
Amyloid cascade hypothesis: is it true for sporadic

Alzheimer’s disease

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder in which reli-
able early clinical diagnosis is impossible. Early-onset familial AD form,
caused by mutations of genes involved in Ab pathology, and prevailing
late-onset sporadic AD (sAD) having age, diabetes type 2 and apolipopro-
tein E4 as risk factors, demonstrate convergent clinical (memory loss) and
neuropathological (amyloid b /Ab/ and tau protein) changes. Leading
amyloid cascade hypothesis assumes that Ab pathology is the primary cause
of both AD forms, whereas other neuropathological changes are just down-
stream consequences. Transgenic mice AD models that are most widely used
for AD pathophysiology research are designed to express human Ab-produc-
tion proteins containing different mutations from their birth. Because of
that transgenic mice could represent familial AD forms only, while for the
sAD, the streptozotocin-intracerebroventricularly (STZ-icv) treated rats
were proposed. STZ is a substance selectively toxic for peripheral insulin
producing/secreting cells and insulin receptor (IR). STZ-icv application
induces AD-like changes; cognitive deficits, reduction in brain glucose/
energy metabolism and cholinergic transmission, as well as gliosis and
oxidative stress. Additionally, STZ-icv treatment induces time-dependent
development of brain IR signaling cascade dysfunction leading to increased
activity of glycogen synthase kinase-3 which results in Ab (angiopathy) and
tau (hyperphosphorylation) pathology. These findings suggest that develop-
ment of insulin resistant brain state precedes and triggers Ab pathology in
sAD, challenging thus the amyloid cascade hypothesis when sAD is con-
cerned. Further research is necessary to clarify this possibility of sAD ethio-
pathogenesis since it may reveal new AD therapeutic strategies towards to
disease-modifying drugs.

INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative
disease clinically characterized by progressive memory loss. Clini-

cal diagnosis of AD, particularly in its early stage, is actually an exclu-
sion one and there is no direct objective and reliable diagnostic test for
this disease which is why currently approved therapy is focused to the
management of already present symptoms of AD. Most crucial for de-
veloping disease-modifying therapeutic strategies (not to mention pre-
ventive ones) is to understand the precise mechanisms by which the dif-
ferent pathological lesions originate, keeping in mind the divergent
causes of AD. Namely, early-onset familial AD is inherited in autosomal
dominant manner, caused by missense mutations in three chromo-
somes (http://www.molgen.ua.ac.be/ADMutations/) and genes related
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to amyloid pathology (amyloid precursor protein gene
/APP/, presenilin 1 /PS1/ and presenilin 2 /PS2/ gene),
while late-onset sporadic AD (sAD) has age, diabetes
type 2 and several other susceptibility genes (e.g. Apoli-
poprotein E4 /ApoE4/) proposed as risk factors ). In spite
of that, these two causally different forms converge in
their main clinical (dementia) and neuropathological
features, extracellular senile plaques composed of insol-
uble amyloid beta (Ab) fibrilles, and intraneuronal neu-
rofibrillary tangles composed of hyperphosphorylated
form of microtubule associated protein tau. Currently
leading amyloid cascade hypothesis assumes that patho-
logical assemblies of Ab are the cause of both AD forms,
whereas other neuropathological changes are downstream
consequences of pathological Ab accumulation (2). Since
the brain analysis, the only reliable method for proving
this hypothesis is possible post mortem only, and fre-
quently in the severe late stage of AD cases, brain neuro-
chemistry that characterizes the initiation of this disease
in humans is mostly unknown. To understand funda-
mentally the complexity of the brain from the biochemi-
cal and physiological aspects, one needs not only in vitro
models but also animal AD models which should be vali-
dated for known and general accepted characteristics of
AD, behavioural defects, primarily in cognitive processes
and memory loss, and brain lesions, primarily Ab aggre-
gation and/or plaques formation. By comparing some of
the pathological aspects of currently the most exploited
animal AD model, transgenic mice, and the less exploited
streptozotocin-intracerebrovetricularly treated (STZ-icv)
rat model, this review is aimed to provide the clue why
the amyloid cascade hypothesis should be taken with
caution when speaking about the ethiopathogenesis of
sporadic AD form.

AMYLOID CASCADE HYPOTHESIS

The amyloid cascade hypothesis proposes that gradual
aberrant accumulation of Ab initiates a complex, multi-
step cascade of neuropathological events that leads to
development of both AD forms, familial and sporadic
one (2).

