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ABSTRACT
Information technology (IT) providers should use cloud-based services due to their flexibility,
reliability, and scalability to handle the rising requirement for processing capacity. The mainte-
nance of dependable services between cloud providers and their customers in a cloud environ-
ment, on the other hand, depends on Quality of Service (QoS) assurance. Virtual machine (VM)
consolidation is nondeterministic polynomial time (NP) hard issue, and numerous heuristic tech-
niques have been suggested to solve it. In this work, the suggested VM consolidation technique
takes into account both current and future uniform distribution elephant herding optimization
(UDEHO) basedVMconsolidation approaches for resource utilization via host overloaddetection
(utilization prediction based potential overload detection (UP-POD)) and host underload detec-
tion (UP-PUD). A UDEHO method efficiently predicts resource use in the future. Depending on
the power utilization and the number of migrations, a power-saving value is advised for identi-
fying under-loaded hosts. Furthermore, the CloudSim toolkit is used to construct and test these
techniques using the same experimental parameters. Lastly, the findings demonstrate that the
suggestedmethodologies considerablydecrease thenumberof VMmigrationsbyabout 0.073%,
the energy usage of about 11%, and SLA violations by 6.15% while retaining QoS guarantees
when compared to conventional techniques.

ARTICLE HISTORY
Received 20 November 2022
Accepted 23 March 2023

KEYWORDS
Cloud computing; cloud data
centres; nondeterministic
polynomial time (NP);
utilization prediction model;
Quality of Service (QoS);
dynamic virtual machine
(VM) consolidation; and
uniform distribution
elephant herding
optimization (UDEHO)

1. Introduction

Due to the major advantages of the cloud for users
and providers in the areas of economics, the environ-
ment, and technology, adoption and migration of the
cloud are on the rise worldwide. Cloud computing has
quickly evolved into one of the contemporary econ-
omy’s backbones since its inception. Government agen-
cies, academic institutions, and commercial enterprises
are all cloud users who have adopted it and reaped its
benefits to a significant extent. Cloud computing also
allows for the rapid establishment of new companies,
the worldwide expansion of enterprises, speeding up
scientific investigation, and creating of new applications
and models. For customers that desire pay-as-you-go
on-demand access to services, cloud providers can pro-
vide a variety of cloud services [1,2]. Numerous com-
panies that offer public cloud services, like Amazon,
Yahoo, and Microsoft, construct enormous cloud data
centres worldwide the globe to provide cloud comput-
ing services to their clients [3].

Cloud data centres should preferably assign
resources to users in a manner that matches the req-
uisite Quality of Service (QoS) as defined by cloud
customers via service level agreement (SLA). An SLA
in cloud computing is described as a two-sided con-
tract between a cloud provider and its customers that

specifies the content of services offered, the degree of
performance, fees, and penalties for failure to supply
the services. Any breach of the QoS results in an SLA
violation, and as a result, service providers must pay a
penalty [4]. As a result, using less energy is the main
objective of this investigation in cloud data centres
while maintaining QoS standards. Cloud infrastruc-
tures have grown increasingly difficult and complex
as a result of the fast rise of cloud services and their
accompanying technologies. As a result, amongst the
highly significant difficulties in current cloud systems is
resourcemanagement, which has a direct impact on the
successful deployment of cloud services. Hence, guar-
anteeing that the fewest amount of physical machines
(PMs) reduce energy expenses in cloud data centres
effectively by being operational.

Consolidation ofVMs is one amongst themost effec-
tive techniques in cloud computing’s energy-efficient
resource management; this strategy improves resource
usage while decreasing energy usage. Consolidation is
the live movement of VMs across hosts with minimal
performance disruption. Consolidation aims to reduce
the number of hosts hosting virtual machines (VMs)
while setting idle hosts to power-saving modes [5].

Static and dynamic VM consolidation is the two
main kinds. When a job comes, the dimensions and
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location of VMs on PMs are predetermined, and the
positioning does not alter over time. Therefore, since
PMs resources for various types of VMs are established,
this type of VM consolidation is typically acceptable for
short-running tasks lasting a few hours [6]. The major-
ity of energy savings are based on basic heuristics on
past VMs demand trends. Despite the possibility of an
increase in the application provider’s costs in times of
both high and low demand, the resources available may
be inadequate [7]. By moving VMs across PMs or live
migrating them, dynamic VM consolidation can result
in the utilization of fewer PMs without significantly
disrupting services. It considers performance since it
is dependent on QoS, which is set by SLA among the
tenant and the service provider. It improves data cen-
tre power effectiveness by shutting off underutilized
servers to conserve energy [8]. Dynamic provisioning-
based energy usage may be a highly effective way for
improving resource use and lowering energy usage.

