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A novel robust extended dissipativity state feedback control system design for
interval type-2 fuzzy Takagi-Sugeno large-scale systems

Mojtaba Asadi Jokar, Iman Zamani, Mohammad Manthouri and Mohammad Sarbaz

Electrical and Electronic Engineering Department, Shahed University, Tehran, Iran

ABSTRACT
Recently, systems have become large in their model and dynamic. To apply control algorithms,
serious problems appear that need to be solved. Two significant problems are modelling the
dynamics of the large-scale system and reducing effects of perturbations. In this paper, we
use the advantage of large-scale systems modelling based on the type-2 fuzzy Takagi–Sugeno
model to cover the uncertainties caused by large-scale systems modelling. The advantage of
using membership function information is the reduction of conservatism resulting from stabil-
ity analysis. Also, this paper uses the extended dissipativity robust control performance index
to reduce the effect of external perturbations on the large-scale system, which is a generaliza-
tion of H∞, L2 − L∞, passive and dissipativity performance indexes and control gains can be
achieved through solving linear matrix inequalities (LMIs). Hence, the whole closed-loop system
is asymptotically stable. Finally, the effectiveness of the proposed method is demonstrated by
two practical examples.
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1. Introduction

Since years ago, with the expansion and complexity of
industries, a challenge in engineering has been con-
trol of processes like mechanical engineering, electrical
engineering, chemical engineering, or so. Many algo-
rithms and approaches have been proposed in dealing
with the instability of systems. But for decades ago, sys-
tems have been turned to large in scope and dynamic.
Consequently, control of the process has become an
essential task and the main problem facing such sys-
tems is the complexity of mathematical relationships
that make it hard to solve in practice. Various con-
trollers have been designed to encounter the instability
of systems in both industry and academic like adaptive
control, fuzzy control, etc. To design an effective and
authentic controller, the dynamic of the system should
be identified exactly, and it is an important step. In
large-scale systems, it is almost impossible to identify
the dynamic of the system accurately. Hence, the well-
knownmethod, fuzzy logic is used. Also, it is confirmed
that the Takagi–Sugeno (T-S) model is a powerful tool
to approximate any nonlinear systems with arbitrarily
high accuracy. The Takagi–Sugeno fuzzy system shows
the dynamic behaviour of the nonlinear system with
the weighted sum of local linear systems, which are
determined by the membership functions.

Todays, many systems in both industry and aca-
demic are large-scale, and have been popular for years
[1–3]. Large-scale systems consist of several subsystems

that work together interactively and have impacts to
their neighbours. These impacts and interactions pro-
duce an unsteady wake that can impact neighbouring
subsystems, and cause force and fluctuations. These
interactions may reduce operational efficiency, induce
fatigue loading and thus maintenance costs, and can
even lead to system failure. These problems have made
many interests in researchers and scientists to inves-
tigate and deal with large-scale systems. Hence, many
researches have been proposed since years ago in this
area [4–6]. A novel anomaly detection algorithm in a
large-scale system using traces and sequence data to
mine console logs to detect anomalies system prob-
lems is proposed in [7]. A distributed H∞ optimal
tracking control considering persistent disturbances are
designed for a large-scale system and strict-feedback
form, external disturbance and saturating actuators are
assumed for disturbance and cost sides of the problem
in [8]. As it is evident in mentioned papers, a practi-
cal way to deal with large-scale systems due to their
complex dynamic is modelling and estimating their
dynamic by existent approaches like neural networks
and fuzzy logic [9–11].

Modelling of complex systems using fuzzy logic has
been an interesting and useful approach due to its effec-
tiveness and potential. Fuzzy systems with IF–THEN
rules have become more broad appeal and most of the
nonlinear and complex systems are estimated by fuzzy
logic [11–13]. One of the powerful tools, which can fill
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the gap between linear and severe nonlinear systems is
Takagi–Sugeno fuzzy model. Many investigations have
been done based on the T-S fuzzy model [14,15]. Tak-
agi–Sugeno fuzzy modelling is divided into two cate-
gories, fuzzy type-1 and interval fuzzy type-2 [16]. The
main core of fuzzy logic is considering membership
functions to model the dynamic of the system with the
help of. Therefore, these membership functions have
a prominent role in modelling. In type-2, the consid-
ered membership function is chosen intervalley with
the upper and lower bound. This interval region cov-
ers the uncertainties of modelling dramatically. Since
no uncertainty information is contained in the mem-
bership functions for the type-1 fuzzy set, the control
problem for the nonlinear plant subject to uncertain-
ties cannot be handled directly. Parameter uncertainties
of nonlinear plants may result in uncertain grades of
membership, and thus, the stability conditions based on
the type-1 T-S fuzzy model become more conservative.
The interval fuzzy type-2 fuzzy system was proposed
to handle such uncertainties captured by the inter-
val fuzzy type-2 membership functions. The interval
fuzzy type-2 fuzzy sets have the advantages of handling
the grades of membership uncertainties over type-1
fuzzy sets, which has been shown in many applica-
tions. Due to these feature, Takagi–Sugeno fuzzy type-2
has attracted an attention for years ago. [17] propose
a robust model reference hybrid fuzzy controller for
an inference Takagi–Sugeno fuzzy model. In [18], Tak-
agi–Sugeno fuzzy model is selected to represent the
dynamic of the unknown nonlinear system. In [19], the
stability of the fuzzy time-varying fuzzy large-scale sys-
tem based on the piecewise continuous Lyapunov func-
tion investigate. A comparison has been made between
fuzzy type-1 and fuzzy type-2 in [20]. A fuzzy con-
troller is designed for an interval type-2 system with
multiplicative noises in [21]. In [22], a fuzzy multivari-
able controller is applied to an industrial rotary drying
system to save energy and improve its performance.

Besides themodelling, in control engineering, a suit-
able control algorithm is needed to stabilize the system
proficiently. Many control algorithms have been pro-
posed for various systems specifically large-scale sys-
tems such asmodel predictive control, adaptive control,
or so [23,24]. Since systems always have uncertainty
or perturbation parameters, a practical approach is
needed to reduce these disturbances like robust control,
so several papers, including [25] have studied the robust
control criterion such asH∞ control criterion for large-
scale systems. Ref. [26] designed a nonlinear state opti-
mal feedback controller for a power system and con-
sidered a decentralized controller for each subsystem.
In [27], the stability and stabilization conditions of
large-scale fuzzy systems obtained through Lyapunov
functions is studied and also by using the continuous
piecewise Lyapunov functions, they have performed
stability analysis and H∞ based controller design for

large-scale fuzzy systems. In [28], a robust control is
designed for a class of induction motors with the aims
of rough type-2 fuzzy neural network system to reduce
external disturbances. The design of robust fuzzy con-
trol for exposure to nonlinear time-delay system mod-
elling error also presented in [29]. Also, in [25], the
reference tracking problem using decentralized fuzzy
H∞ control is investigated [30]. Designed decentral-
ized linear controllers to stabilize the large-scale system
using the Riccati equation basis, which increases the
local state feedback gain if the number of subsystems is
large. Ref. [31] studies the problem of the asynchronous
fault detection (FD) observer design for 2-D Markov
jump systems (MJSs) expressed by a Roesser model. In
[32] a double state-dependent delays is assumed and
state-dependent delay (SDD) is involved in both con-
tinuous dynamics and discrete dynamics for the prob-
lem of the exponential stability problem for impulsive
systems.