Ab is a 4 kDa protein that exhibits microheterogeneiety
in amino acid sequence and in a variety of biophysical
states. In a physiological condition, most of Ab peptide is
in the form of Ab1-40 residues while less than 5% of the
newly generated Ab ends at residue 42, forming long
form of Ab1-42 peptide which is more prone to aggre-
gation than Ab1-40 form and is initiating formation of
pathological oligomers, fibrils and plaques (3). Oligo-
mers and fibrils appear to be the most potent neurotoxins
while the end stage senile plaques are relatively inert.
Although it has been traditionally thought that extracel-
lular Ab aggregates in the form of senile plaques are the
main pathogenic species, recent literature data recog-
nizes that intraneuronal accumulation of the oligomeric
non-fibrillar Ab form precedes and contributes to the
extracellular pathology (4). Ab is generated from mature
APP being metabolized by two competing pathways,
a-secretase pathway resulting in non-toxic products, and

b-secretase leading to products which may be substrate
for g-secretase generating Ab1-40/42 (3). In physiological
condition, the production and clearance of Ab are ba-
lanced but in pathological case of increased production
of total Ab or increased Ab1-42/Ab1-40 ratio or in case of
decreased Ab degradation/clearance, Ab1-42 levels are
elevated. The production of more aggregatable Ab1-42
form can be elevated by mutations in three different
genes, APP, PS1 and PS2 that cause familial AD while
decreased Ab clearance can appear due to decreased
expression of e.g. enzyme responsible for its removal, the
insulin degrading enzyme (IDE), as found in sporadic
AD (3). Regardless the primary cause and clinical form
of AD, the amyloid cascade hypothesis proposes that
both conditions lead to Ab1-42 accumulation, oligomeri-
zation and plaque formation, which further initiates a
whole range of pathological cascade effects; microgliosis
and astrocytosis, inflammatory response, oxidative stress,
neuronal/neuritic dysfunction, cell death, neurotrans-
mitter deficits, and finally, memory loss. In parallel, oxi-
dative stress and neurotransmitter deficits induce kinase/
phosphatase activity imbalance which at the level of tau
protein (microtubule-associated protein that stimulates
the generation and stabilization of microtubules within
cells, and control axonal transport of vesicles /5/) results
in accumulation of hyperphosphorylated tau protein and
formation of neurofibrillary tangles which contribute to
memory loss.

TRANSGENIC MICE MODELS

Transgenic mice are produced by the introduction of a
human gene sequence into the mouse genome, resulting
in expression of a human protein and they have played
the revolutionary role in AD research (as reviewed else-
where 4, 6–8). The first transgenic mice model that deve-
loped AD features was the one which reproduced amy-
loid deposition by expressing human APP containing
mutations associated with the early-onset familial AD
form (9). Evidence for the central role of APP in AD
pathogenesis comes from the findings that it is a direct
precursor of amyloid peptides and that the mutations in
APP cause overproduction of amyloid peptides and de-
velopment of the early-onset familial AD form (10). This
first APP transgenic mice (named »PDAPP«) demon-
strated development of plaques around 6 months of age,
accompanied by findings of dystrophic neurites, synaptic
loss, gliosis and cytoskeletal abnormalities like accumu-
lation of phosphorylated neurofilaments and tau but not
in a form of neurofibrillary tangles (7). Additional lines
of mice expressing different mutant human APP trans-
gene have been reported afterwards demonstrating time-
-dependent development of similar neuropathological
characteristics among which the most widely used one
has become the Tg2576 mouse (11). It has become clear
that such gene manipulations could generate different
amyloid pathology, like transgenic mice (APP23) with
predominant severe Ab accumulation within the capil-
lary wall, i.e. cerebral congophillic amyloid angiopathy
(CAA) (12). Among factors influencing the particular
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amyloid pathology manifestation were background strain,
promoter, human APP mutation, expression levels and
importantly, ratio of Ab1-40:Ab1-42 production (7). The
selective overproduction of a particular Ab form has been
further improved by introducing »multiple« transgenic
lines, mouse strains that harbour different combinations
of human genes. Double transgenic mice co-expressing
human APP and Presenilin (PS1) demonstrate the in-
creased production of Ab1-42 accompanied by earlier
development of amyloid plaques (13), while double trans-
genic mice co-expressing human APP and ApoE4 de-
monstrate higher Ab1-40:Ab1-42 ratio and substantial
CAA development (14). Therefore, transgenic mice mo-
dels led to finding that changing of Ab1-40:Ab1-42 ratio
in favour of Ab1-42, shifts amyloid pathology from the
vasculature to the parenchyma, i.e. from CAA to plaque
formation. Furthermore, triple transgenic mice (3XTg-
AD) co-expressing PS1, APP and tau mutations demon-
strated plaque development from 6 months of age and
tau pathology at the age of 12 months, indicating that
APP and Ab precede and directly influence neurofibril-
lary pathology development (15). Furthermore, one of
the main challenges in studies with transgenic mice AD
models has been determining the onset of cognitive de-
ficits and its molecular correlates by paying attention to
small soluble Ab and detergent-insoluble Ab species,
with aging found to be one of the important (negatively)
interfering factors (16). Experiments with triple 3XTgAD
mice have shown that at age of 2 months no intra- and
extra-cellular Ab accumulation, as well as no cognitive
deficits in Morris Water Maze Swimming test (MWM)
could be found, while at age of 6 months, intraneuronal
Ab pathology, hippocampal synaptic deficits and cogni-
tive deficits in MWM test were found, which progressed
to development of plaques and tau pathology at age of 12
months (4). Contrary to extensive research on behaviour,
amyloid and tau pathology, gliosis and cell loss, bioche-
mistry of various neurotransmitters and other signaling
molecules have been quite neglected in transgenic mice
AD models.