By moving VMs across PMs or live migrating them
without significantly disrupting services, dynamic VM
consolidation can result in the utilization of fewer PMs.
It considers performance since it is dependent on QoS
that is established by an SLA among the tenant and the
service provider. This will improve data centre power
effectiveness by shutting off underutilized servers to
conserve energy. Energy utilization based on dynamic
provisioning may be the most efficient method for
improving resource use and lowering energy usage. A
great way to reduce resource and energy consumption
is through dynamic VM consolidation [9]. Many VMs
are hosted on the same physical server using hardware
virtualization technology, and each VM can run single
or several applications. Furthermore, individual tasks
may be divided among fewer servers, thanks to hard-
ware virtualization, increasing resource efficiency. VMs
may be condensed and packed on fewer PMs employ-
ing live VMmigrationmethods, lowering energy usage.
VM consolidation is often divided into four parts [10]:
selecting VMs, locating under-loaded hosts, finding
overloaded hosts, and placing VMs. The difficulty of
VM consolidation is mostly addressed in the first and
second stages of the work. More specifically, anytime a
host is found to be overloaded, a few of the VMs on that
server must be carefully picked for migration to other
acceptable hosts. Switching a host’s power state from
idle to low-power and vice-versawastes extra energy.As
a result, switching hosts’ states is crucial to save power,
but limiting their frequency is more critical.

The technique is employed in this research to
forecast short-term future resource use formed on
past data from sample hosts. This article suggests a
VM consolidation method that considers present and
future uniform distribution elephant herding optimiza-
tion (UDEHO) based VM consolidation method for
resource usage via host UP-PUD. As a result, cloud
providers can improve energy effectiveness and the

SLA performance assurance. The suggested technique
decreases energy usage while limiting the number of
migrations through various simulations based on real-
world workloads. As a result, it improves cloud data
centre performance with an increased SLA perfor-
mance guarantee.

2. Literature review

Takouna et al. [11] presented a robust consolida-
tion strategy to attain energy-performance equilib-
rium. The suggested method is made up of three
techniques: overutilized host identification, VM loca-
tion, and choice. Additionally, wasteful VM migration
is minimized by using an adaptive historical window
selection technique. The CloudSim simulator was used
to create the concept, and simulations of a genuine
Planet Lab workload trace were conducted for several
days to assess it.Moreover, it can reduce network energy
usage as a consequence of VM relocation.

Farahnakian et al. [12] provided a framework for
predicting computer processing unit (CPU) consump-
tion relying on the linear regression (LR) approach.
Depending on the history of usage in every host,
the suggested technique approximates the short-term
future CPU consumption. During the live migration
procedure, it is employed to foresee overloaded and
underloaded hosts. The host then enters sleep mode
to decrease power utilization. The suggested approach
can dramatically reduce energy utilization and SLA
violation rates, based on test results from over a thou-
sand Planet Lab VMswith actual workload traces. CPU
consumption forecast may simply lead to unnecessary
migrations, increasing the overhead like VM migra-
tion energy costs, performance deterioration due to
migration, and additional traffic.

Mastroianni et al. [13] eco Cloud, a self-organizing
and flexible solution for VM consolidation on two
resources: CPU and Random Access Memory, was cre-
ated. The method is very simple to implement since
decisions about VM allocation and migration are made
using probabilistic algorithms using just local data. A
fluid-like mathematical model and tests on a real data
centre show that the method quickly combines work-
loads and balances VMs that are CPU- and RAM-
bound, enabling efficient use of both resources. For
cloud data centres with fluctuating workloads, resource
usages are ineffective measurement methodologies.

Hieu et al. [14] presented VMCUP-M to increase
cloud data centre energy efficiency. Multiple usages in
this respect apply to both resource kinds and the time
range used to forecast future consumption. The sug-
gested technique is run during the VM consolidation
procedure to base on particular server history, forecast
the long-term usage of various resource kinds. Findings
indicate that a union with numerous use predictions
lowers migrations number and server power usage
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whilemeeting SLA. Even though the criteria under con-
sideration are not static, these techniques make VM
migration choices based only on current resource use.

Ismaeel et al. [15] conducted a thorough review
with a focus on energy conservation, the most modern
proactive dynamic provisioning architecture in a data
centre. Cloud data centres (CDCs) with diverse settings
are the focus of proactive dynamic VM consolidations.
A general structure is described, along with numer-
ous steps that result in a comprehensive consolidation
process. It is critical to ensure that the level of QoS is
preserved in accordance with the SLAwhile attempting
to fully use data centre resources.

Sayadnavard et al. [16] proposed a methodology
for predicting future resource use using discrete-time
Markov chain (DTMC). Through the DTMC frame-
work in conjunction with the PM reliability model
results in more accurate PM categorization depend-
ing on their state. Then, using the multi-objective
VM placement methodology, which is based on the
dominance-based multi-objective artificial bee colony
technique, the ideal VMs to PMs mapping is obtained.
This mapping can efficiently balance resource waste,
energy consumption, and system reliability to meet
SLA and QoS requirements. A performance evaluation
study using the Clouds tool shows the recommended
strategy’s effectiveness.

Liu et al. [17] suggested by maintaining VMs that
are prone to migration thrashing on the same physi-
cal servers rather than relocating them, the dynamic
consolidation with minimization of migration thrash-
ing (DCMMT) framework prioritizes VMs with high
capacity while drastically reducing the number of
migrations necessary to provide SLA. The suggested
technique spreads present VM consolidation tech-
niques by requiring that high-capacity VMs not be
transferred.