Based on previous paragraphs and mentioned
papers, it seems that several problems remained
unsolved in fuzzy modelling and designing robust con-
trollers for large-scale systems. So, the novelty of this
paper is to use the advantages of the fuzzy interval type-
2 large-scale system modelling and using the infor-
mation of membership functions to reduce conserva-
tiveness resulting from stability analysis and modelling
of the large-scale system. On the other hand, another
novelty of this paper is using the extended dissipativ-
ity robust control performance index to diminish the
results of persistent and external disturbances, which is
a generalization of H∞, L2 − L∞, passive and dissipa-
tivity performance indexes.

In conclusion, the main contributions of this paper
can be summarized as:

(1) Using the advantage of large-scale systems mod-
elling based on the type-2 fuzzy T-S to cover the
uncertainties of modelling.

(2) Reducing conservatism in the stability analysis by
the advantage of using information ofmembership
functions.

(3) Analyzing the stability of large-scale system by
using a fuzzy type-2 model-based membership
function.

(4) Stabilizing the large-scale system using the fuzzy
model type-2 decentralized state feedback con-
troller.

(5) Under the imperfect premise matching, the type-2
fuzzy controller can choose the premise member-
ship functions and the number of rules can be
different from the type-2 fuzzy model freely.

(6) Applying the robust control criterion to the stabil-
ity analysis to reduce the effect of external pertur-
bations.

(7) Guaranteeing the extended dissipativity index by
considering the robust control criterion.
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The rest of this paper is: Section 2 formulates the prob-
lem. In Section 3, stability conditions are given. In
Section 4, two numerical examples are presented, and
the concluding remarks are given in Section 5.

2. Problem formulation

Consider a large-scale nonlinear system with uncer-
tainty parameters that have N subsystem and in a
closed-loop systemwith a state feedback controller. The
mathematical representation of this closed-loop sys-
tem is based on the Takagi–Sugeno type-2 fuzzymodel.
Equation (1) shows a p-rule of the Takagi–Sugeno type-
2 fuzzy model for the ith subsystem in the large-scale
system:

Plant of Sub − System i :

IF ςi1(t)is Fi1, ςi2(t)is Fli2 and . . . and ςiψ(t)is F
l
iψ

THEN

{
ẋi(t) =

r∑
l=1

w̃il(xi(t))

×

⎛
⎜⎜⎝(Ailxi(t)+ Bilui(t))+ D1ilωi(t)

×
N∑
k=1
k �=i

Āiklxk(t)

⎞
⎟⎟⎠ (1)

where Fliφ(φ = 1.2 . . . .ψ) is a fuzzy set, and ςiφ(t) is
a measurable variable. r is the number of rules in the
subsystem ith. xi(t) ∈ Rn is the state vector of the ith
subsystem. The pairs Ail ∈ Rn×n,Bil ∈ Rn×m and D1il
are matrices of the lth model of the ith subsystem.
u(t) ∈ Rm denotes the input vector. Āikl is the vector
of the interactions between the ith subsystem and kth
at the lth rule, and xk(t) ∈ Rn is the state vector of the
kth subsystem.N represents the total number of subsys-
tems. ωi(t) ∈ Rm is the disturbance input belonging to
L2[0,∞); w̃il(xi(t)) is a membership function of the lth
rule of the ith subsystem, which is represented by (2).

w̃il(xi(t)) = αil(xi(t))wil(xi(t))+ ᾱil(xi(t))w̄il(xi(t))
(2)

Equation (2) is a type reduction in the type-2 fuzzy
structure in which αil and ᾱil are nonlinear func-
tions. As the nonlinear plant is subject to parameter
uncertainties w̃il(xi(t)) will depend on the parameter
uncertainties and thus leads to the value of αil and
ᾱil uncertain. wil and w̄il are lower membership and
uppermembership degrees, respectively that character-
ized by the LMFs and UMFs. Since w̃il(xi(t)) is a type-2
membership function, it has the following properties:

p∑
l=1

w̃il(xi(t)) = 1; 0 ≤ αil(xi(t)) ≤ 1,

0 ≤ ᾱil(xi(t)) ≤ 1, ∀i

αil(xi(t))+ ᾱil(xi(t)) = 1, ∀i

wil(xi(t)) =
ψ∏
α=1

μFliα
(ςiα(xi(t))); w̄il(xi(t))

=
ψ∏
α=1

μ̄Fliα
(ςiα(xi(t)))

μ̄Fliα
(ςiα(xi(t))) > μFliα

(ςiα(xi(t))) ≥ 0;

w̄il(xi(t)) ≥ wil(xi(t)) ≥ 0, ∀i
μFliα

and μ̄Fliα
are the lower membership functions

(LMF) and the upper membership functions (UMF),
respectively. ψ is the number of fuzzy sets of the lth
model of the ith subsystem. Thus w̃il(xi(t)) is a linear
combination ofwil and w̄il denoted by LMFs andUMFs.

Equation (3) is the Takagi–Sugeno type-2 fuzzy rep-
resentation for state feedback controller. Unlike the
PDC control method, the membership functions and
the number of rules of the fuzzy system model and the
controller need not be the same here. Thus, the mem-
bership functions and the number of controller rules
relative to the plant model can be freely chosen. For the
ith subsystem controller we have:

Controler for Sub-System i :

IF gi1(t) is N
j
i1, gi2(t) is N

j
i2 and . . . and gi�(t) is N

j
i�

THEN ui(t) =
c∑

j=1
m̃ij(xi(t))Gijxi(t) (3)

where Nj
iβ is the fuzzy set of jth rules of the ith sub-

system, corresponding to the function gβ(t). The state
vector is xi(t) ∈ Rn where c is the number of control
rules of the ith subsystem. Gij ∈ Rm×n is the control
gain and m̃ij(xi(t)) is the membership function of jth
rules of the ith subsystem with these properties:

m̃ij(xi(t)) =

β ij(xi(t))mij(xi(t))
+β̄ij(xi(t))m̄ij(xi(t))∑c
j=1(β ij(xi(t))mij(xi(t))
+β̄ij(xi(t))m̄ij(xi(t))

(4)

where
c∑

j=1
m̃ij(xi(t)) = 1, 0 ≤ β ij(xi(t)) ≤ 1,

0 ≤ β̄ij(xi(t)) ≤ 1, ∀j

β̄ij(xi(t))+ β ij(xi(t)) = 1, ∀j

mij(xi(t)) =
�∏
β=1

μNj
iβ
(giβ(xi(t))), m̄ij(xi(t))
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=
�∏
β=1

μ̄Nj
iβ
(giβ(xi(t)))

μ̄Nj
iβ
(giβ(xi(t))) > μNj

iβ
(giβ(xi(t))) ≥ 0,

m̄ij(xi(t)) > mij(xi(t)) ≥ 0

where mij(xi(t)) and m̄ij(xi(t)) denote the lower and
the upper membership degree. β ij(xi(t)) and β̄ij(xi(t))
are two nonlinear functions. Relation (4) illustrates the
part of the type reduction in type-2 fuzzy structure.� is
the total number of fuzzy rules for jth controller rules of
the ith subsystem.μNj

iβ
(giβ(xi(t))) and μ̄Nj

iβ
(giβ(xi(t)))

represent LMF andUMF, respectively. Finally, the type-
2 fuzzy model for ith sub-system will be:

ẋi(t) =
r∑

l=1

r∑
j=1

h̃ilj

⎧⎪⎪⎨
⎪⎪⎩(Ail + BilGij)xi(t)+ D1ilωi(t)

+
N∑
k=1
k �=i

Āiklxk(t)

⎫⎪⎪⎬
⎪⎪⎭ (5)

where h̃ilj(xi(t)) from (4) and (4) equals the following
relation:

h̃ilj(xi(t)) = w̃il(xi(t))m̃ij(xi(t)) (6)

has the following properties:

p∑
l=1

c∑
j=1

h̃ilj(xi(t)) = 1,∀i, j, l

To facilitate the stability analysis of the large-scale type-
2 fuzzy control system, we divide the state space φ into
q subspace, i.e. state-space equals φ = Uq

k=1φk. Also, to
use the information of type-2 membership functions,
LMFs and UMFs are described with uncertainty cov-
erage space or briefly FOUs. Now consider dividing
FOUs by τ + 1 sub-FOU. In the zth sub-FOU, LMFs
and UMFs define as follows:

h̄iljz(xi(t)) =
q∑

k=1

2∑
i1=1

. . .