STZ-ICV RAT MODEL

STZ-icv model is produced by a single or multiple (up
to 3 times within one month) injections of a cytotoxic drug
streptozotocin, bilaterally into the lateral cerebral ven-
tricle of an adult rat, first reported in 1990 (17, 18). STZ
(2-deoxy-2-(3-(methyl-3-nitrosoureido)-D-glucopyranose))
is a betacytotoxic substance which has been parenterally
applied to cause experimental diabetes mellitus type I
and II in rats and mice for many decades (19). Contrary
to that, central application of low STZ doses (up to 100
times lower than doses used parenterally) demonstrated
development neither systemic metabolic changes nor
diabetes mellitus but developed numerous behavioural,
neurochemical and structural features that resembled
those found in human AD (20).

STZ-icv administration has been associated with cer-
tain brain morphological changes in the form of astro-
gliosis found as early as 1 week following the treatment

regardless the age of animals (21–24). At that time point,
severely affected STZ-icv treated rats had also extensive
cell loss (22, 23). A progressive trend towards oxidative
stress has also been found starting as early as 1 week fol-
lowing the STZ-icv administration (25–27). Interesting-
ly, one week after STZ-icv administration, no change in
the number or morphology of cholinergic neurons could
be detected in any of the brain regions including the
hippocampus (24), although at that time point a de-
creased cholinergic transmission (decreased choline acetyl-
transferase and increased acetycholinesterase activity) has
started to be persistently found later on in the hippocam-
pus of STZ-icv treated rats (21, 26, 28–31). Decreased
glucose/energy metabolism particularly in cerebral cortical
regions and hippocampus has been reported starting from
3 weeks following the STZ-icv administration (27, 33–
36). All these neurochemical and structural changes have
been accompanied by long-term and progressive deficits
in learning and memory, observed as early as 2 weeks after
STZ-icv administration and reported to still persist 12
weeks post treatment (24, 36–38).

Presented data are quite convincing in demonstrating
the resemblance of STZ-icv rat model to the human AD
condition. However, contrary to the transgenic mice AD
models in which particular pre-specified, known genes
are targeted to design the specific gene-and feno-type, in
STZ-icv rat the target is speculated to be similar to the
peripheral one. In the periphery, in addition to generat-
ing free radicals, chemical structure of STZ allows it to
be a substrate for the glucose transporter GLUT2, pre-
dominantly localized in the pancreatic b cell membrane,
which leads to alkylation of b-cell DNA consequently
activating poly ADP-ribosylation, resulting in depletion
of cellular NAD+ and ATP and damaging the main b

cell function – insulin production and secretion (19).
Several evidence supports possible similarity in the peri-
pheral and central mechanism of action; (i) GLUT2 has
been found regionally specifically distributed in the brain
(39–41), (ii) insulin is synthesized in the particular brain
regions, (iii) regionally specifically decreased levels of
ATP have been reported following STZ-icv treatment
(33, 36) as well as development of (iv) oxidative stress
(25). Furthermore, peripheral treatment with low to mo-
derate doses of STZ can cause insulin resistance via da-
maging insulin receptor (IR) and its tyrosine kinase (TK)
function and, as presented above, low STZ-icv doses
induce alterations of brain IR and consequently insulin
resistant brain state. Therefore, it could be assumed that,
contrary to transgenic mice AD models, STZ-icv rat
model is not related to manipulation of genes involved in
APP/Ab homeostasis, but is targeting the functioning of
brain IR signaling cascade.

