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ABSTRACT
Biodiesel is touted to be an alternative to the fossil fuels as it is conducive to the environment.
This investigationproposes a control framework toproducebiodiesel in a reactivedistillation col-
umn via a transesterification process. To extract quality product, the temperature profilemust be
maintained along the column as per the requirements. However, constant interactions among
the products inside the column disturb the temperature profile and consequently the prod-
uct quality. Therefore, this investigation treats the process as a single input and single output
system, where in the process interactions are modelled as disturbances. A model predictive
controller (MPC) is designed for the proposed system to ensure product quality. TheMPCparam-
eters must be selected appropriately to ensure optimal performance. In this regard, to tune the
MPC parameters optimally, we use two evolutionary algorithms namely, the real coded genetic
algorithm (RGA) and the bio-geography based optimization algorithm (BBO). The results indi-
cate the proposed control strategy provides offset free set point tracking when compared to the
multivariable control strategy employed using the MPC algorithm. Among the two evolutionary
controllers used for tuning the MPC parameters, the RGA MPC controller provides a satisfactory
performance.
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1. Introduction

In the last decade, the biofuels have emerged as a viable
alternative to the crude-based fuels. Biofuels are renew-
able energy resources made up of fatty acid methyl
esters (FAME), obtained from combining triacylglyc-
erol present in vegetable oils or fats with methanol and
catalysts through transesterification process [1]. The
advantages of biofuel over the crude based fuels are: (i)
it can be extracted from the domestic sources such as
vegetable oils, (ii) Reduces the net carbon dioxide emis-
sions up to 78% the crude based fuels, (iii) it is environ-
mental friendly due to its biodegradable and non-toxic
nature, and (iv) it improves the exhaust emissions in
the engine [2]. Albeit these advantages, the transesteri-
fication process is energy intensive and expensive. The
traditional method to extract biofuel involves a reac-
tor unit to perform transesterification and an extrac-
tion unit to recover excess methanol from the biofuel.
Consequently, it increases the production cost, and
consumes energy to extract biofuel. Recent develop-
ments in biofuel extraction use a reactive distillation
column as it combines the reaction and extraction pro-
cess into a single unit, thereby significantly reducing the

capital cost and energy consumption. However, per-
forming transesterification and extracting excessmethanol
simultaneously is challenging due various factors such
as fluctuations in the column temperature, variations
in the feed, reflux ratio, reboiler duty, etc. Therefore,
an advanced control strategy is to ensure desired prod-
uct quality, minimize energy consumption and increase
product throughput.

Several studies on extracting biofuel using reactive
distillation columns are focused on the selection of
reactants, design calculations to reduce the capital costs
and the energy requirements. The authors in [3] inves-
tigated the biofuel extraction from the lauric acid and
2-ethyl hexanol. Biofuel production from the lactic
acid and n-butanol is investigated in [4]. Investigations
into biodiesel extraction in reactive distillation column
that enable transesterification process are reported in
[5,6]. Mueanmas et al. [7] investigated the feasibility
of bio-fuel production in a reactive distillation col-
umn using Aspen Plus simulation software. They pro-
vided an optimal design and procedure for effective
biodiesel extraction in terms of molar ratio of alcohol
to oil, reboiler temperature, alcohol to feed location and
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reflux ratio for a reactive distillation column. A sim-
ple laboratory prototype is used to analyse and deter-
mine the optimal operating conditions for a reactive
distillation column to extract biodiesel in [8]. Gaurav
et al. [9] performed simulation analysis on the trans-
esterification of triacylglycerol to FAME using a het-
erogeneous catalyst. Further, they concluded that the
biofuel extraction using the reactive distillation column
reduces the utility cost and the capital. Similarly, Boon-
anuwat et al. [10] designed and simulated four different
biodiesel production process using a transesterification
reaction between soybean oil and methanol in Aspen
Plus software. They concluded that the usage of het-
erogeneous catalysts reduces the energy consumption.
Although the above-mentioned investigations provide
a benchmark on optimal design of distillation column,
and the choice of reactants, the controller selection
that ensures the desired product quality and production
is given least priority. An excellent closed-loop con-
trol action is imperative to achieve the desired biofuel
quality as the bio-diesel extraction in a reactive distil-
lation column involves the transesterification process
and excess methanol recovery in a single unit simul-
taneously. The poor control of column temperature in
the face of external disturbances in reboiler duty, reflux
ratio, etc., affects the product quality and increases the
energy consumption significantly.