2∑
in=1

×
n∏

r=1
νrirkz(xr(t))δ̄ilji1i2...inkz,

h iljz(xi(t)) =
q∑

k=1

2∑
i1=1

. . .

2∑
in=1

×
n∏

r=1
νrirkz(xr(t))δ ilji1i2...inkz (7)

with these properties:

0 ≤ δ̄ilji1i2...inkz ≤ δilji1i2...inkz ≤ 1,

0 ≤ h̄iljz(xi(t)) ≤ hiljz(xi(t)) ≤ 1, 0 ≤ νrirkiz(xr(t)) ≤ 1

νr1irkiz(xr(t))+ νr2irkiz(xr(t)) = 1

q∑
k=1

2∑
i1=1

. . .

2∑
in=1

n∏
r=1

νrirkz(xr(t)) = 1, r, s = 1, 2 . . . , n;

z = 1, 2 . . . , τ + 1; ir = 1, 2;

x(t)ε∅k; otherwise, νriskl(xr(t)) = 0;

where δilji1i2...inkz and δ̄ilji1i2...inkz are scalar that must
be specified. νrirkiz are functions that specified by the
method intended to approximate membership func-
tions. Finally, in order to show the sub-FOUs in
h̃ilj(xi(t)) we have:

h̃ilj(xi(t)) = w̃il(xi(t))m̃ij(xi(t))

=
τ+1∑
z=1

ξiljz(xi(t))[γ iljz(xi(t))h iljz(xi(t))

+ γ̄iljz(xi(t))h̄iljz(xi(t))] (8)

where for the membership function h̃ilj(xi(t))with i, j, l
at any one time, among τ + 1 sub-FOU is only once
ξiljz(xi(t)) = 1 and the remainder are zero. γ iljz(xi(t))
and γ̄iljz(xi(t)) are two functions that have the following
properties:

0 ≤ γ iljz(xi(t)) ≤ γ̄iljz(xi(t)) ≤ 1,

γ̄iljz(xi(t))+ γ iljz(xi(t)) = 1,

∀l, j, z

3. Main result

In this section, we will obtain the stability of the closed-
loop large-scale systemusing the type-2 Takagi–Sugeno
model. In [11], the authors introduced a new perfor-
mance index, referred to extended dissipativity per-
formance index that holds H∞, L2-L∞, passive and
dissipativity performance indexes. This performance
indexes describe in definition 1 in theAppendix. There-
fore, the primary purpose of this section is to design the
type-2 Takagi–Sugeno fuzzy state-feedback controller
for the large-scale system such that the closed-loop sys-
tem is asymptotically stable with the H∞, L2-L∞, pas-
sive and dissipativity performance indexes such that:

(1) The closed-loop system with ω(t) = 0 is asymp-
totically stable.

(2) The closed-loop system holds extended dissipativ-
ity performance index.
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Theorem 3.1: For given matrices φ, ψ1, ψ2 , and ψ3
satisfying in assumption 1 in the Appendix, the system
in (5) is asymptotically stable and satisfies the extended
dissipativity performance indexes, if there exist matrices
Xi = XT

i > 0 ,Ki = KT
i > 0,Mi = MT

i ∈ Rn×n, Nij ∈
Rm×n, Wiljz = WT

iljz ∈ Rn×n , (i = 1, 2, . . . ,N; l = 1,
2, . . . , p; j = 1, 2, . . . , c; z = 1, 2, . . . , τ + 1)such that the
following LMIs hold:

Wiljz > 0∀i, j, l, z (9)

�ilj + Wiljz + Mi > 0∀i, j, l, z (10)
p∑

l=1

c∑
j=1
(δ̄ilji1i2...inkz�ilj−(δilji1i2...inkz − δ̄ilji1i2...inkz)Wiljz

+ δ̄ilji1i2...inkzMi)− Mi < 0∀i1, i2, . . . , in, k, i, z
(11)

�2i =
[−Ki C̃T

ilφ
T
i

∗ −I

]
< 0 (12)

�1i =
[−Xi Xi

∗ Ki − 2I

]
< 0 (13)

where

�̃ilj =
[
�̃1ilj �̃2il
∗ �̃3il

]
,

�̃1ilj = He(AilXi + BilNij)

+ τ−1
0 (N − 1)

⎡
⎢⎢⎣

N∑
k=1
k �=i

(XiÃT
kiÃkiXi)

⎤
⎥⎥⎦

+ τi − C̃T
ilψ1iC̃il

�̃2il = −DT
2ilψ1iD2il − He(D2ilψ2i)− ψ3i,

�̃3il = D1il − C̃T
ilψ1iC̃il − C̃ilψ2i

for all i, l, j; and the feedback gain define as Gij =
NijX−1

i for all i, j. Remember that He(A) = A + AT .

Also ÃT
ki define as Ã

T
ki ≥

∥∥∥∥∥
p∑

l=1

c∑
j=1

h̃ilj(xi(t))Āikl

∥∥∥∥∥.
Proof: Consider the quadratic Lyapunov function as
follows:

V(t) =
N∑
i=1

xiT(t)Pixi(t), 0 < Pi = PiT ∈ Rn×n,∀i
(14)

�

Themain objective is to develop a condition guaran-
teeing thatV(t) > 0 and V̇(t) < 0 for all xi(t) �= 0, the
type-2 fuzzy large-scale control system is guaranteed
to be asymptotically stable, implying that xi(t) → 0 as

t → ∞. To ensure that V̇(t) < 0 for all xi(t) �= 0 we
have:

V̇(t) =
N∑
i=1

{ẋTi (t)Pixi(t)+ xiT(t)Piẋi(t)}

=
N∑
i=1

2

⎧⎨
⎩
⎛
⎝ p∑

l=1

c∑
j=1

h̃ilj{(Ail + BilGij)xi(t)

+ D1ilωi(t)}
)T

Pixi(t)

⎫⎬
⎭

+
N∑
i=1

2

⎧⎪⎪⎨
⎪⎪⎩

p∑
l=1

c∑
j=1

h̃ilj

⎧⎪⎪⎨
⎪⎪⎩

N∑
k=1
k �=i

Āiklxk(t)

⎫⎪⎪⎬
⎪⎪⎭

⎫⎪⎪⎬
⎪⎪⎭ Pixi(t)

(15)

Same as [33] for interconnections terms by using
Lemma 1 in the Appendix and noting that Ãik ≥
p∑

l=1

c∑
j=1

h̃ilj(xi(t))Āikl we have

N∑
i=1

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

N∑
k=1
k �=i

Ãikxk(t)