BRAIN INSULIN SYSTEM IN HUMAN AD,
TRANSGENIC MICE AND STZ-ICV RAT
MODELS

Brain insulin and the IR are functionally linked to im-
proved cognition, particularly general and spatial memory,
by up-regulation of insulin mRNA in the hippocampus
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and increased IR accumulation in hippocampal synaptic
membranes (45, 46). The exact mechanism(s) by which
insulin could affect learning and memory is unclear.
However, several pathways have been suggested, like
those related to the regulation of brain glucose metabo-
lism (47, 48) and involvement in neuromodulation by
promoting N-methyl-D-aspartate receptor conductance
(49), reversing the effects of cholinergic blockade (50),
and reducing the neuronal norepinephrine reuptake (51).

Although the majority of insulin in the brain origina-
tes from the periphery and is transported into the brain
by a regionally specifically distributed saturable carriers
(52), a smaller proportion of insulin is produced within
the particular brain regions with the highest density in
the pyramidal cells of the hippocampus and in medial
prefrontal cortex, the entorhinal and perirhinal cortices,
the thalamus and the granule layer of the olfactory bulb,
as well as in the hypothalamus (38, 53, 54). IRs are also
regionally specifically distributed predominantly in the
olfactory bulb, hypothalamus, cerebral cortex, cerebel-
lum and hippocampus (55–58). The neuronal IR differs
from the peripheral IR (59–60) in that both a and b sub-
units have a slightly lower molecular weight, and the
neuronal IR is not down-regulated by insulin, which
otherwise activates a similar signalling cascade (Figure
1). Binding of insulin induces autophosphorylation of
the IRb-subunit thus triggering its tyrosine kinase activity
(61) and activating two parallel functional signal trans-
duction cascades; one acting through the phosphatidyli-
nositol-3 kinase (PI3K) pathway, and the other acting

through the mitogen activated protein kinase (MAPK)
pathway (62). The activation of the PI3K pathway, in
turn activates protein kinase B (Akt/PKB) involved in
glucose metabolism but also in inactivation of glycogen
synthase kinase-3 (GSK-3) (63). When activated, alpha
isoform of GSK-3 regulates the production of Aß pepti-
des (64) and insulin signaling via activation of PI3K also
regulates APP release into the extracellular space (65).
Activated GSK-3b isoform is involved in tau-protein
phosphorylation (66). Therefore, dysfunction in IR-PI3K
signalling cascade could lead to AD hallmarks, Ab over-
production and tau phosphorylation.

A growing body of evidence implicates impairments
in brain insulin signaling in early sporadic AD pathology
(as reviewed elsewhere 1, 67, 68). Data from the human
post mortem studies have demonstrated decreased insulin
and IR mRNA as well as IR protein expression (Figure 1)
in cerebro-cortical and hippocampal tissue (69), follow-
ed by increased density of IR in radioligand binding
study (70), decreased IR-TK activity and decreased insu-
lin receptor substrate (IRS) mRNA and p-IRS expression
(69), unchanged or decreased Akt/PKB expression (69,
71) and altered p-Akt/PKB to Akt/PKB ratio (72), as well
as changes of alpha and beta GSK-3 isoforms (69, 73, 74)
and decreased IDE expression (75). Interestingly, the
correlation between Akt/PKB activity/protein level and
Braak staging in human AD post mortem analysis has
been observed (74) suggesting time-dependent and IR-
PI3K signaling dependent pattern of changes. However,
these post mortem human studies do not provide a clue
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Figure 1. Brain insulin receptor signaling cascade in sporadic Alzheimer’s disease. General changes of brain insulin and IR signaling cascade reported
in human sAD and its animal model, STZ-icv rats are presented as reviewed by Hoyer S, 2004 (1) and Salkovic-Petrisic & Hoyer, 2007 (20) in the
reference list. sAD, sporadic Alzheimer’s disease; Ab, amyloid-b peptide; IR, insulin receptor; TK, tyrosine kinase; IRS, insulin receptor substrate;
PI3K, phosphatydilinositol–3 kinase; Akt/PKB, Akt/protein kinase B; GSK-3, glycogen synthase kinase-3; STZ, streptozotocin; icv, intracerer-
broventricular.



to a cause-consequence relationship in the amyloid patho-
logy – IR signaling interplay.