Notable works on designing control systems for pro-
ducing biofuel in reactive distillation columns are avail-
able in the literature. The Proportional Integral and
Derivative (PID) controller is used for biofuel extrac-
tion [11]. The authors use a traditional Ziegler Nicholas
(ZN) tuning to tune the controller. The controller
manipulates the reboiler duty to maintain the mole
fraction of biodiesel. Similarly, a cascaded PID con-
trol configuration is proposed in [12,13]. The authors
compare the conventional PID and the cascaded con-
trol to the performance of biodiesel extraction in a
reactive distillation column. They conclude that the
cascaded control configuration provides better prod-
uct quality. Though the PID controllers are simple to
design and inexpensive, they cannot effectively miti-
gate disturbance, and are ineffective in dealing with
process nonlinearities. To overcome the limitations of
PID, a fractional order PID controller is proposed
in [14] to maintain the composition of biodiesel.
Though these controllers can handle nonlinearities,
they lack optimal performance. In recent years, sev-
eral optimization-based controllers havebeen used to
control the biofuel production in a distillation column,
and in ref. [15], a steady state optimization method
is implemented to ensure product quality in biofuel
production. Here three optimization methods are used
namely, Fletcher Reevs, Quasi-Newton and SQP algo-
rithms. The investigation showed that the Fletcher
Reevs provided economical results. A singular value-
based decomposition is used to determine the sensitive

trays for temperature control as executed in [16]. In
recent years, advanced control strategies such as model
predictive controllers (MPC) have been employed in
biofuel production see, [17–19]. Unlike the traditional
controllers, the MPC algorithm computes an optimal
control input by solving an underlying optimization
routine or cost function at every time instant. The
advantages of MPC over the traditional controllers are
(i) the ability to handle disturbances, (ii) the ability
to incorporate process constraints and (iii) minimize
the operation cost/control cost. Despite these advan-
tages, designing MPC algorithms for a complex pro-
cess such as reactive distillation column is challengeing
due to the interactions among the process variables. A
poor MPC control strategy leads to a tight control on
one process variable and offsets in another. Therefore,
designing MPC control strategy and optimal selection
of the tuning process is essential to ensure product qual-
ity and minimize the operating costs. Considering the
aforementioned factors, this investigation proposes a
new MPC control configuration to extract biofuel in a
reactive distillation column. The contributions of this
investigation are:

(1) Departing from the traditional multivariable con-
trol structure, this investigation proposes a single
loop control that controls the bottom tray tem-
perature, and models the process interactions as
disturbances.

(2) The weights associated with the MPC algorithm
are optimally tuned using two evolutionary algo-
rithms, Real coded Genetic Algorithm (RGA) and
Biogeography based Algorithm (BBO).

This paper is organized into four sections. Section 2
outlines the biofuel production in a reactive distilla-
tion column. Section 3 describes the MPC design for a
reactive distillation column and explains RGAandBBO
algorithms to tune the MPC weights. Section 4 illus-
trates the performance of the proposed control config-
uration for biofuel production in a distillation column,
and the concluding remarks are provided in section 5.

2. Process description

This section describes the biofuel extraction in a reac-
tive distillation column, and presents its mathematical
model to design theMPC algorithm. This investigation
uses a combination of Jatropa oil andmethanol mixture
at 9:1 ratio with nanoCaO as catalyst to produce biofuel
using transesterification reaction. The experiment was
performed in a pilot packet reactive distillation column.
It contains a horizontal reboiler with variable heating
capacity ranging from 0 to 5 kW at the bottom, and a
reflux section that provides 0-100% reflux at the apex
of the column. As the transesterification progresses in
the column, the excess methanol collects at the apex
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as distillate, while the FAME is collected as the prod-
uct at the bottom. To achieve good control over the
biofuel quality, the bottom tray temperature must be
maintained close to 80°C. However, it is affected by
fluctuations in the reboiler duty and the reflux rate. To
design an effective controller, a mathematical model is
developed using the time series data containing top tray
temperature, bottom tray temperature, reflux ratio and
the reboiler duty. The proposed mathematical model is
a state space representation containing two models: (i)
process model and (ii) disturbance model.