⎤
⎥⎥⎦
T ⎡
⎢⎢⎣

N∑
k=1
k �=i

Ãikxk(t)

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

≤
N∑
i=1

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

N∑
k=1
k �=i

Ãikxi(t)

⎤
⎥⎥⎦
T ⎡
⎢⎢⎣

N∑
k=1
k �=i

Ãikxi(t)

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

≤
N∑
i=1

⎧⎪⎪⎨
⎪⎪⎩(N − 1)

⎡
⎢⎢⎣

N∑
k=1
k �=i

xiT(t)ÃT
kiÃkixi(t)

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ (16)

and by using Lemma 2 in the Appendix we have and
by considering 0 < τ0 < τilj we have

V̇(t) ≤
N∑
i=1

2

⎧⎨
⎩
⎛
⎝ p∑

l=1

c∑
j=1

h̃ilj{(Ail + BilGij)xi(t)

+ D1ilωi(t)})T Pixi(t)
⎫⎬
⎭

+
N∑
i=1

⎧⎪⎪⎨
⎪⎪⎩τ

−1
0 (N − 1)

⎡
⎢⎢⎣

N∑
k=1
k �=i

xiT(t)ÃT
kiÃkixi(t)

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

+
N∑
i=1

⎛
⎝ p∑

l=1

c∑
j=1

h̃iljτi(xi(t)TPiPixi(t))

⎞
⎠ (17)
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let Xi = Pi−1, gi(t) = X−1
i xi(t), Nij = GijXi, C̃il

= CilXi, then we have

V̇(t) ≤
∑N

i=1

⎧⎪⎪⎨
⎪⎪⎩

p∑
l=1

c∑
j=1

h̃ilj
(
gTi (t)(XiAil

T + Nij
TBilT

+ AilXi + BilNij)gi(t)

+ τ−1
0 (N − 1)

⎡
⎢⎢⎣

N∑
k=1
k �=i

gTi (t)(XiÃT
kiÃkiXi)gi(t)

⎤
⎥⎥⎦

+ τi(gTi (t)gi(t))
)⎫⎬
⎭ (18)

zi(t) =
p∑

l=1

c∑
j=1

h̃ilj{C̃ilgi(t)+ D2ilωi(t)} (19)

now by consider the following performance index we
have

V̇(t)− J(t) ≤
N∑
i=1

ζTi

⎧⎨
⎩

p∑
l=1

c∑
j=1

h̃ilj�̃ilj

⎫⎬
⎭ ζi (20)

J(t) =
N∑
i=1
(zTi ψ1izi + 2zTi ψ2iωi(t)

+ ωi
T(t)ψ3iωi(t))

×
N∑
i=1

⎛
⎝ p∑

l=1

c∑
j=1

h̃ilj{C̃ilgi(t)

+ D2ilωi(t)}Tψ1i{C̃ilgi(t)+ D2ilωi(t)}
+ 2{C̃ilgi(t)+ D2ilωi(t)}Tψ2iωi(t)

+ ωi
T(t)ψ3iωi(t) (21)

where

ζi(t) =
[
gi(t)
ωi(t)

]
, �̃ilj =

[
�̃1ilj �̃2il
∗ �̃3il

]
,

�̃1ilj = He(AilXi + BilNij)

+ τ−1
0 (N − 1)

⎡
⎢⎢⎣

N∑
k=1
k �=i

(XiÃT
kiÃkiXi)

⎤
⎥⎥⎦

+ τi − C̃T
ilψ1iC̃il,

�̃2il = −DT
2ilψ1iD2il − He(D2ilψ2i)− ψ3i,

�̃3il = D1il − C̃T
ilψ1iC̃il − C̃ilψ2i.

by using Schur complement we have

�ilj =
⎡
⎣�11ilj �12il �13il

∗ �22il �23il
∗ ∗ −I

⎤
⎦ ,

�11ilj = He(AilXi + BilNij)

+ τ−1
0 (N − 1)

⎡
⎢⎢⎣

N∑
k=1
k �=i

(XiÃT
kiÃkiXi)

⎤
⎥⎥⎦+ τi,

�12il = D1il − C̃ilψ2i,

�13il = C̃T
ilψ

T
1i,�22il = −He(D2ilψ2i)− ψ3i,

�23il = DT
2ilψ

T
1i

if we can prove
r∑

l=1

r∑
j=1

h̃ilj�ilj < 0 then we have:

V̇(t)− J(t) ≤
N∑
i=1

ζTi

⎧⎨
⎩

p∑
l=1

c∑
j=1

h̃ilj�̃ilj

⎫⎬
⎭ ζi < 0 (22)

now by using (8) considering the information of the
sub-FOUs is brought to the stability analysis with the
introduction of some slackmatrices through the follow-
ing inequalities using the S-procedure:

letMi = Mi
T is an arbitrary matrix with appropriate

dimensions. Then,⎧⎨
⎩

p∑
l=1

c∑
j=1

τ+1∑
z=1

ξiljz(xi(t))[(γ iljz(xi(t))hiljz(xi(t))

+ γ̄iljz(xi(t))h̄iljz(xi(t)))− 1]Mi

}
= 0 (23)

also, consider 0 ≤ Wiljz = Wiljz
T

−
p∑

l=1

c∑
j=1
(1 − γ iljz(xi(t)))

× (hiljz(xi(t))− h̄iljz(xi(t)))Wiljz ≥ 0 (24)

by using Equations (23) and (24) for
r∑

l=1

r∑
j=1

h̃ilj�ilj < 0

we have

N∑
i=1

⎧⎨
⎩

p∑
l=1

c∑
j=1

τ+1∑
z=1
(ξiljz(xi(t))[γ iljz(xi(t))hiljz(xi(t))

+ (1 − γ iljz(xi(t)))h̄iljz(xi(t))])�ilj

}

−
N∑
i=1

p∑
l=1

c∑
j=1

τ+1∑
z=1

ξiljz(xi(t))(1 − γ iljz(xi(t)))

× (hiljz(xi(t))− h̄iljz(xi(t)))Wiljz

+
N∑
i=1

⎧⎨
⎩

p∑
l=1

c∑
j=1

τ+1∑
z=1

ξiljz(xi(t))[(γ iljz(xi(t))hiljz
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× (xi(t))+ (1 − γ iljz(xi(t)))h̄iljz(xi(t)))− 1]Mi

}

=
N∑
i=1

⎧⎨
⎩
⎡
⎣ p∑

l=1

c∑
j=1

τ+1∑
z=1

ξiljz(xi(t))(h̄iljz(xi(t))�ilj

+ (hiljz(xi(t))− h̄iljz(xi(t)))Wiljz

+ h̄iljz(xi(t))Mi)− Mi

]}

+
N∑
i=1

p∑
l=1

c∑
j=1

τ+1∑
z=1

ξiljz(xi(t))γ iljz(xi(t))(hiljz(xi(t))

− h̄iljz(xi(t)))(�ilj + Wiljz + Mi) < 0 (25)

also, the following equation must be checked
⎡
⎣ p∑

l=1

c∑
j=1

τ+1∑
z=1

ξiljz(xi(t))(h̄iljz(xi(t))�ilj

− (hiljz(xi(t))− h̄iljz(xi(t)))Wiljz

+ h̄iljz(xi(t))Mi)− Mi

]
< 0∀i (26)

and �̃ilj + Wiljz + Mi > 0 for all i, j, l, z due to
(hiljz(xi(t))− h̄iljz(xi(t))) ≤ 0. Recalling that only one
ξiljz(xi(t)) = 1 for each fixed value of i, l, j at any time

instant such that
τ+1∑
z=1

ξiljz(xi(t)) = 1, the first set of

inequality is satisfied by
⎡
⎣ p∑

l=1

c∑
j=1
(h̄iljz(xi(t))�ilj − (hiljz(xi(t))

− h̄iljz(xi(t)))Wiljz + h̄iljz(xi(t))Mi)− Mi

]
< 0

∀i, l, j, z (27)

Expressing h̄iljz(xi(t)) and hiljz(xi(t)) with (7) and

recalling that
q∑

k=1

2∑
i1=1

. . .
2∑

in=1

n∏
r=1

νrirkiz(xr(t)) = 1, for

all z and νrirkiz ≥ 0 for all r, ir, k, i and z the first set of
inequalities will be satisfied if the following inequalities
hold[ q∑

k=1

2∑
i1=1

. . .