The recommended technique reduces the number
of servers used and, to the maximum degree possible,
gets rid of migration thrashing. The findings of these
studies were encouraging, as data centres may readily

benefit from the DCMMT process because it requires
little adjustments to be added to an existing resource
management system.

Hsieh et al. [18] suggested a VM consolidation
method which considers present UP-POD and UP-
PUD. A Gray–Markov (GM)-based model correctly
predicts resource consumption in the future. The new
methodologies were applied to real-world workload
traces in clouds and contrasted against current bench-
mark techniques in the test. Jheng et al. [19] offered
the first string in the study field, a workload predic-
tion approach employing the GM forecasting model to
distribute VMs.

To begin, the time-dependent workload is employed
at the same time every day to anticipate the VM work-
load inclination to increase or decrease. Then, contrast
the expected value to the prior time period onworkload
consumption, and then decide which VM should be
migrated to PM for a balanced workload and reduced
power usage. The findings of the simulation indicate
that the suggested strategy not only employs fewer
data points to effectively forecast workload but also
distributes VM resources in a power-efficient manner.

Table 1 shows the comparison of the existing
approaches with merits and demerits. Hence by
analysing the existing approaches of cloud comput-
ing solutions that may not solely minimize opera-
tional prices but conjointly cut back the environ-
mental impact. By setting up many virtual machine
(VM) instances on a real server using virtualiza-
tion, cloud providers may address the energy inef-
ficiency, maximizing resource usage and ROI (ROI).
Switching off idle nodes will result in a reduction
in energy usage since they no longer use any power
when idle. Additionally, live migration enables the
VMs to be dynamically condensed on the fewest pos-
sible physical nodes in accordance with their current
resource needs. However, modern service applications
frequently encounter very unpredictable workloads
that result in dynamic resource use patterns, making
efficient resource management in clouds challenging.

Table 1. Comparison of the existing approaches.

Authors Approaches Results/Merits Demerits

Takouna et al. [11] Three algorithms over-utilized host
identification, VM selection, and VM
placement make up the suggested
methodology.

According to the findings, our method
decreased the average number of
SLA breaches by 31.8%, 74.8%, and
38%, respectively, and the number
of power changes and migrations.

Implementing cloud infrastructure in
real time is challenging.

Farahnakian et al. [12] Algorithm for Predicting CPU Usage
Based on Linear Regression

Energy use and SLA violation rates are
dramatically reduced.

Between dependent and independent
variables is assumed to be linear

Mastroianniet al. [13] An adaptive and self-organizing
method for VM consolidation

Good scalability is achieved As a data centre’s size increases, its
efficiency diminishes.

Farahnakian et al. ([26] ) Using an ant colony approach,
energy-conscious dynamic VM
consolidation is achieved in cloud
data centres.

It increases how effectively PMs use
resources and lowers how much
energy they use.

When dealing with a huge amount of
data, the ACO has several drawbacks
in terms of convergence speed and
solution correctness.

Hieu et al. [14] To increase energy efficiency, use
the virtual machine consolidation
algorithm with multiple usage
prediction (VMCUP-M).

While maintaining the SLA, decreases
the number of server migrations
and the power consumption of the
servers.

It is difficult to assess the suggested
algorithm′s performance in actual
data centres.
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Therefore, if VMs are aggressively consolidated, appli-
cations will perform worse as demand rises, resulting
in higher resource utilization. The energy-performance
trade-off is another issue that cloud service companies
must handle. This research focuses on resource man-
agement techniques that may be used by a provider
in a virtualization CDC and that are both energy and
performance efficient.

3. Proposedmethodology

Here, an effective usage prediction technique based on
the UDEHO model is used to anticipate short-term
future CPU consumption based on data collected from
the considered hosts. An efficient VM consolidation
strategy is shown that maximizes VM placement for
the greatest projected benefit reducing the number of
state hosts in an active state. The advantage is derived
from two major factors: The quantity and frequency
of SLA breaches during VM migrations. Furthermore,
integrating data on current and near-future CPU con-
sumption provides a reliable system for classifying hosts
that are overloaded and underloaded. This problem
may be handled by detecting host overload UP-POD
and host underload UP-PUD. When overloaded hosts
are found and when underloaded hosts are found,
whole VMs with a potential increase in CPU consump-
tion are relocated from these hosts to maintain QoS,
and entire VMs from these hosts are relocated to save
energy usage. As a result, cloud providers may enhance
the energy effectiveness and performance guarantee of

SLA. The recommended utilization-prediction-aware
VM consolidation method for cloud data centres is
divided into several pieces in this section. Sections 3.1
and 3.2 go into the specifics of the cloud data cen-
tre’s system architecture and give a UDEHO prediction
model. Furthermore, andmost importantly, Section 3.3
presents the resource usage prediction methods (UP-
POD and UP-PUD) and power saving value depending
on expected CPU use. Figure 1 depicts the suggested
system design.

