi should make sure ki + K̄i(t) − gimax(x̄i) > 0
and − 1

2oi+1
M2

i+1 + 1
ϑi+1

− 1
4μigimax(x̄i) > 0, the term

μigisisi+1 will be canceled in the subsequent step.
Step n
Define the tracking error as sn(t) = xn − zn, we can

get a time derivative of sn(t)

ṡn(t) = ẋn − żn (44)

In step i, when i = n − 1, we can obtain

ϑnżn + zn = αn−1, żn = −χn

ϑn
(45)

choose the time-varying asymmetric barrier function
candidate as

Vn = Vn−1 + 1
2
(1 − q(sn)) log

k2an(t)
k2an(t) − s2n

+ 1
2
q(sn)

× log
k2bn(t)

k2bn(t) − s2n
+
∫ t

t−τn

s2n(τ )q2n1(s̄n(τ ))dτ

(46)
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then differentiating Vn yields

V̇n = V̇n−1 +
(
1 − qn(sn)
k2an(t) − s2n

+ qi(si)
k2bn(t) − s2n

)
sn

×
(
ṡn − k̇an(t)

kan(t)
sn(1− qn(sn))− k̇bn(t)

kbn(t)
snqn(sn)

)

+ s2n(t)q
2
n1(s̄n(t)) − s2n(t − τn)q2n1(s̄n(t − τn))

(47)

for ease of notation, we have the following notation
definitions

μn =
(

1 − qn
k2an(t) − s2n

+ qn
k2bn(t) − s2n

)
(48)

λn = (1 − qn)(k2an(t) − s2n) + qn(k2bn(t) − s2n) (49)

where the time-varying gain k̄n(t) and K̄n(t) are
given by⎧⎪⎨
⎪⎩

k̄n(t) =
√

(1 − qn)
(
k̇an(t)
kan(t)

)2 + qn
(
k̇bn(t)
kbn(t)

)2 + βn

K̄n(t) = k̄n(t) + k̇an(t)
kan(t) (1 − qn) + k̇bn(t)

kbn(t)
qn

(50)

βn is a positive constant, which ensures that K̄n(t) >

0, even when k̇an(t), k̇bn(t) are both zero. The time-
varying barriers kan(t), kbn(t) of virtual error sn are
defined as

kan(t) = zn − kcn(t), kbn(t) = k̄cn(t) − zn (51)

Then, according to the third equation in (1) and (44),
(45), we could obtain

ṡn = fn(x̄n) + gn(x̄n)u(t) + hn(x̄n(t − τn)) + χn

ϑn
(52)

introduce the actual controller u(t) as

u(t) = 1
gn(x̄n)

⎛
⎜⎜⎜⎝

−fn(x̄n) − (k̄n(t) + kn)sn − χn
ϑn

− 1
4μnsn − snλnqn12(s̄n(t))

− cosh(sn)εnλnGn
sn

1+s2n
− gn−1(x̄n−1)μn−1sn−1

μn

⎞
⎟⎟⎟⎠
(53)

where kn, εn are designed positive constants and define

Gn =
∫ t

t−τ

s2n(τ )q2n1(s̄n(τ ))dτ (54)

substituting (48), (49), (51), (52), and (53) into (47)
leads to

V̇n = V̇n−1 + μisigisi+1 − μn(K̄n(t) + kn)s2n − 1
4
μ2
ns

2
n

− μns2nλnqn1
2(s̄n(t)) − cosh(sn)εnλnGn

μns2n
1 + s2n

− gn−1(x̄n−1)μn−1sn−1sn + μnsnhn(x̄n(t − τn))

+ s2n(t) · q2n1(s̄n(t))− s2n(t− τn) • q2n1(s̄n(t− τn))

(55)

where μnλn = 1 and define

Dn = h2n(x̄n(t − τn)) − s2n(t − τn) • q2n1(s̄n(t − τn))

(56)

using following Young’s inequality

μnsnhn(x̄n(t − τn)) ≤ 1
4
μ2
ns

2
n + h2n(x̄n(t − τn)) (57)

we could obtain

V̇n = V̇n−1 −μn(K̄n(t)+ kn)s2n − cosh(sn)εnGn
s2n

1 + s2n
− gn−1(x̄n−1)μn−1sn−1sn + Dn (58)

where K̄n(t) + kn > 0. Combining (7), (26), (46) and
(24), (43), (58) we could obtain Vn and V̇n respectively