2.1. Processmodel

It describes the dynamics related to the column temper-
ature at the bottom and the reboiler duty. Here, the tray
temperature is the controlled variable and the reboiler
duty is the manipulating variable. The n4sid method is
used to get the state space model that shows the rela-
tionship between the tray temperature and the reboiler
duty as,

[
x1(k + 1)
x2(k + 1)

]
︸ ︷︷ ︸

x(k+1)

=
[
1.4921 −0.4990

1 0

]
︸ ︷︷ ︸

A

[
x1(k)
x2(k)

]
︸ ︷︷ ︸

x(k)

+
[
1
0

]
︸︷︷︸
B

u(k)

y(k) = [−0.0020 0
]

︸ ︷︷ ︸
C

[
x1(k)
x2(k)

]
︸ ︷︷ ︸

x(k)

(1)

2.2. Disturbancemodel

It lumps all the process interactions that affects the
temperature profile at the bottom of the column. This
investigation considers the effect of the reflux ratio on
the bottom tray temperature as disturbance.

[
x1(k + 1)
x2(k + 1)

]
︸ ︷︷ ︸

xd(k+1)

=
[
1.6486 −0.6540

1 0

]
︸ ︷︷ ︸

Ad

[
x1(k)
x2(k)

]
︸ ︷︷ ︸

xd(k)

+
[
1
0

]
︸︷︷︸
Bd

rd(k)

d(k) = [−0.0166 0
]

︸ ︷︷ ︸
Cd

[
x1(k)
x2(k)

]
︸ ︷︷ ︸

xd(k)

(2)

The schematic of the MPC control configuration for
biodiesel in a reactive distillation column is shown in
Figure 1. In the following section, theMPCdesign using
the evolutionary algorithms is discussed.

3. TheMPC algorithm

The MPC is an advanced control technique that uses
the process model to compute the future control input
[20,21]. Because of MPC’s inherent ability to handle
disturbance, process variations, process constraints and
nonlinear behaviour makes it is an excellent choice
of control the reactive distillation column [22–27]. In
what follows, the MPC design for the biofuel produc-
tion in a reactive distillation column is provided.

The reactive distillation column is described as a
discrete LTI system:

x(k + 1) = Ax(k) + Bu(k) + d(k)

y(k) = Cx(k) + Du(k) (3)

where x ∈ R
n is the system state, u ∈ R

m is the reflux
rate (control input), y ∈ R

p is the top tray tempera-
ture (system output), d ∈ R

n is the system disturbance
and A,B,C,D are system matrices with commensurate
dimensions. The disturbancemodel d(k) represents the
effect of the reboiler duty on the top tray temperature,
and it is described as,

xd(k + 1) = Adxd(k) + Bdrd(k)

d(k) = Cdxd(k) + Ddrd(k) (4)

where xd ∈ R
n is the state associated with the distur-

bance, rd ∈ R
m is the reboiler duty, and Ad,Bd,Cd,Dd

are the matrices associated with the disturbance model.
The MPC uses the plant and disturbance model, and
computes the future control moves for Np time steps
called prediction horizon. The control input is com-
puted by solving a constrained quadratic optimization
problem at each sampling instant and it is given by,

J =
p∑

j=1

Np∑
i=1

{wy
i,j[rj(k + i|k) − yj(k + i|k)]}2

+
m∑
j=1

Np−1∑
i=1

{wu
i,j[uj(K + i|k)]}2

+
m∑
j=1

Np−1∑
i=1

w�u
i,j {[uj(k + i|k) − uj(k + i − 1|k)]}2

s.t.