3.1. System architecture

In a cloud data centre, the suggested technique com-
prises m heterogeneous hosts (that is, H = 〈h1, h2...,
hm〉). Various resource types, like CPU, size of memory,
network bandwidth, and storage capacity, distinguish
every host. Furthermore, CPU performance is typically
evaluated in MIPS. A cloud data centre’s services are
used by numerous users at the same time. Users request
the provisioning of n VMs (that is, V = 〈v1, v2..., vn〉).
The best fit decreasing (BFD) approach is used to first
allocate VMs to hosts, that is, among most extensively
used heuristic techniques for bin-packing problems.

The BFD method eliminates all unutilized space
in destination hosts. The system chooses a host
whose existing resources are nearby to the quantity
of resources sought by VM. This describes why the
BFD method executes the first allocation of VMs
so well. Nevertheless, because of dynamic workloads
with frequent fluctuation, operating hosts’ and virtual

Figure 1. Suggested system architecture.
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machines’ requested usages evolve over time: thus, the
initial allocation method is improved with a VM con-
solidation method which is implemented on a regular
basis to enhance cloud data centres’ performance. To
reduce energy costs and the number of active state
hosts, the recommended solution is implemented every
5min in a cloud data centre. System architecture is
made up of two sorts of agents: (1) a global manager
installed on amaster node and (2) completely dispersed
local managers (LMs) scattered across entire hosts. At
every cycle, two agents do the subsequent actions:

(1) Every LM monitors present resource use of entire
VMs on a host on a regular basis. Every LM cor-
rectly forecasts a host’s future CPU use based on
past data in a log file by using the UDEHO predic-
tion algorithm.

(2) For the purpose of understanding the overall posi-
tion of hosts, the GM solicits status information
from LMs.

(3) To implement the UP-POD and UP-PUD tech-
niques of the recommended methodology, GM
sends migration commands to the VM monitor.
Based on the consolidation methods, the instruc-
tions specify that VMs have to be transferred to
which destination hosts.

(4) The VMMsmigrate VMs after getting instructions
from GM.

3.2. UDEHO algorithm

The EHO method [20,21] is a heuristic intelligence
approach that relies on elephant migratory tendencies
that are utilized for CPU prediction in the VM. The ele-
phant herd possesses the following two features based
on observation and research of the elephants. The first
distinguishing feature is the presence of several clans
in an elephant herd, for the future prediction of CPU
in the VM, each group has its own patriarch, and its
members adhere to his or her instructions. Another dis-
tinguishing feature of the herd is the absence of one
adult male elephant. Whenever the elephants grow up,
the young elephants will live apart from the elephants
in order to anticipate the CPU in the VM in the future.
UDEHO’s goal is divided into two parts: clan update
and separating. It is defined by Equation (1)

xn,i,j = xi,j + r ∗ α ∗ (xb,i − xi,j) (1)

wherein xi,j and xn,i,j are according to Elephant J’s pre-
vious and current status in clan i; α ∈ [0, 1] is a scal-
ing factor; and xb,i is location with the greatest fitness
data in clan i. r is a normal-distributed arbitrary value
in the range [0, 1]. The updating procedure of most
individuals is represented by Equation (1), however,
the matriarch in every clan has not been changed for
future prediction of CPU in the VM. As a result, the

matriarch’s updating process is depicted in Equations
(2)–(3)

xn,i,j = β ∗ xc,i (2)

xc,i = 1
ni

×
ni∑
j=1

xi,j (3)

The uniform distribution function is used to obtain
wherein β is the scale factor between [0, 1]. Equation
(4) gives a general formula for uniform distribution’s
probability density function (PDF)

f (x) = 1
B − A

(4)

HereA is the VM’s forecast range for CPUs and (B−A)
the standard uniform distribution is the scaling param-
eter is the situation wherein A = 0 and B = 1. Centre
location in clan iis xc,i, which may be computed using
Equation (3). For future CPU prediction in the VM,
the elephant number in clan i is ni. A connection exists
between the knowledge about everymember of the clan
and the updating of the matriarch position (VM posi-
tion) in Equation (2). From the second characteristic
of the elephant herd, the separation operator may be
taken out for use in theVM’s followingCPUprediction.
Equation (5) describes the separation process

xw,i = xmin + r ∗ (xmax − xmin) (5)

wherein xw,i is the location in clan i with the lowest fit-
ness value; xmax and xmin are upper and lower bounds
of elephant’s location, correspondingly; r is an arbi-
trary integer with a normal distribution between [0, 1].
Individuals in EHO refresh themselves with data from
other members of the clan in order to find an improved
forecast value of CPU in the VM. As illustrated in
Algorithm 1, the separation of people is substituted
by the arbitrary production of new individuals, which
excludes testing of new individuals for future CPU pre-
diction in the VM. The notion of updating people from
the original EHO was kept in the UDEHOmethod.

Algorithm 1. UDEHO Algorithm

1. Initialization. Set population and parameters
2. Fitness evaluation by the CPU requirement in the VM
3. While t < Tmax do
4. for i = 1 : ncdo
5. for j = 1tonj (number of elephants in one clan) do
6. modify xi,j and produce xn,i,j as per Equation (1)
7. if xi,j = xb,i then
8. modify xi,j & produce xn,i,j as per equation (2-3)
9. end if
10. end for
11. for i = 1 : nc do
12. substitute worst elephant prediction of CPU in VM in clan i via

Equation (5)
13. end for
14. Assess individuals (prediction of CPU in the VM) as per their

new position
15. end while
16. Result
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Firstly, establish a key point. SepPoint is responsi-
ble for determining the probability Pra of executing the
separation strategy. Equations (6)–(7) explain how to
calculate SepPointand Pra, correspondingly.