Vn =
n∑
i=1

(
1
2
(1 − q(si)) log

k2ai(t)
k2ai(t) − s2i

+1
2
q(si) log

k2bi(t)
k2bi(t) − s2i

)
+

n∑
i=2

1
2
χ2
i+1

+
n∑
i=1

∫ t

t−τi

s2i (τ )q2i1(s̄i(τ ))dτ (59)

V̇n ≤ −
n−1∑
i=1

μis2i (ki + K̄i(t) − gimax(x̄i)) −
n−1∑
i=1

χ2
i+1

×
(

− 1
2oi+1

M2
i+1 + 1

ϑi+1
− 1

4
μigimax(x̄i)

)

−
n∑
i=1

cosh(si)εiGi
s2i

1 + s2i
+

n−1∑
i=1

1
2
oi+1

+
n∑
i=1

Di − μn(K̄n(t) + kn)s2n (60)

where
n∑

i=1
Di =

n∑
i=1

h2i (x̄i(t − τi))

−
n∑

i=1
s2i (t − τi)q2i1(s̄i(t − τi)) (61)

according to assumption 2.1, we obtain
n∑

i=1
Di = 0.

So far, the controller design process has been com-
pleted, and the schematic diagram of the proposed
control scheme is illustrated in Figure 1.

Theorem 3.1: Consider the nth nonlinear system con-
sisting of the plant (1) with time delays and the full
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Figure 1. Control schematic diagram.

state constraints with Assumptions 2.1, 2.3 and 2.44.
By constructing the stabilizing functions (17), (34) and
choosing the actual controller (53), it can be guaranteed
that: the error signals can converge to a compact set;
the asymmetric time-varying state constraint: kci(t) <

xi(t) < k̄ci(t),∀t > 0 are never violated and all the sig-
nals in the resulting closed-loop system are bounded for
any t > 0.

Proof: In order to express more conveniently, we
present gain parameters in the following way:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ei = ki + K̄i(t) − gimax(x̄i) > 0, i = 1 · · · , n − 1
En = K̄n(t) + kn > 0
ei = − 1

2oi+1
M2

i+1 + 1
ϑi+1

− 1
4μigimax(x̄i) > 0

c =
n−1∑
i=1

1
2oi+1

(62)

due to the parameter selection requirements in the pre-
vious article, we can see Ei > 0, i = 1 · · · , n, ei > 0,
i = 1 · · · , n − 1, V̇n can be rewritten as

V̇n ≤ −
n∑
i=1

Eiμis2i −
n−1∑
i=1

eiχ2
i+1

−
n∑
i=1

cosh(si)εiGi
s2i

1 + s2i
+ c (63)

from lemma 2.1, we can obtain

n∑
i=1

Eiμis2i =
n∑
i=1

Ei
(

(1 − qi(si))
s2i

k2ai(t) − s2i

+qi(si)
s2i

k2bi(t) − s2i

)

>

n∑
i=1

(
1
2
(1 − q(si)) log

k2ai(t)
k2ai(t) − s2i

+1
2
q(si) log

k2bi(t)
k2bi(t) − s2i

)
(64)

regarding Gi, for any τj ≤ τ , [t − τi, t] ⊂ [t − τ , t]
hold, it is easy to obtain

n∑
i=1

∫ t

t−τi

s2i (τ )q2i1(s̄i(τ ))dτ

≤
n∑

i=1

∫ t

t−τ

s2i (τ )q2i1(s̄i(τ ))dτ (65)

therefore, (63) further becomes

V̇n ≤ −
n∑
i=1

Ei
(
1
2
(1 − q(si)) log

k2ai(t)
k2ai(t) − s2i

+1
2
q(si) log

k2bi(t)
k2bi(t) − s2i

)

−
n∑
i=1

εi cosh(si)
s2i

1 + s2i

∫ t

t−τi

s2i (τ )q2i1(s̄i(τ ))dτ

−
n−1∑
i=1

eiχ2
i+1 − c (66)

depending on the size of sj, concerning the analy-
sis of stability, there are three cases that need to be
considered. �

Remark 3: Based on Lemma 2.2, there are three cases
of error variables in the control process, all in the prede-
termined set, all not in the predetermined set, and par-
tially in the predetermined set. The proof is developed
for these three cases.