ymin ≤ y(k) ≤ ymax

umin ≤ u(k) ≤ umax

�umin ≤ �u(k) ≤ �umax (5)

where k is the current sampling instant, {ymin, ymax}
are output constraints, {umin, umax} are the input con-
straints and {�umin,�umax} are the slew rate con-
straints. Further, wy

i,j, wu
i,j, w�u

i,j are the MPC tun-
ing parameters for the error term, control input and
the slew rate. The appropriate selection of weights/
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Figure 1. Schematic diagram of reactive distillation column.

penalization factors in the cost function is essential
to achieve optimal control performance in MPC. This
investigation uses two evolutionary algorithms namely,
(i) Real coded genetic algorithm and (ii) Bio-geography
algorithms for optimal weight selection. The proce-
dure to determine the MPC weights using the above
mentioned algorithms are discussed in what follows.

3.1. MPCweight tuning using real-coded genetic
algorithm

The RGA algorithm is inspired from the principles of
genetics and natural selection. The RGA is widely used
to optimize different problems because it provides near
global optimal solution. Figure 2 illustrates the RGA
algorithm to tune the MPC weights. The algorithm
starts with generating candid solutions known as pop-
ulation Npop in a three-dimensional search space Nd.
Each candid solution in Npop is made to solve a fitness
function f given by,

f = w1

∫ t

0
(r − y)2dt + w2

∫ t

0
|r − y|dt (6)

The fitness function is a combination of the integrated
squared error and integrated absolute error, where in
the weights associated with these error terms are given

by
2∑

i=1
wi = 1. The candid solutions are ranked based on

the highest fitness value and is given by,

pi = fi∑Npop
i=1 fi

(7)

where pi is the probability of the candid solution get-
ting selected. To further the optimal solution, the par-
ent population is made to cross over to produce new

offsprings, and it is given by,

Oi = αpi + (1 + α)pi+1 (8)

where O is the offspring and α is the cross over rate.
To change the search direction, and direct the solution
towards global optimum, a small number of popula-
tion is tweaked. This process is known as mutation.
This process shifts the search for optimum solution to
different parts of the search space.

3.2. MPCweight tuning using bio-geography
based algorithm

The BBO algorithm works based on the biological dis-
tribution of the species in a habitat. Unlike the RGA
algorithm, the BBO preserves the potential optimal
candidate solutions in the current iteration to the next
iteration, providing better global optimum solution.
Figure 3 illustrates the BBO algorithm used to tune the
MPC weights. The algorithm starts with mapping the
candid MPC weights (species) to a habitat H with an
immigration rate μ and emigration rate λ.

The candid solutions mapped to habitat is deter-
mined probabilistically as

Ps(t + �T) = Ps(t)(1 − λs�T − μs�t)

+ Ps−1λs−1�t + Ps+1μs+1�t (9)

where Ps is the probability of a species in a habitat.
The emigration and immigration rate for a species in
a habitat is determined as follows

μk = Ek
n

λk = I
(
1 − k

n

)
(10)

where E and I are the maximum immigration and
emigration rates, respectively. Then the species are
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Figure 2. RGA algorithm to tune MPC weights.

evaluated for Habitat Suitability Index/ fitness func-
tion in () to find the optimal candid solution. The
species are ranked based on theHSI, and the emigration
and immigration rate of the elite species are updated.
Furthermore, to achieve the global optimal solution,
some species are migrated to the other habitats with a
probability Pmod. Also, certain species in a habitat are
mutated to find the new global optimal solution, and it
is given by,

m(s) = mmax

(
1 − Ps
Pmax

)
(11)

where m(s) is the mutation rate for the species s, mmax
is the maximummutation rate. The algorithm executes
for the prescribed number of generations and yields
optimal MPC weights.

4. Results and discussions

This section discusses the benefits of MPC weight
tuning using the RGA and the BBO algorithms. The
results are illustrated using the simulations performed
in MATLAB/Simulink Software using a desktop com-
puter with an Intel i5 processor 230GHz clock speed
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Figure 3. BBO algorithm to tune MPC weights.

and 4GB RAM. The analysis focuses on MPC’s abil-
ity to maintain product quality amidst various distur-
bances that arises due to fluctuations in the reboiler
duty. Also, this investigation aims to illustrate the per-
formance improvements obtained over manual MPC
tuning, as against the proposed method.