SepPoint = nc(i), i =
[
(snc + 1)

2

]
(6)

Pra = SepPoint ∗ 1
nc(k)

(7)

wherein nc denotes the number of clans, snc the size of
nc, the index k for CPU prediction in the VM is deter-
mined by the current number of generations, and nc(k)
howmany clans there are today. Equation demonstrates
(7), the more clans there are, the less likely it is that
the separation process will be performed. And, after
the number of clans influences SepPoint, the separation
procedure is carried out. Next, I added an individual
assessment link and set a low probability Pr. When
a new person (VM) outperforms the present one in
terms of evaluation, the departure is carried out. When
a new person is not as excellent as the existing one, but
rand < Pr, the separation process is carried out. The
separation procedure is not carried out if this condition
is not met. R and is a arbitrary value between [0, 1] with
a normal distribution.

3.3. Resource utilization prediction algorithm

Resource usage is via host overload detection UP-POD
and host underload detection UP-PUD.

3.3.1. Utilization prediction-based on overload
detection
Every host, whether overcrowded or not, should be
detected in every dynamic VM consolidation opera-
tion. Algorithm 2 presents the suggested usage pre-
diction based potential overload detection (UP-POD),
which is prompted by the latest work. Algorithm 2 takes
as input a collection of active hosts Hactive. It is iden-
tified which hosts in Hactive are overloaded. Following
that, the overloaded hosts are uploaded toHover as out-
put to carry out the migration choice. The following is
a step-by-step explanation of Algorithm 2. Line 1 gives
theGMUth(t), that is described asLoh(t) (hosth load at
time t) divided by Cah(t). In line 2, a time-series-based
prediction model may be used to compute the short-
term CPU utilisation (i.e. Uth(t + 1)) by compiling
earlier information about a host’s CPU usage that has
been recorded in a log file. The UDEHOmodel is used
to forecast Uth(t + 1), which is shown in Section 3.1.
Moreover, the past data on CPU use recorded at 5-min
intervals in every host is used as time series data input.
After preprocessing, the choice is determined on line
3 using the dynamic upper threshold approach. Here, a
host is deemed overloaded if its usage exceeds the upper
threshold. The dynamic upper threshold is determined

using the median absolute deviation (MAD) method,
and the parameter s is set at 2.5 in accordance with pre-
vious work. A measure of statistical dispersion is the
MAD. It performs better with distributions devoid of
a mean or variance, such as the Cauchy distribution,
making it a more reliable estimator of scale than the
sample variance or standard deviation. Compared to
the standard deviation, the MAD is a robust statistic
that can withstand outliers in a data collection. Outliers
can have a significant impact on the standard deviation
since it is based on squared deviations from the mean,
which generally gives greater weight to big deviations.
A limited number of outliers’ distances are irrelevant to
the MAD’s calculations in terms of their size. In lines
5–9, the time-series model requires enough previous
data to anticipate the Uth(t + 1) correctly. If there is
insufficient historical CPU use data on every host, a
choice is made using Uth(t). Tests using historical data
with durations of 12, 16, 20, 24, and 28 were run dur-
ing the simulation. Depending on the outcomes, the
suggested methods outperform historical data with 24
lengths. Therefore, when historical data length dah(t)
(host h historical data at time t) is smaller than 24, the
decision is made by Uth(t). If the hosts’ Uth(t) values
are more than thu, they will be regarded overloaded
and added to Hover (upper threshold value of CPU
utilization). In contrast, if dah(t) is more than 24, the
host is deemed overloaded and is added to Hover when
current and expected short-term CPU utilization val-
ues> thu (Uth(t) > thu andUth(t + 1) > thu)> . The
scenario indicates that the host is a prospective candi-
date for carrying out when it is overloaded now and in
the near future, the migration option. Algorithm 2 as a
result looks at not only current situation and also sce-
nario in the near future. Algorithm 2 can avoid redun-
dant migrations, reducing overall number of migra-
tions and executing an acceptable migration choice;
furthermore, the SLA violation rate may be predicted
in advance.

3.3.2. Utilization prediction-based underload
detection
Following the identification of overloaded hosts, the
underload detection method is initiated. To lower
the number of active state host and hence decrease
energy utilization, finding underused hosts and switch-
ing them over to low-power methods are crucial.
Algorithm 3 presents the suggested UP-PUD.
Algorithm 3 takes as input a collection of active hosts
Hactive. Which hosts in Hactive are candidates of under-
loaded hosts are identified for each host, and these hosts
are then added to Hunder (set of candidates of under-
loaded hosts) as output. The following is a step-by-step
explanation of Algorithm 3. Algorithm 3’s process and
idea are identical to those of Algorithm 2. The differ-
ence in lines 5–9, the host is added toHunder ifUth(t) ≤
thl (lower threshold value of CPU usage). Furthermore,
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Algorithm 2: UP-POD Algorithm