Case 1: (sj ∈ �c1, ∀j = 1, 2 . . . , n): it is easy to ensure
the boundedness of sj due to the positive constant vj and
|sj| < 0.5549vj, and we can also have yid(t) are bounded
considering |yid(t)| ≤ Yi in assumption 2.4. Because of
|yd(t)| ≤ Y0 and s1 = x1 − yd we get kc1 = −|ka1| +
Y0 < x1 < |kb1| + Y0 = k̄c1, we can also conclude that
α1 in (20) is bounded, therefore, kc2 = −|ka2| + |α1| <

x2 < |kb2| + |α1| = k̄c2. Following the same way, we
can get kci(t) ≤ xi ≤ k̄ci(t) and the actual controller u is
bounded, which means that all the closed-loop signals
are bounded.
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Case 2: (sj /∈ �c1, ∀j = 1, 2 . . . , n): Considering
lemma2.3we can know themonotonic increasing func-
tion and continuous cosh(si)s2i

1+s2i
≥ (0.5549vi)2 cosh(0.5549vi)

1+(0.5549vi)2

we define σ as follows

σ = min
1≤i≤n

{
2ei,Ei, εi

(0.5549vi)2 cosh(0.5549vi)
1 + (0.5549vi)2

}
(67)

based on (59), we obtain

V̇n ≤ −σVn + c (68)

multiplying (61) by eσ t on its both sides yields to
⎧⎨
⎩

eσ tV̇n ≤ eσ t(−σVn + c) ⇒ d(eσ tVn)
dt ≤ ceσ t

eσ tVn − Vn(0) ≤ c
σ
(eσ t − 1)

0 ≤ V ≤ Vn(0)e−σ t + c
σ
(1 − e−σ t) ≤ Vn(0) + c

σ

(69)

supposing Vn(0) ≤ γ we can get Vn(t) ≤ γ + c
σ
,∀t >

0, Vn is bounded, meanwhile, it is easy to obtain

(1 − q(si))
k2ai(t)

k2ai(t) − s2i
+ q(si)

k2bi(t)
k2bi(t) − s2i

≤ e2[Vn(0)e−σ t+ c
σ

(1−e−σ t)] (70)

for si > 0, q = 1,(70) can be simplified to

k2bi(t)
k2bi(t) − s2i

≤ e2[Vn(0)e−σ t+ c
σ

(1−e−σ t)] (71)

multiplying both sides of (71) by k2bi(t) − s2i , which
yields to

si(t) ≤ kbi(t)
√
1 − e−2[Vn(0)e−σ t+ c

σ
(1−e−σ t)] (72)

Likewise, when si ≤ 0, q = 0, we can obtain si(t) ≥
−kai(t)

√
1 − e−2[Vn(0)e−σ t+ c

σ
(1−e−σ t)], thus the con-

clusion can be drawn that −Dsi ≤ si ≤ D̄si , where

Dsi = kai(t)
√
1 − e−2[Vn(0)e−σ t+ c

σ
(1−e−σ t)], D̄si = kbi(t)√

1− e−2[Vn(0)e−σ t+ c
σ

(1−e−σ t)]. From the previous
derivation, we have kc1(t) = −ka1(t) + yd(t) and
k̄c1(t) = kb1(t) + yd(t), due to s1(t) = x1 − yd and
s1(t) ∈ �s, which has been proved, it can be learned
that kc1(t) ≤ x1 ≤ k̄c1(t). Similarly, it can also be
proved that kci(t) ≤ xi ≤ k̄ci(t) on account of xi = si +
zi−1, si ∈ �s where k̄ci(t) = kbi(t) + zi−1(t), kci(t) =
zi−1(t) − kai(t), i = 2, . . . , n. Hence, the conclusion
can be drawn that the full state constraints are not
breached. It has been proven that the states xi(t) and the
error signals si(t) are all bounded, according to assump-
tion 2.4, yd, ẏd are bounded. From (13) we know that
α1 is a function of x1, ẏd, so α1 must be bounded, the
upper bound ᾱ1 of α1 exists, so we can infer that the
signals αi, i = 2, . . . n − 1 are bounded, furthermore

u(t) is bounded. Since z1 and yd are bounded, y is also
bounded.

Case 3: (sj /∈ �c1, si ∈ �c1): Denote sj /∈ �c1 as
∑

J,
si ∈ �c1 as

∑
I,define the Lyapunov function candidate

as follow for
∑

J:

V∑ J =
∑
j∈∑ J

(
1
2
(1 − qi) log

k2ai(t)
k2ai(t) − s2i

+ 1
2
qi log

k2bi(t)
k2bi(t) − s2i

+
∫ t

t−τi

s2i (τ )q2i1(s̄i(τ ))dτ

+1
2
χ2
i+1

)
(73)

differentiating V∑ J yields

V̇V∑ J ≤
∑
j∈∑ J

(μigisisi+1 − μi−1gi−1sisi−1)

+
∑
j∈∑ J

⎛
⎝ −μis2i (ki + K̄i(t) − gimax(x̄i))