As a first step, we tune the MPC algorithmmanually
with control input weights wu, slew rate weights wΔu

and output weights wy as 1, 2.5 and 20, respectively.
The aforementioned values are arrived after several trial
and error. Next, the MPC weights are tuned using the
RGA and BBO algorithm. To ensure uniformity in tun-
ing procedure, the parameters such as population size,
number of generations, mutation rate and crossover (in
case of RGA) and migration rate (in case of BBO) are
maintained identical across two algorithms. Table 1 lists
the RGA and BBO parameters used to tune the MPC
weights. The population size and number of genera-
tions are set to a default value of 20 units, while the

Table 1. Parameters for RGA and BBO algorithms to tune MPC
weights.

Parameters RGA BBO

Population size 20 20
No. of generation 20 20
Cross over rate 0.8 –
Mutation rate 0.08 0.08
Weights range on outputwy [0 0.0002] [0 0.0002]
Weights range on control inputwu [0 0.00005] [0 0.00005]
Weights range on slew ratew�u [0 0.5] [0 0.5]

mutation rate is set at 0.008. Also, the constraints on
the MPC weights are similar in RGA and BBO algo-
rithms. Table 2 illustrates the MPC weights obtained
using the RGA and the BBO algorithms. It is observed
that the BBO algorithm emphasizes the control input
weightswu more than the output weightswy. This leads
to offset free control with heavy penalization on control
inputs.
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Figure 4. Bottom tray temperature and the reboiler duty obtained using BBO-MPC and RGA-MPC and manual MPC algorithms.

Table 2. MPCweights obtainedusingRGAandBBOalgorithms.

Algorithm wu w�u wy

RGA 5.48×10−5 9.2079×10−7 0.2204
BBO 4.31×10−6 4.34×10−6 0.45

Table 3. Transient characteristics obtained by BBO-MPC, RGA-
MPC and Manual MPC algorithms.

Algorithm Rise time (s) Settling time (s) Peak overshoot (%)

Manual-MPC 5573 22,241 5.2
RGA-MPC 5520 22,080 5.06
BBO-MPC 5570 22,200 5.17

4.1. Tracking performance

This section discusses the tracking performance
obtained by the RGA-MPC and BBO-MPC. To main-
tain the distillate quality, the controller is required to
maintain the bottom tray temperature at 75°C. Further-
more, a white Gaussian noise is introduced in the sim-
ulations to account for the sensor noises that occur in
the practice. Figure 4. illustrates the transient response
and the control effort expended by the RGA-MPC and
BBO-MPC algorithms. It is observed that both algo-
rithms provide identical transient responses. However,
the transient characteristics listed in Table 3 shows
that the RGA-MPC algorithm performs better than the
BBO-MPC algorithm. The RGA-MPC improves the
rise time by 0.89%, settling time by 0.54%, and peak
overshoot by 2.29%. This is due to improved penal-
ization of the control input by the BBO algorithm
than the RGA. When compared with the manual MPC
algorithm, both the BBO and RGA based controllers
provided improved performance up to 0.1–0.9%.

The controller performances are validated using
four performance metrics namely, (i) Integral Abso-
lute Error (IAE), (ii) Integral Squared Error (ISE), (iii)
Integral Time-weighted Absolute Error and (iv) Inte-
gral Time-weighted Squared Error (ITSE). The IAE
penalizes the errors in the steady state. At the same

Table 4. Controller performance obtained for setpoint tracking
using BBO-MPC, RGA-MPC and Manual MPC algorithms.

Algorithm IAE ISE ITAE ITSE

Manual-MPC 3.58 65.01 520,740 1,934,500
RGA 2.028 58.27 153,230 336,020
BBO 2.048 57.23 163,236 361,340

time, the ISE penalizes the errors in the transient stages.
The metrics ITAE and ITSE penalizes the errors in
the steady state and the transient stages over a period
of time. From Table 4, it is observed that the BBO-
MPC improves ISE by 1.784% than RGA and 1.1% than
manual-MPC, while the RGA-MPC improves the IAE
by 0.98% than BBO and 43% than the manual MPC,
ITAE by 6.53% and ITSE by 7%. This indicates that the
RGA-MPC provides better control performance that
the BBO-MPC algorithm and manual MPC.