INPUT: Hactive
OUTPUT: Hover
Uth(t) = Loh(t)/Cah(t); /∗ Required MIPS(t)/Total MIPS(t) ∗/
forecast Uth(t + 1); /∗ by UDEHO prediction ∗/
initialize thu ; /∗ using MAD = 1−s∗Mad ∗/
For every h ∈ Hactive do

if Dah(t) < 24 then
if Uth(t) > thu then

return true;
End
Else

return false;
End
End
if Uth(t) > thu and Uth(t + 1) > thu then

return true;
End

Else
return false

End
End

Algorithm 3: UP-PUD algorithm

INPUT: Hactive
OUTPUT: Hover
Uth(t) = Loh(t)/Cah(t); /∗ Required MIPS(t)/Total MIPS(t) ∗ /
forecast Uth(t + 1); /∗ by UDEHO prediction ∗ /
initialize thl = 30% ;
For every h ∈ Hactive do

if Dah(t) < 24 then
if Uth(t) < thl then

return true;
End
Else

return false;
End

end
if Uth(t) ≤ thl and Uth(t + 1) ≤ thl then

return true;
End

Else
return false

End
End

in 10–13 lines, dah(t) when the host is regarded to
be underloaded and added to the list if it is at least
24Hunder if the short-term CPU use that is now and
anticipated ≤ thl (Uth(t) > th1andUth(t + 1) > th1).

Once Algorithm 3 selects and adds candidates of
under-loaded hosts to Hunder, the suggested Shvalue is
used to choose the ultimate under-loaded host from
Hunder. According to Fu et al. [22], the host’s power
usage is nearly proportionate to its CPUuse. As a result,
utilizing Equation (8), the power usage of every host
may be estimated

P(μ) = 0.7 ∗ Pmax + 0.3 ∗ Pmax ∗ μ (8)

where in the notation Pmax signifies the host’s maxi-
mum power consumption value when fully loaded. The
notation μrepresents the host’s CPU use, which varies.
As a result, under the VM consolidation strategy, the
host’s CPU usage is primarily evaluated for employ-
ment. The latest research [23] computes a power-
efficient value for active state hosts. The value is used

to choose an under-utilized host. By enhancing the
power-efficient value, a power-saving value (Sh) is given
in Equation (9) based on the prediction model. This
metric is used to identify under-loaded hosts more
accurately. Equation (9) describes it

Sh = Ph + P̂h
Mh

(9)

In Equation (9), Ph denotes the hth host’s power
usage in the cloud data centre, P̂h indicates the hth
host’s power usage calculated usingUth(t + 1), andMh
denotes VMs number operating on the hth host. Lastly,
as the under-loaded host, the host with the highest Sh
value can be selected. Clearly, because Sh only consid-
ers the host’s current power usage, power utilization at
time t+ 1, and VMmigrations’ number, it will discover
an under-loaded host more effectively.

4. Experimental setup

Workload categories, the simulation environment, and
performance measures are used in this part to com-
pare the efficiency of the suggestedmethodology versus
current methods.

4.1. Workload data

Simulation employs workloads from the same 10-day
period for efficient comparison with current work. The
VMs’ CPU usage correlates to their workloads and sta-
tistical analyses. Planet Lab data provided as part of
the common project is used to conduct the research,
which are based on real-world workloads that are pub-
licly accessible: monitoring apparatus from Planet Lab.
Workload information was gathered on 10 different
days in March and April 2011 and comprises CPU
use of a VM recorded at 5-min intervals. Every VM
has 288 data on CPU consumption, which are fed into
dynamic VM consolidation. Furthermore, information
is compiled from over 1000 VMs hosted on servers
at over 500 different locations throughout the world.
Workload really represents an IaaS cloud environment,
such as Amazon EC2, where individual users create and
operate virtual machines.

4.2. Details of simulation environment

The study applies the Clouds 3.0.3 toolbox to objec-
tively analyse the performance of the proposed short-
term-based VM consolidation technique time series
prediction [24,25]. A data centre with 800 disparate
PMs was used in the simulation.

TheHPProLiantML110G4 servers have 1860MIPS
per core, whereas the HP ProLiant ML110 G5 servers
have 2660MIPS per core, making up half of the PMs in
each workload. Every PM is designed to have two cores,
four gigabytes ofmemory, and one gigabit per second of
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Table 2. VM Information.

Type of VM CPU (in MIPS) RAM (in GB)

High CPU medium instance 2500 0.85
Extra-large instance 2000 3.75
Small instance 1000 1.7
Micro instance 500 0.613

network connectivity. Table 2 shows the CPU (inMIPS)
rating and RAM quantity of 4 VM instances utilized in
CloudSim that correspond to Amazon EC2.

4.3. Performancemetrics

The suggested solution has four goals: (1) decrease
power consumption, (2) lower SLA violation rates, (3)
decrease the number of active state hosts, and (4)
decrease migrations number. Consequently, the mea-
sures listed below are used to evaluate the effectiveness
of the suggested technique and current methodologies.