−χ2
i+1(− 1

2oi+1
M2

i+1 + 1
ϑi+1

− 1
4μigimax(x̄i)

⎞
⎠

×
∑
j∈∑ J

(
− cosh(si)εiGi

s2i
1 + s2i

+ cj
)

(74)

the term
∑

j∈∑ J
(μigisisi+1 − μi−1gi−1sisi−1) in (74) can

be rewritten as∑
j∈∑ J

(μigisisi+1 − μi−1gi−1sisi−1)

≤
∑

j+1∈∑ J
j∈∑ J

μigisisi+1 +
∑

j+1∈∑ I
j∈∑ J

μigisisi+1

−
∑

j−1∈∑ J
j∈∑ J

μi−1gi−1sisi−1 −
∑

j−1∈∑ I
j∈∑ J

μi−1gi−1sisi−1

(75)

Remark 4:
∑

j∈∑ J
μigisisi+1 and

∑
j∈∑ J

μi−1gi−1sisi−1 are

eliminated in the backstepping design in both case 1
and case 2, but in the present case, these two terms have
errors at different steps and are coupled terms, which
cannot be canceled in the backstepping process when si
and si−1 or si and si−1 do not happen to be in the same
set, so a separate analysis is needed for this case, and a
similar analysis can be found in the paper [31].

The terms
∑

j+1∈∑ J
j∈∑ J

μigisisi+1 and
∑

j−1∈∑ J
j∈∑ J

μi−1gi−1sisi−1

are eliminated during backstepping. Due to 0 <

gimin ≤ gi(x̄i) ≤ gimax in assumption 2.2, denote gimax
as ḡ we can get∑

j∈∑ J

(μjgjsjsj+1 − μj−1gj−1sjsj−1)
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≤
∑

j+1∈∑ I
j∈∑ J

μjgjsjsj+1 −
∑

j−1∈∑ I
j∈∑ J

μj−1gj−1sjsj−1

≤
∑

j+1∈∑ I
j∈∑ I

(
1
4γ

μjs2j + μjγ ḡ2s2j+1

)

+
∑

j−1∈∑ I
j∈∑ J

(
1
4γ

μjs2j +
γ ḡ2s2j−1μ

2
j−1

μj

)

≤
∑

j−1∈∑ I
j+1∈∑ J

(
μjγ ḡ2(0.5549vj+1)

2

+
γ ḡ2(0.5549vj−1)

2μ2
j−1

μj

)

+
∑
j∈∑ J

1
2γ

μjs2j (76)

where μj is positive and bounded, according to (76),
(74) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C∑ J = ∑
j−1∈∑ I
j+1∈∑ J

(
μjγ ḡ2(0.5549vj+1)

2

+ γ ḡ2(0.5549vj−1)
2μ2

j−1
μj

)
+ ∑

j∈∑ J
cj

V̇V∑ J ≤ ∑
j∈∑ J

⎛
⎜⎝

−μis2i (ki + K̄i(t) − gimax(x̄i)
− 1

2γ ) − χ2
i+1(− 1

2oi+1
M2

i+1
+ 1

ϑi+1
− 1

4μigimax(x̄i)

⎞
⎟⎠

+ ∑
j∈∑ J

− cosh(si)εiGi
s2i

1+s2i
+ C∑ J

(77)

With a similar reasoning in case 2, It is easy to conclude
the boundedness of all the signals in the closed-loop
system, the tracking errors are able to converge in a
compact set and the time-varying full state constraints
are never breached for j ∈ ∑ J. In regard to j ∈ ∑ I The
proof of the stability of the closed-loop system is the
same as in case 1.

So far, we complete the proof of Theorem 3.1.

4. Simulation example

A simulation example containing terms affected by
uncertain time delay is provided in this section in order
to verify the effectiveness and feasibility of the pro-
posed method, the proposed approach is used to con-
trol the following nonlinear systems with time-varying
full state constraints:⎧⎪⎪⎨
⎪⎪⎩
ẋ1(t) = 0.1x21(t) + x2(t) + h1(x1(t − τ1)),
ẋ2(t) = 0.1x1(t)x2(t) − 0.2x1(t) + (1 + x21(t))u(t)

+h2(x1(t − τ1))

y = x1(t)
(78)

in (76), x1(t) and x2(t) are the state variables of sys-
tems, which need to be constrained, and denote initiate
values x1(0) = 0.8 and x2(0) = 0, y and u(t) are the
output and the input of systems, the terms affected by
uncertain time delay are described by

h1(x1(t − τ1)) = sin(x1(t − τ1)), h2(x̄2(t − τ2))