2∑
in=1

n∏
r=1

νrirkz(xr(t))

×
p∑

l=1

c∑
j=1
(δ̄ilji1i2...inkz�ilj

− (δilji1i2...inkz − δ̄ilji1i2...inkz)Wiljz

+ δ̄ilji1i2...inkzMi)− Mi

]
< 0∀i1, i2, . . . , in, k, i, z

(28)

consequently (27) can be guaranteed by

p∑
l=1

c∑
j=1
(δ̄ilji1i2...inkz�ilj

− (δilji1i2...inkz − δ̄ilji1i2...inkz)Wiljz

+ δ̄ilji1i2...inkzMi)− Mi < 0∀i1, i2, . . . , in, k, i, z
(29)

therefore, there is always a sufficiently small scalar c > 0
such that �̃ilj ≤ −cI. This means that

V̇(t)− J(t) ≤ −c

∣∣∣∣∣
N∑
i=1

ζi

∣∣∣∣∣
2

(30)

thus .. hold for any t ≥ 0, which means∫ t

0
J(s)ds ≥ V(x(t))− V(x(0)) (31)

then by considering ρ = −V(x(0)) in (31) we have:∫ t

0
J(s)ds ≥ V(x(t))+ ρ,∀t ≥ 0 (32)

according to Definition 1 in the Appendix, if we want
to design a controller with a robust H∞ performance,
then we must set the ρ value to zero. For substitu-
tion V(x(t)) in (32) considering Ki > 0 by Character-
istic (Ki − I)Ki

−1(Ki − I) ≥ 0 where−Ki
−1 ≤ Ki − 2I

then we have:

�1i =
[−Xi Xi

∗ Ki − 2I

]
< 0 (33)

Finally, Pi > Ki and (14) proved if:

V(x(t)) =
N∑
i=1

xiT(t)Pixi(t) ≥
N∑
i=1

xiT(t)Kixi(t) ≥ 0

(34)
Also

V(x(t)) =
N∑
i=1

xiT(t)Pixi(t) ≥
N∑
i=1

xiT(t)Kixi(t) ≥ 0

(35)
According to Definition 1, we need to prove that the
following inequality holds for any matrices φi, ψ1i, ψ2i
and ψ3i satisfying Assumption 1 in the Appendix:∫ t

0
J(t)dt − zT(t)φz(t) ≥ ρ (36)

to this end, we consider the two cases of φ = 0 and φ �=
0, respectively. Firstly, we consider the case when φ =
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0. Also, in this case by considering ψ1 = −I , ψ2 =
0 , ψ3 = γ 2I and ρ = 0 the H∞ performance index
will be hold.
∫ t

0
J(s)ds =

N∑
i=1

xiT(t)Kixi(t)+ ρ ≥ ρ,∀t ≥ 0 (37)

by using (37) and considering zT(t)φz(t) ≡ 0 the (36)
hold. Secondly, we consider the case of φ �= 0. In this
case, it is required under Assumption 1 in the Appendix
that ψ1 + ψ2 = 0 and D2il = 0, which implies that
ψ1 = 0, ψ2 = 0 and ψ3 > 0. Then:

J(s) =
N∑
i=1

ωi
T(s)ψ3iωi

T(s) ≥ 0

now by considering C̃T
ilφiC̃il ≤ Ki due to

�2i =
[−Ki C̃T

ilφ
T
i

∗ −I

]
< 0 (38)

and D2il = 0 satisfy in Assumption 1 for any t ≥ 0, the
following inequalities hold∫ t

0
J(s)ds − zT(t)φz(t)

≥
∫ t

0
J(s)ds −

N∑
i=1

⎛
⎝ p∑

l=1

c∑
j=1

h̃ilj{Cilxi(t)

+ D2ilωi(t)}Tφi{Cilxi(t)+ D2ilωi(t)}

=
∫ t

0
J(s)ds −

N∑
i=1
(

p∑
l=1

c∑
j=1

h̃ilj(gTi (t)C̃
T
ilφiC̃ilgi(t))

≥
∫ t

0
J(s)ds −

N∑
i=1
(

p∑
l=1

c∑
j=1

h̃ilj(xiT(t)Kixi(t)) ≥ ρ

(39)

finally, by ω(t) ≡ 0 we have:

V̇(t) ≤ zT(t)

⎛
⎝ N∑

i=1

p∑
l=1

c∑
j=1

h̃ilj(ψ1il)

⎞
⎠ z(t)− c

∣∣∣∣∣
N∑
i=1

ζi

∣∣∣∣∣
2

(40)
according to Assumption 1 in the Appendix ψ1il < 0
for any i, l, then we have:

V̇(t) ≤ −c

∣∣∣∣∣
N∑
i=1

ζi

∣∣∣∣∣
2

(41)

thus, the closed-loop system asymptotically stable by
ω(t) ≡ 0. This completes the proof.

Remark 3.1: It can be seen from (8) that if more sub-
FOUs are considered the more information about the
FOU is contained in the local LMFs and UMFs. Thus,
using the information of membership functions into

the stability condition is resulting in a more relaxed
stability analysis result.

Remark 3.2: From (28), the advantage of using the
type-2 fuzzy system in the form of (5) can be seen
that local LMFs and UMFs determine the stability
condition.

Remark 3.3: By expressing h̄iljz(xi(t)) and hiljz(xi(t))
in the formof (7), they are characterized by the constant
scalers δ̄ilji1i2...inkz and δilji1i2...inkz. Also, noting that the

cross terms
n∏

r=1
νrirkz(xr(t)) are independent of i and l.

By these favourable properties we need only to check
(28) at some discrete points (δ̄ilji1i2...inkz and δilji1i2...inkz)
instead of every single point of the local LMFs and
UMFs.

Remark 3.4: Under the imperfect premise matching,
the type-2 fuzzy controller can choose the premise
membership functions and the number of rules differ-
ent from the type-2 fuzzy model freely.