Contrary to the human post mortem studies, only few
literature data could be found on insulin and IR research
in transgenic mice AD models, among which only Tg2576
mice expressing human APP were used. Interestingly,
these transgenic mice had unaltered basal serum glucose
levels but lower basal serum insulin concentrations rela-
tive to wild-type mice at the age of 8 month, but had be-
come hyperinsulinemic by 13 months of age (76). Another
experiment in this model demonstrated that diet-indu-
ced insulin resistance promoted amyloidogenic Ab1-40
and Ab1-42 peptide generation in the brain that corre-
sponded with increased g-secretase activities and decrea-
sed IDE activities (77). Further exploration revealed a
functional decrease in IR signal transduction in the brain
suggested by decreased IRb autophosphorylation and re-
duced PI3K-related Akt/PKB phosphorylation (77). Con-
sequent GSK-3 activation positively correlated with
b-secretase activity in the brain of insulin-resistant rela-
tive to normoglycemic Tg2576 mice. Also, acutely in-
duced reduction in energy production in Tg2576 mice
has been demonstrated to cause a long-lasting increase in
b-secretase levels and activity, pointing to brain energy
deficits as an early potentially amyloidogenic signal (78).
Therefore, although modest, data obtained from APP
transgenic mice models has suggested a possible link be-
tween APP/Ab pathology and impaired IR signaling cas-
cade in which, in line with the amyloid cascade hypothe-
sis, the APP/Ab pathology was initiating IR signaling
dysfunction.

A very recent research has revealed the alterations of
brain insulin system in STZ-icv rat AD model (Figure 1)
(20). Changes were regionally specific and pronounced
in hippocampus, suggesting time-dependent development
of dysfunction in IR signaling cascade in the form of
decreased insulin and IR gene/protein expression, in-
creased IR-TK activity (phosphorylation/dephosphory-
lation imbalance?) (38), progressing further downstream
the PI3K pathway and leading to decreased Akt/PKB
expression and decreased ratio of p-GSK-3/GSK-3 (37),
finally resulting in amyloid pathology in the form of con-
gophyllic amyloid angiopathy in meningeal capillaries
and tau pathology in the form of tau hyperphosphoryla-
tion (both found not earlier than 3 months after drug
treatment) (37, 38). These data of altered brain IR signal-
ing induced by STZ-icv administration in adult rats have
been supported by generally similar results of IR-PI3K
signaling cascade dysfunction found in the rat pups treat-
ed intra-cortically with low STZ dose (79, 80). There-
fore, in addition to cognitive deficits in learning and me-
mory and other neurochemical changes which resemble
those found in human sAD, central administration of
STZ toxin triggers amyloid and tau pathology without
involving APP gene related manipulation (Table 1).

CHALLENGING THE AMYLOID CASCADE
HYPOTHESIS

Only post mortem histological and neurochemical
examinations of the human brain offers a definitive and
reliable diagnosis of AD, and yet these analyses are just
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TABLE 1

Similarities between the pathological features in human sporadic Alzheimer’s disease and its representative animal

model, streptozotocin-intracerebroventricularly treated rats.

BRAIN PATHOLOGY STZ-ICV RAT MODEL

(up to 3 months post treatment)

HUMAN SPORADIC AD

BEHAVIOURAL

cognitive deficits decreased memory and learning dementia

MORPHOLOGICAL

gliosis

synaptic loss

+
+

+
+

METABOLIC

glucose/energy decreased metabolism decreased metabolism

NEUROCHEMICAL

oxidative stress

Ach transmission

insulin receptor signaling

+
decreased

brain insulin resistant state

+
decreased

brain insulin resistant state

NEUROPATHOLOGICAL AD HALLMARKS

tau protein

amyloid beta

hyperphosphorylated
congophyllic amyloid angiopathy

neurofibrillary tangles
congophyllic amyloid

angiopathy plaques

General changes of brain insulin and IR signaling cascade reported in human sAD and its animal model, STZ-icv rats are presented as reviewed by Hoyer
S, 2004 (1) and Salkovic-Petrisic & Hoyer, 2007 (20) in the reference list. AD, Alzheimer’s disease; STZ, streptozotocin; icv, intracererbroventricular; Ach,
cholinergic.