= sin(x2(t − τ2)) (79)

the relevant system parameters are chosen as τ1 =
0.1, τ2 = 0.2, q11 = q12 = 1. yd(t), the desired tra-
jectory tracked by y is 0.5 cos(t). kc1(t) < x1(t) <

k̄c1(t), kc2(t) < x2(t) < k̄c2(t) are the asymmetric time-
varying full state constraints, where⎧⎪⎪⎨

⎪⎪⎩
kc1(t) = −0.5 + 0.4 cos(t)
k̄c1(t) = 0.7 + 0.2 cos(t)
kc2(t) = −2.7 + 0.5 cos(t)
k̄c2(t) = 1.5 + 0.1 cos(t)

(80)

the following time-varying asymmetric barrier func-
tion are chosen according to the design process above
mentioned

V2 =
2∑

i=1

(
1
2
(1 − q(si)) log

k2ai(t)
k2ai(t) − s2i

+1
2
q(si) log

k2bi(t)
k2bi(t) − s2i

)
(1)

+
2∑

i=1

∫ t

t−τi

s2i (τ )q2i1(s̄i(τ ))dτ + 1
2
χ2
2 (81)

where{
kb1(t) = k̄c1(t) − yd(t), ka1(t) = yd(t) − kc1(t)
kb2(t) = k̄c2(t) − z1(t), ka2(t) = z1(t) − kc2(t)

(82)

DSC laws are designed as follows according to the DSC
method demonstrated in the paper

α1 = 1
g1(x1)

(
−f1(x1) + ẏd − (k̄1(t) + k1)s1

−1
4
μ1s1 − s1λ1q112(s̄1(t)) − ε1λ1G1

)

u(t) = 1
g2(x̄2)

(
−f2(x̄2) − (k̄2(t) + k2)s2

− χ2

ϑ2
− 1

4
μ2s2 − s2λ2q212(s̄2(t))

−ε2λ2G2 − g1(x1)μ1s1
μ2

)

(83)

the design parameters are given as k1 = 12, k2 = 20,
β1 = β2 = 0.1, ε1 = 0.01, ε2 = 0.01 and ϑ2 = 0.5.

The tracking performance is illustrated in Figure 2, it
can be observed that the output trajectories are always
within the scope of the asymmetric constraint kc1(t) <
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Figure 2. Trajectories of y = x1(t), k̄c1(t), kc1(t) and yd(t).

Figure 3. Trajectories of x2(t) and kc2(t), k̄c2(t).

Figure 4. Trajectory of s1.

y(t) < k̄c1(t), in the meantime, good tracking perfor-
mance is achieved. The trajectory of state variables
shown in Figure 3, it is obvious that time-varying state
constraints are not violated. FromFigures 4 and 5, it can
be seen that tracking errors are within their constraints.
The boundedness trajectory of the actual controller
is illustrated in Figure 6. Therefore, according to the

Figure 5. Trajectory of s2.

Figure 6. Trajectory of u(t).

figures of the simulation results above, it can be learned
the constraints are not violated and all the signals in the
closed-loop system are bounded.

Remark 5: The common simulation example used in
this paper is referenced from the following papers
[30,31,33]. Compared with the papers [30,31,33,36]
using non-time-varying BLF, this paper takes the time-
varying boundary into account in the design process of
the control algorithm, and the simulation results also
show that the control algorithm can satisfy the track-
ing control of the state variables, and the state variables
do not cross the time-varying boundary throughout the
simulation process. The DSC technique used in this
paper largely simplifies the design steps of the control
algorithm as well as the computational effort, which
can be compared with the papers [30,31,32,33] that
also uses the backstepping control technique, but this
cannot be presented in the final simulation results.

5. Conclusion

In this paper, an ABLF-based backstepping DSC strat-
egy has been studied for a class of nonlinear systems
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with time delays and full state constraints. The influ-
ence of the time-delays terms was canceled by adopting
appropriate assumptions. By employing the appropriate
ABLFs, the full state constraints, which are asymmet-
ric and time-varying, were ensured not to be breached.
The result that the tracking errors and all the sig-
nals of the closed-loop system are asymptotic stable
is guaranteed by the proposed approach and choos-
ing appropriate parameters. In addition, comparedwith
approaches using iterative backstepping, repetitive dif-
ferentiation of stabilizing functions, which will lead
to tedious and complicated calculations, especially in
higher-order systems, can be averted by choosing the
DSC strategy. Finally, the effectiveness of the DSC in
conjunction with the ABLF in dealing with time delay
problems can be verified by the simulation results and
the desired performance can be achieved. Our future
research work is to apply this control algorithm to the
actual engineering system.
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