Corollary 3.1: In the particular case, if we do not con-
sider disturbance, then we have the following result. First,
we consider a large-scale nonlinear system that is com-
posed of N nonlinear subsystems with interconnections.
A p-rule type-2 fuzzy T-S model is employed to describe
the dynamics of the ith nonlinear subsystem as follows:

Plant Rule l :

IF ςi1(t)is Fi1, ςi2(t)is Fli2 and . . . and ςiψ(t)is F
l
iψ

THEN

ẋi(t) =
r∑

l=1

w̃il(xi(t))

×

⎛
⎜⎜⎝(Ailxi(t)+ Bilui(t))+

N∑
k=1
k �=i

Āiklxk(t)

⎞
⎟⎟⎠ (42)

where Fliα is a type-2 fuzzy set of rule l corre-
sponding to the function ςiα(t),i = 1, 2, . . . ,N; α =
1, 2, . . . ,ψ ; l = 1, 2, . . . , p; ψ is a positive integer; xi(t)
∈ Rn is the ith subsystem state vector; the Ail ∈ Rn×n

and Bil ∈ Rn×m are the known system and input matri-
ces, respectively; ui ∈ Rm is the input vector. Āikl
denotes the interconnectionmatrix between the ith and
kth subsystems; (Ail,Bil) are the lth localmodel; The fir-
ing strength of the pth rule of ith subsystem is of the
form (2). Like controller in (3) the membership func-
tions and the number of rules of the fuzzy systemmodel
and the controller need not be the same here. Thus, the
membership functions and the number of controller
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rules relative to the plant model can be freely chosen.
For the ith subsystem controller we have:

Controller Rule l :

IF g1(x(t)) is N
j
i1, gi2(x(t)) is N

j
i2 and . . . and

gi�(x(t)) is N
j
i�

THENui(t) =
r∑

j=1
m̃ij(xi(t))Gijxi(t) (43)

where Nj
iβ is a type-2 fuzzy set of rule jth corre-

sponding to the function giβ(x(t)), β = 1, 2, . . . ,�; j =
1, 2, . . . , c; � is a positive integer; Gj ∈ Rm×n are the
constant feedback gains to be determined. The firing
strength of the jth rule is the form of (4). Finally, we
have the following type-2 fuzzy T-S large-scale control
system:

ẋi(t) =
r∑

l=1

r∑
j=1

w̃ilm̃ij

×

⎧⎪⎪⎨
⎪⎪⎩(Ail + BilGj)xi(t)+

N∑
k=1
k �=i

Āiklxk(t)

⎫⎪⎪⎬
⎪⎪⎭ (44)

Now, decentralized state feedback type-2 fuzzy T-S con-
troller design presented for the continuous-time large-
scale type-2 fuzzy T-S model system in (55).

Theorem 3.2: Consider a large-scale type-2 fuzzy T-
S system model in (42). Decentralized state feedback
type-2 fuzzy controller in the form of (43) exist,
and can guarantee the asymptotic stability of the
closed-loop type-2 fuzzy control system (44) if there
exist Xi = XT

i > 0, Gi = GT
i > 0, Mi = MT

i ∈ Rn×n,
Nij ∈ Rm×n,Wiljz = WT

iljz ∈ Rn×n, (i = 1, 2, . . . ,N; l =
1, 2, . . . , p; j = 1, 2, . . . , c; z = 1, 2, . . . , τ + 1) such that
the following LMIs hold:

Wiljz > 0∀i, j, l, z (45)⎛
⎜⎜⎝
⎛
⎜⎜⎝(XiAil

T + Nij
TBilT + AilXi + BilNij)

+ τ−1
0 (N − 1)

⎡
⎢⎢⎣

N∑
k=1
k �=i

(XiÃT
kiÃkiXi)

⎤
⎥⎥⎦+ τiI

⎞
⎟⎟⎠

Wiljz + Mi

⎞
⎟⎟⎠ > 0∀i, j, l, z (46)

p∑
l=1

c∑
j=1

⎛
⎜⎜⎝δ̄ilji1i2...inkz ((XiAil

T + Nij
TBilT

+ AilXi + BilNij)+ τ−1
0 (N − 1)⎡

⎢⎢⎣
N∑
k=1
k �=i

(XiÃT
kiÃkiXi)

⎤
⎥⎥⎦+ τiI

⎞
⎟⎟⎠

− (δilji1i2...inkz − δ̄ilji1i2...inkz)Wiljz + δ̄ilji1i2...inkzMi

⎞
⎟⎟⎠

− Mi < 0 ∀i1, i2, . . . , in, k, i, z (47)

where δ̄ilji1i2...inkz and δilji1i2...inkz, i = 1, 2, . . . ,N;
l = 1, 2, . . . , p; j = 1, 2, . . . , c; z = 1, 2, . . . , τ + 1; in =
1, 2; k = 1, 2, . . . , q are predefine constant scalers
satisfying (7).

Proof: We consider the following quadratic Lyapunov
function candidate to investigate the stability of the
type-2 fuzzy T-S large-scale control system

V(t) =
N∑
i=1

xiT(t)Pixi(t) (48)

where 0 < Pi = PiT ∈ Rn×n.
Themain objective is to develop a condition guaran-

teeing thatV(t) > 0 and V̇(t) < 0 for all xi(t) �= 0, the
type-2 fuzzy T-S large-scale control system is guaran-
teed to be asymptotically stable, implying that xi(t) →
0 as t → ∞. We have:

V̇(t) =
N∑
i=1

{ẋTi (t)Pixi(t)+ xiT(t)Piẋi(t)}

=
N∑
i=1

⎧⎨
⎩
⎛
⎝ p∑

l=1

c∑
j=1

w̃ilm̃ij
{
(Ail + BilGij)xi(t)

×
N∑
k=1
k �=i

Āikxk(t)

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

T

Pixi(t)

+ xiT(t)Pi

⎛
⎜⎜⎝

p∑
l=1

c∑
j=1

w̃ilm̃ij

⎧⎪⎪⎨
⎪⎪⎩(Ail + BilGij)xi(t)

+
N∑
k=1
k �=i

Āikxk(t)

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ (49)

such as proof of Theorem 1 for interconnection term by
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considering Ãki ≥
∣∣∣∣∣|

p∑
l=1

c∑
j=1

h̃iljĀikl

∣∣∣∣∣ |. we have:

V̇(t) ≤
N∑
i=1

2

⎧⎪⎨
⎪⎩
⎛
⎝ p∑

l=1

c∑
j=1

h̃ilj{(Ail + BilGij)xi(t)}
⎞
⎠

T

+ Pixi(t)

⎫⎪⎪⎬
⎪⎪⎭

+
N∑
i=1

⎧⎪⎪⎨
⎪⎪⎩τ

−1
0 (N − 1)

⎡
⎢⎢⎣

N∑
k=1
k �=i

xiT(t)ÃT
kiÃkixi(t)

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

+
N∑
i=1

⎛
⎝ p∑

l=1

c∑
j=1

h̃iljτi(xi(t)TPiPixi(t))

⎞
⎠ (50)

let Xi = Pi−1, φi(t) = X−1
i xi(t) ,Nij = GijXi, then we

have

V̇(t) =
N∑
i=1

⎧⎨
⎩

p∑
l=1

c∑
j=1

h̃ilj(xi(t))

⎛
⎝φTi (t)(XiAil

T

+ Nij
TBilT + AilXi + BilNij)φi(t)

+ τ−1
0 (N − 1)

+

⎡
⎢⎢⎣

N∑
k=1
k �=i

φTi (t)(XiÃT
kiÃkiXi)φi(t)

⎤
⎥⎥⎦

+ τi(φ
T
i (t)φi(t))

⎞
⎠
⎫⎬
⎭ (51)

we then express the type-2 membership function in the
form of (8) and by considering the information of the
sub-FOUs brought to stability analysis with the intro-
duction of some slackmatrices as in Equations (23) and
(24). Then we have V̇(t) < 0 for all xi(t) �= 0 from:

⎡
⎣ p∑

l=1

c∑
j=1

τ+1∑
z=1

ξiljz(xi(t))
(
h̄iljz(xi(t))

(
(XiAil

T

+ Nij
TBilT + AilXi + BilNij)

+ τ−1
0 (N − 1)

⎡
⎢⎢⎣

N∑
k=1
k �=i

(XiĀT
kiljĀkiljXi)

⎤
⎥⎥⎦

+ τiljI
)− (hiljz(xi(t))− h̄iljz(xi(t)))Wiljz

+ h̄iljz(xi(t))Mi
)− Mi

]
< 0∀i (52)

(52) satisfied if the following inequality hold:⎡
⎣ p∑

l=1

c∑
j=1

(
h̄iljz(xi(t))

(
(XiAil

T + Nij
TBilT + AilXi

× BilNij)+ τ−1
0 (N − 1)

⎡
⎢⎢⎣

N∑
k=1
k �=i

(XiĀT
kiljĀkiljXi)

⎤
⎥⎥⎦

+ τiljI
)− (hiljz(xi(t))− h̄iljz(xi(t)))Wiljz

+ h̄iljz(xi(t))Mi
)− Mi

]
< 0 ∀i, l, j, z (53)

also, the second set of inequalities will be satisfied if the
following inequalities hold:

p∑
l=1

c∑
j=1

(
δ̄ilji1i2...inkz

(
(XiAil

T + Nij
TBilT + AilXi

× BilNij)+ τ−1
0 (N − 1)

⎡
⎢⎢⎣

N∑
k=1
k �=i

(XiĀT
kiljĀkiljXi)

⎤
⎥⎥⎦

+ τiljI
)− (δilji1i2...inkz − δ̄ilji1i2...inkz)Wiljz

+ δ̄ilji1i2...inkzMi
)− Mi < 0∀i1, i2, . . . , in, k, i, z

(54)

This completes the proof. �

4. Simulations

Example 4.1: Consider a double-inverted pendulum
system connected by a spring, themodified equations of
the motion for the interconnected pendulum are given
by [33].⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋi1 = xi2

ẋi2 = −kr2

4Ji
xi1 + kr2

4Ji
sin(xi1)xi2 + 2

Ji
xi2

+ 1
Ji
ui +

2∑
j=1
j �=i

kr2

8Ji
xj1, i = {1, 2}

(55)

where xi1 denotes the angle of the ith pendulum from
the vertical; xi2 is the angular velocity of the ith pen-
dulum. The objective here is to design robust decen-
tralized state feedback H∞ fuzzy type-2 controller for
the T-S fuzzy type-2 large-scale in the form of such that
the resulting closed-loop system is asymptotically stable
with anH∞ disturbance attenuation level γ . A concise
framework on the decentralized state feedback control
shown in Figure 1.

In this simulation, themasses of two pendulums chosen
as m1 = 2kg and m2 = 2.5kg; the moments of iner-
tia are J1 = 2kg.m2 and J2 = 2.5kg.m2; the constant
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Figure 1. The schematic of double inverted pendulum.

of the connecting torsional spring is k = 8N/m; the
length of the pendulum is r = 1m; the gravity con-
stant is g = 9.8m/s2. Here, the sampling time is set as
Ts = 0.1. We choose two local models, i.e. by lineariz-
ing the interconnected pendulum around the origin
and xi1 = (±88◦, 0), respectively, each pendulum can
be represented by the following IT2 T-S fuzzy model
with two fuzzy rules.

Rule l : IF Ailxi(t)is Fli THEN

ẋi(t) =
r∑

l=1

r∑
j=1

w̃ilm̃ij

×

⎧⎪⎪⎨
⎪⎪⎩(Ail + BilGij)xi(t)+ D1ilωi(t)+

N∑
k=1
k �=i

Āikxk(t)

⎫⎪⎪⎬
⎪⎪⎭

zi(t) =
p∑

l=1

c∑
j=1

w̃ilm̃ij{Cilxi(t)+ D2ilωi(t)} (56)

where

A11 =
[

0 1
8.81 0

]
,A12 =

[
0 1

5.38 0

]
, Ā12 =

[
0

0.25

]
,

B1l =
[
0
0.5

]
,D1l =

[
0
0.5

]
,C1l = [11] (57)

for the first subsystem, and

A21 =
[

0 1
9.01 0

]
,A22 =

[
0 1

5.58 0

]
, Ā21 =

[
0

0.20

]
,

B2l =
[
0
0.5

]
,D2l =

[
0
0.5

]
,C2l = [11] (58)

for the second subsystem. Here, initial conditions
are x1(0) = [1,−1]T , x2(0) = [1,−1]T and ω1(t) =
0.8e−0.2t sin(0.2t) and ω2(t) = 0.6e−0.2t sin
(0.2t). the sampling time is set as Ts = 0.1, so the
sampling frequency would be fs = 10.

The two normalized triangular type-2 membership
functions for two subsystem shown in Figure 2 are
considered, where ri = 88◦.

Remark 4.1: In this example, as it is clear by Figure 3,
in the open loop case with no input vector, the system
is not stable and trajectories of system are turned to
the infinity. On the other hand, by applying the control
system and making the closed-loop system, it will be
evident by Figure 3 that trajectories of the system are
converged to zero and proves the effectiveness of the
algorithm.

Figure 2. IT2 Membership function in Example.

Figure 3. State responses for open-loop double-inverted pendulums system.
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Figure 4. State responses for closed-loop double-inverted pendulums system.

Table 1. Desired controller gains values for the
double-inverted pendulum system.

[G11 G12 G21 G22] γ[−34.3381 −60.0235 −174.0191 −485.0611
−16.2743 −31.7905 −93.5045 −268.4191

]
0.333

Remark 4.2: One of the important issues in this paper
is that external disturbances are considered perma-
nently in this paper, and they are not applied on the
specific time. They are considered from beginning to
end and this shows the robustness of the proposed
algorithm.

Remark 4.3: In comparison, in [33], a robust decen-
tralized static output-feedback control is designed for a
large-scale systemwhich ismodelled by Takagi–Sugeno
and double inverted pendulum is proposed in the first
example of the paper. As it is clear in [33], the trajecto-
ries of the pendulum are converged to zero after 10 sec.
But in this paper, by proposed algorithm, as it is shown
in Figure 3, trajectories of the inverted pendulum are
converged to zero in about 4 sec that shows the strength
of the proposed algorithm.

Remark 4.4: Considering the external disturbances
ω1(t) = 0.8e−0.2t sin(0.2t) and ω2(t) = 0.6e−0.2t sin
(0.2t), it can be seen that minimum of H∞ distur-
bance attenuation level γmin = 0.333 and the desired
controller gains obtained in Table 1.

Example 4.2: In this example, another large-scale sys-
tem consisting of two subsystems is considered. Here,
the proposed algorithm is applied to mass-spring-
damper mechanical system due to [34]. For con-
venience, all parameters and configurations like the
external disturbances, ω1(t) = 0.8e−0.2t sin(0.2t) and
ω2(t) = 0.6e−0.2t sin(0.2t), are assumed same as the
previous example. The mass-spring-damper mechani-
cal system shown by Figure 4 is modelled in [34] and
details of the modelling are existed. The mass-spring-
damper mechanical system can be expressed by the
following IT2 T-S fuzzy model with two fuzzy rules by
linearizing the interconnected subsystems around the
origin (Figure 5).