4.2. Disturbance rejection

This section discusses the disturbance rejection perfor-
mance of BBO-MPC and RGA-MPC algorithms. The
load disturbance is introduced by varying the reflux
ratio in the simulations. They are (i) a step change in
the reflux rate and (ii) an impulse change in the reflux
rate. To achieve optimal product quality, the bottom
tray temperature column must be maintained at 80°C.
However, due to fluctuations in the reflux rate, the bot-
tom tray temperature tends to shift from 80°C, affecting
the product quality, significantly.

As a first step, Figure 5. illustrates the BBO-MPC
and RGA-MPC responses for a twofold step change
in the reflux ratio with magnitude 32% and 28% is
introduced at 90,000 and 180,000 s, respectively. It is
observed that the RGA-MPC effectively eliminates the
effect of reboiler duty in the tray temperature than the
BBO-MPC algorithm, while the manual MPC tuning
suffers to mitigate the disturbance. Also, from the con-
trol performance reported in Table 5, the RGA-MPC
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Figure 5. Load disturbance rejection profile for a step change in the reboiler duty using BBO-MPC, RGA-BBO and Manual MPC
algorithms.

Figure 6. Load disturbance rejection profile for an impulse change in the reboiler duty using BBO-MPC, RGA-MPC and Manual MPC
algorithms.

Table 5. Controller performance obtained by BBO-MPC, RGA-
MPC andManualMPC algorithms for step change in the reboiler
duty.

Algorithm IAE ISE ITAE ITSE

Manual-MPC 2.89 61.83 264,720 805,180
RGA-MPC 2.1153 58.84 16,878 41,462
BBO-MPC 2.1447 58.54 17,382 42,585

improves the IAE by 1.37%, ITAE by 2.89% and ITSE
by 2.63%. This indicates that the RGA-MPC algorithm
is best suited to reject any step change in the reflux ratio.

To further analyse the disturbance rejection ability,
the reflux ratio is increased to 34% from 30%. Figure 6.
illustrates the responses obtained by BBO-MPC and
RGA-MPC algorithms. Both algorithms provide a sim-
ilar rejection characteristics. However a close observa-
tion on the controller performance inTable 6 shows that
the BBO-MPC algorithm provides improvements up to
0.6% in IAE, 1.8% in ITAE and 4.45% in ITSE. This
shows that the RGA-MPC algorithm performs better

Table 6. Controller performance obtained for an impulse
change in the reboiler duty using BBO-MPC, RGA-MPC and
Manual MPC algorithms.

Algorithm IAE ISE ITAE ITSE

Manual-MPC 3.5846 64.95 520,440 1,925,200
RGA-MPC 2.0926 58.33 16,725 39,204
BBO-MPC 2.0782 58.56 16,423 37,457

for a sudden change in reflux ratio, then the BBO-MPC
algorithm.

5. Conclusion

This present work proved that reactive distillation
backed with Jatropa oil with nano CaO is a hopeful
method for the continuous biodiesel production. The
closed loop system of an RD for a Biodiesel production
Conventional MPC and RGA-MPC, BBO- MPC two
evolutionary algorithms are investigated. RGA-MPC
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provides best optimal performance in set point track-
ing method (IAE 0.98%, ITAE 6.53%, ITSE 7%) and
step response method (IAE 1.37%, ITAE 2.89%, ITSE
2.63%). In case of BBO –MPC compared to RGA-MPC
it’s provide better performance in Impulse response
(IAE 0.6%, ITAE 1.8%, ITSE 4.45%). In our proposed
analyses shows that tuning of MPC using two evolu-
tionary algorithms provided better performance than
the Conventional MPC. It was indicated that the RD
was well handled by the RGA –MPC used under set
point tracking it was able to get settled desired temper-
ature with in stipulated time.
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