4.3.1. SLA violations
In order to maintain the QoS promise in an IaaS
between cloud service providers and consumers,
Equation (10) is used to determine cloud service qual-
ity, resulting in a good SLA. Two metrics, SLAVO (SLA
violations due to over-utilization) and SLA violations
due to migration (SLAVM) are used to quantify SLA
violations.

SLAV = SLAVO ∗ SLAVM (10)

where SLAVO denotes the average ratio during the
time that the host uses 100% of its CPU, as shown in
Equation (11)

SLAVO = 1
M

M∑
i=1

Tsi
Tai

(11)

WhereinM is the host number and Tsi is the total time
host i that suffered 100% CPU use, resulting in an SLA
violation. The symbol Tai indicates period that host i
is active. As illustrated in Equation (12), SLAVM indi-
cates the total performance decrease caused by VM
migrations

SLAVM = 1
N

N∑
j=1

Cdj

Crj
(12)

wherein N indicates the number of VMs, Cdj indicates
performance degradation due to migrating VM, and
Crj represents total CPU usage demanded by VM j
throughout its lifespan.

4.3.2. Energy consumption
According to several research, CPU resources con-
sume increased power than memory, network inter-
faces, or disc storage. The energy use is calculated
using real-world data from the SPEC power benchmark

results. Significantly, whenever underutilized servers
adopt low-power mode, their energy usage drops dra-
matically. As a result, limiting the number of active
hosts is essential.

4.3.3. Number of VMmigrations
As a result of higher CPU use on the source host,
increased network bandwidth, application unavailabil-
ity duringVMmigrations, and totalmigration time, live
VM migration entails significant expenses and perfor-
mance deterioration. Limiting VMmigrations is essen-
tial since doing otherwise would almost surely lead to
SLA violations.

4.3.4. Energy and SLA violations (ESV)
The suggestedVMconsolidation approach’smajor pur-
pose is to decrease both energy costs and SLA breaches
at the same time. Since there is still a trade-off between
energy consumption and performance, Equation (13)
illustrates a combined indicator called energy and SLA
violations that may be used to properly analyse the
trade-off

ESV = E × SLAV (13)

4.4. Comparison benchmarks

The suggested technique is contrasted with the tech-
niques given for detecting overloaded hosts as follows
for effective verification. The CloudSim simulator dis-
plays these methods.

(1) Static threshold (THR): the hot threshold is set to
90%. Hosts are deemed overloaded if their current
CPU usage exceeds 90%.

(2) The MAD and interquartile range (IQR) are two
adaptive criteria. The algorithm works in the same
way as the THR. The latest research presents a
thorough estimate of MAD and IQR.

(3) Dynamic threshold termed as the local regres-
sion (LR) technique: hosts that are overloaded are
determined by calculating local regression changes
over time.

Figure 2 depicts the performance of the SLAVOmea-
sure in contrast to THR, IQR, MAD, GM, and the sug-
gested UDEHO method under 10 workloads. Conven-
tional techniques do not outperform the suggested sys-
tem in terms of performance. The suggested approach
has a lower SLAVO value of 6.15%, while other systems
like THR, IQR,MAD, andGMhave higher SLAVO val-
ues for the 10th workload of 7.5%, 7.2%, 7.23%, and
6.75%, respectively (see Table 3).

Figure 3 depicts a performance comparison using
the SLAVM measure. When compared to THR, IQR,
MAD, and GM, the performance improves more since
the technique caused a significant decrease in VM
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Table 3. Performance Metrics Comparison of 10 Workloads under Methods.

SLAVO (%) SLAVM (%)

Workloads THR IQR MAD GM UDEHO THR IQR MAD GM UDEHO

W1 7.12 6.84 7.05 6.20 5.80 0.092 0.094 0.087 0.0654 0.0620
W2 7.20 6.90 7.12 6.40 5.85 0.098 0.105 0.088 0.0630 0.0600
W3 7.40 7.00 7.16 6.90 6.30 0.109 0.108 0.075 0.0721 0.0700
W4 7.00 6.90 7.09 6.30 5.92 0.080 0.086 0.072 0.0680 0.0620
W5 7.00 6.75 7.16 6.50 6.12 0.094 0.090 0.082 0.0780 0.0720
W6 6.10 6.80 7.06 6.10 5.75 0.087 0.085 0.082 0.0740 0.0700
W7 6.90 6.70 6.85 6.00 5.63 0.098 0.086 0.072 0.0650 0.0610
W8 7.20 6.90 6.95 6.02 5.72 0.096 0.084 0.070 0.0620 0.0540
W9 6.60 6.10 6.36 6.50 5.91 0.097 0.096 0.083 0.0780 0.0690
W10 7.50 7.20 7.23 6.75 6.15 0.101 0.099 0.098 0.0850 0.0730

SLAV (%) Energy consumption (%)