static intersections of a long on-going process in AD
pathology development. To make a movie of them, one
would have difficulties where to start and how to number
these intersections in order. Transgenic mice AD models
have been designed just for this purpose and by playing
with combinations of amyloid-relevant gene mutations,
a lot of important details of AD neuropathology and
behavioural/cognitive impairments have been revealed.
However, disadvantage of transgenic mice AD models is
that the amyloid-relevant gene mutation is exclusively
the inevitable pathological start point due to they take
amyloid cascade hypothesis for granted. Unfortunately,
in the real life, mutations of genes, particularly those
encoding for APP, PS1 and PS2, are causing only mino-
rity of AD cases (less than 5%) being determined as
early-onset familial AD while in the prevailing majority
of AD cases, determined as late-onset sporadic AD, gene
mutations are not a direct cause of a disease (1). More-
over, the real cause in sAD is not known and, instead,
more general and common factors like aging, peripheral
insulin resistance, even environmental toxins (81) have
been implicated as possible risk factors. Therefore, trans-
genic mice AD models should not be taken as a represen-
tative model upon which a general conclusion covering

ethiopathogenesis of both AD forms would be drawn
since, bearing in mind a direct cause of disease, transgenic
mice models could be assumed to represent the early-
onset familial AD form only. Contrary to that, STZ-icv
rat model is based on the regionally selective toxicity of
exogenous substance which targets brain IR signaling
cascade inducing insulin resistant brain state and resem-
blance to human sAD in different pathological aspects
(Table1), and is therefore representing the other, late-on-
set sporadic AD form. Such a split in animal AD models
regarding their representativeness of AD forms provides
the ground for challenging the current amyloid cascade
hypothesis (82). Namely, based on STZ-icv rat model
data, it is more likely to assume that development of
insulin resistant brain state precedes and, after some
time, leads to amyloid pathology in the sporadic AD
(Figure 2). The factors causing this insulin resistant brain
state (selective toxicity of STZ in rats) in humans could
possibly be looked for in the peripheral insulin resistance,
and the research on epidemiological link between diabetes
type 2 and sAD is currently a »hot topic« in neuroscience
(83). Additionally, they could be looked for in elevated
corticosterone levels (1) found frequently in AD and
diabetic patients, or maybe among environmental toxins
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Figure 2. Challenging of amyloid cascade hypothesis in sporadic Alzheimer’s disease. Amyloid cascade hypothesis fits into the explanation of the
early-onset familial Alzheimer’s disease (AD) pathophysiology, for which transgenic mice are the representative experimental model. In this form
pathological mutations of amyloid beta (Ab)-production related gene cause imbalance in Ab production and clearance by increasing the production
of total Ab or the Ab1-42/Ab1-40 ratio, leading to increased Ab accumulation, Ab1-42 oligomerization and senile plaque formation. These processes
further initiates a whole range of pathological cascade effects; microgliosis and astrocytosis, inflammatory response, oxidative stress, neuronal/neuri-
tic dysfunction, cell death, neurotransmitter deficits, and finally, memory loss. Additionally, these processes induce kinase/phosphatase activity im-
balance which can cause tau protein hyperphosphorylation and formation of neurofibrillary tangles which contribute to memory loss. However, in
sporadic AD (sAD), for which streptozotocin-intracerebroventricularly (STZ-icv) treated rats are the proposed model, amyloid cascade hypothesis
does not seem likely to truly represent its ethiopathogenesis. In sAD, alterations of brain insulin system lead to insulin receptor (IR) signaling dysfunc-
tion down the phosphatydilinositol-3 kinase (PI3K) pathway and induce insulin resistant brain state. This further leads to activation of glycogen
synthase kinase-3 (GSK-3) which isoforms alpha and beta consequently induce Ab accumulation and tau hyperphosphorylation. Dysfunction in IR
signaling could also induce kinase/phosphatese imbalance which could additionally contribute to GSK-3 activation and tau hyperphosphorylation.



(81) exposure to which in humans is continuously in-
creasing, just as the prevalence of sAD. In the view of
presented data, challenging the amyloid cascade hypo-
thesis opens a new dimension of sAD ethiopathogenesis
paving also the way to the new AD therapeutic strategies
oriented to disease-modifying drugs.
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