Workloads THR IQR MAD GM UDEHO THR IQR MAD GM UDEHO

W1 0.6550 0.64296 0.61335 0.40548 0.35960 188 182 175 135 115
W2 0.7056 0.7245 0.62656 0.40320 0.35100 140 138 134 110 105
W3 0.8066 0.7560 0.53700 0.49749 0.44100 158 153 149 129 116
W4 0.5600 0.5934 0.51048 0.42840 0.36704 194 190 184 152 135
W5 0.6580 0.6075 0.58712 0.50700 0.44064 165 162 155 124 109
W6 0.5307 0.5780 0.57892 0.45140 0.40250 240 234 230 190 162
W7 0.6762 0.5762 0.49320 0.39000 0.34343 198 194 190 143 116
W8 0.6912 0.5796 0.48650 0.37324 0.30888 194 190 184 156 132
W9 0.6402 0.5856 0.52788 0.50700 0.40779 199 195 192 128 109
W10 0.7575 0.7128 0.70854 0.57375 0.44895 140 135 131 118 103

ESV METRIC (%)

Workloads THR IQR MAD GM UDEHO

W1 12.314752 11.701872 10.733625 5.473980 4.135400
W2 9.878400 9.998100 8.395904 4.435200 3.685500
W3 12.74428 11.56680 8.001300 6.417621 5.115600
W4 10.86400 11.27460 9.392832 6.511680 4.955040
W5 10.85700 9.841500 9.100360 6.286800 4.802976
W6 12.73680 13.52520 13.31516 8.576600 6.520500
W7 13.38876 11.17828 9.370800 5.577000 3.983788
W8 13.40928 11.01240 8.951600 5.822544 4.077216
W9 12.73998 11.41920 10.135296 6.489600 4.444911
W10 10.60500 9.62280 9.2818740 6.770250 4.624185

Figure 2. SLAVOmeasure comparison for 10 workloads.

migration number. The suggested approach has a lower
SLAVM value of 0.073%, while other systems like THR,
IQR,MAD, and GM have higher SLAVM values for the
10th workload of 0.101%, 0.099%, 0.098%, and 0.085%
(see Table 3).

Figure 4 depicts a performance comparison using
the SLAV measure (SLAV, x0.00001). Because the
suggested technique performs on the SLAV measure,
it decreases the SLA violation rate by an average of

Figure 3. SLAVMmeasure comparison for 10 workloads.

40.73%, 37.01%, 36.63%, and 21.75% when compared
to THR, IQR, MAD, and GM, correspondingly (SEE
Table 3). Nevertheless, multiplying the SLAVO and
SLAVMmetrics yields the SLAVmeasure, andwhile the
suggested performance in the SLAVMmeasure is rather
excellent, the performance in the SLAVO measure has
a slight increase that is insignificant in the suggested



538 G. KANAGARAJ AND G. SUBASHINI

Figure 4. SLAV measure comparison for 10 workloads.

Figure 5. Energy consumption comparison for 10 workloads.

methodology. This is easily noticeable when assessing
performance using the SLAV measure.

Figure 5 depicts a performance comparison based on
the energy usage parameter. When contrasted to THR,
IQR, MAD, and GM, the suggested method minimizes
energy usage by an average of 26.4285%, 23.7037%,
21.3740%, and 12.7118% (see Table 3). Those hosts can
be chosen more accurately by under loaded hosts that
can be found using UP-PUD and power-saving values.
Complete VMs on these hostsmay be relocated to other
suitable hosts after the discovery of the underutilized
hosts, and the host may then be put to sleep. As a result,
by converting idle hosts to low-power states through-
out the consolidation procedure, energy may be
conserved.

Figure 6 depicts a performance comparison based
on the ESV measure (ESV, x0.001). When contrasted
to THR, IQR, MAD, and GM, the suggested technique
decreases energy usage by an average of 56.3961%,
51.9455%, 50.1804%, and 31.6984%, correspondingly
(see Table 3). As energy usage reduction and viola-
tion rate of SLAV, the suggested technique results in

Figure 6. ESV measure comparison for 10 workloads.

such significant improvements. In reality, these signifi-
cant findings suggest that the technique incorporates an
effective trade-off between power cost and QoS assur-
ance.

5. Conclusion and futureWORK

The dynamic VM consolidation issue is handled in this
research by anticipating CPU consumption using the
UDEHO model. To optimize the effectiveness of cloud
data centres, starting allocation strategy has to be sup-
plemented by a VM consolidation process which may
be applied on a regular basis. The primary contribution
of the work is the inclusion of a distribution function
for random number generation in the EHO method, it
enhances how well the VM consolidation method per-
forms. The UP-POD and UP-PUD protocols for host
underload and overload detection. When overloaded
hosts are found, tomaintainQoS, full VMs thatmay see
an increase in CPU use are removed from these hosts;
when underloaded hosts are recognized, entire VMs
from these hosts are relocated to save energy usage.
The proposed technique decreases energy usage while
limiting depending on real-world workloads and vary-
ing number ofmigrations at different simulations setup.
For instance, when contrasted to THR, IQR,MAD, and
GM, the suggested method minimizes energy usage
by an average of 26.4285%, 23.7037%, 21.3740%, and
12.7118%. As a result, it enhances cloud data centre
performance by improving SLA performance indica-
tors like SLAVO, SLAVM, SLAV, energy usage, and ESV
guarantee. The present system has been enhanced to
include a Web application that may consolidate and
deconsolidate VMs in order to balance CPU load use
across PMs in accordance to the number of PMs in use.
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