Rule l : IF Ailxi(t)is Fli THEN

ẋi(t) =
r∑

l=1

r∑
j=1

w̃ilm̃ij

⎧⎪⎪⎨
⎪⎪⎩(Ail + BilGij)xi(t)+ D1ilωi(t)

+
N∑
k=1
k �=i

Āikxk(t)

⎫⎪⎪⎬
⎪⎪⎭

zi(t) =
p∑

l=1

c∑
j=1

w̃ilm̃ij{Cilxi(t)+ D2ilωi(t)}

A11 =
[ −d11/m1

1
−κ1/m1

0

]
,

A12 =
[ −d21/m2

1
−κ2/m2

0

]
, Ā12 =

[
0.01
0.02

]

A21 =
[ −d11/m1 − d12(�1)

2

1
−κ1/m1

0

]
,

A22 =
[ −d21/m2 − d22(�2)

2

1
−κ2/m2

0

]
,

Ā21 =
[
0.01
0.03

]

B11 = B12 = B21 = B22 =
[
0.3
0

]

D1l =
[
0
0.5

]
, C1l = [1 1]

D2l =
[
0
0.5

]
, C2l = [1 1]

here, due to [34],m1 = m2 = 1, κ1 = 0.2, κ2 = 0.3, d11
= 0.6, d12 = 0.8, d21 = 0.5, d22 = 0.7,�1 = �2 = 1
and same as previous example, the sampling time is
set as Ts = 0.1, so the sampling frequency would be
fs = 10.

The two normalized type-2 sin membership func-
tions for two subsystems shown in Figure 6 andFigure7,



654 M. A. JOKAR ET AL.

Figure 5. The mass-spring-damper mechanical system.

and the initial conditions are x1(0) = [1,−1]T , x2(0) =
[1,−1]T .

with respect to [35] and by considering δ(xi) =
sin(xi) ∈ [−1, 1], the membership functions for two
subsystems and parameter uncertainties are:⎧⎨

⎩w1
i (ziq) = 1 − 1

1 + exi+4+δ(xi)
w2
i (ziq) = 1 − w1

i (ziq)
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1
i (ziq) = 1 − 1

1 + e
−xi − 1.5

2

m̄1
i (ziq) = 1 − 1

1 + e
−xi + 1.5

2
m2

i (ziq) = 1 − h̄1i (ziq)
m̄2

i (ziq) = 1 − h1i (ziq)

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1
i (ziq) = 1 − 1

1 + exi+4−1

w̄1
i (ziq) = 1 − 1

1 + exi+4+1

w2
i (ziq) = 1

1 + exi+4+1

w̄2
i (ziq) = 1

1 + exi+4−1

the mentioned parameter uncertainty is assumed
as δ(xi) = sin(xi) ∈ [−1, 1], and ω1(t) = 0.8e−0.2t sin
(0.2t) and ω2(t) = 0.6e−0.2t sin(0.2t). So we will have
(Figures 6 and 7):

Table 2. Desired controller gains values for the mass-spring-
damper.

[G11 G12 G21 G22] γ[−1.8665 −1.4405 −0.0683 −0.3894
−2.9733 −3.8023 −11.3970−13.2382

]
0.333

So, we have:

Remark 4.5: With respect to Figure 8, although there
are overshoots in state responses of the system, trajec-
tories are converged to zero, asymptotically. This exam-
ple, is presented in [34] and in comparison with, state
responses of the system in [34] are converged to zero
withmany overshoots and undershoots after 20 Sec and
illustrates the impracticality of the algorithm. Here, as
it is demonstrated by Figure 8, trajectories converge in
about 6 Sec and shows a dramatic difference between
these two approaches.

Remark 4.6: Another important issue here that should
be pointed out is computed gains shown in Table 2. By
referring to this table, it is seen that computed gains
have little value and this lessens costs of designing
and computing. So, mass-spring-damper mechanical
system is stabilized with a lower cost, and this is the
efficient proposed approach.

Remark 4.7: This paper proposed a robust state feed-
back control for interval type-2 fuzzy Takagi–Sugeno
large-scale systems. States of outputs can be identi-
fied by output feedback or by an observer and after
that control signals are applied to stabilize them. Here,
a problem is that this algorithm is not applicable for
decentralized static output feedback systems and for
those systems that states needed to be identified com-
pletely. These problems and limits must be investigated
and solved for future works.

Figure 6. The membership function of IT2 fuzzy model. (a) The membership function of rule 2; (b) The membership function of
rule 1.
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Figure 7. The membership function of IT2 fuzzy controller. (a) The membership function of rule 1. (b) The membership function of
rule 2.

Figure 8. State responses for mass-spring-damper.

5. Conclusion

In this paper, the robust decentralized state feedback
H∞ type-2 fuzzy controller design has been inves-
tigated for continuous-time large-scale type-2 Tak-
agi–Sugeno fuzzy systems. Through some linear matrix
inequality techniques, it has been shown that the state
fuzzy controller gain can be calculated by solving a
set of LMIs. Then the resulting closed-loop fuzzy con-
trol system is asymptotically stable under extended
dissipativity performance indexes. Uncertainties in the
modelling of large-scale systems is the result of the
using type-1 fuzzy Takagi–Sugeno model. Therefore,
in this paper, the type-2 fuzzy model is used to cover
modelling uncertainty for large scale systems. We also
stabilized the large-scale system by using the type-
2 fuzzy state feedback controller model with imper-
fect premise membership functions. The advantage of
using membership function information in sustain-
ability analysis is to reduce the conservatism of the
obtained conditions. Then, in order to reduce the effect
of external perturbations on the large-scale system,
we applied the robustness control criterion name as
extended dissipativity performance indexes to stability
analysis, which was able to guarantee theH∞ criterion,
the L2 − L∞, passive, and dissipativity performances.
Finally, two numerical examples of double-inverted

pendulum and mass-spring-damper mechanical sys-
tem have been considered to verify the effectiveness
of the developed methods. As it is clear, trajectories
of systems are converged to zero in existence of the
persistent disturbances, and this shows the robustness
and effectiveness of the approach. Besides, the con-
trol vector is also converged to zero after sometimes
that illustrates systems do not need input vector after
trajectories enter a specified region and this improves
the optimality of algorithm. The results of these sim-
ulations are to improve the control characteristics and
make the conditions relax, as well as more complete
coverage of the uncertainties in the system. can be
mentioned weaknesses in this paper are those systems
with time-varying delay. For these types of systems,
the proposed algorithm in this paper is not valid. So,
this approach must be revised in the future works.
Besides, this approach is applied to state feedback and
can be considered in future for systems with output
feedback. An interesting problem for future research
is to deal with the robust decentralized static output
feedbackH∞ type-2 fuzzy control design for large-scale
systems.
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Appendix

Assumption 1 ([36]): Let φ,ψ1,ψ2 andψ3 be matrices such
that the following conditions hold:

(1) φ = φT , ψ1 = ψT
1 and ψ3 = ψT

3 ;
(2) φ ≥ 0 and ψ1 ≤ 0;
(3) ||D2i ||.||φ|| = 0;
(4) ( ||ψ1|| + ||ψ2||).||φ|| = 0;
(5) DT

2iψ1D2i + DT
2iψ2 + ψT

2 D2i + ψ3 > 0.

Definition 1 ([36]): For given matrices φ, ψ1,ψ2 and ψ3
satisfying Assumption 1, system (5) is said to be extended
dissipative if there exists a scalar ρ such that the following
inequality holds for any t > 0 and all ω(t) ∈ L2[0,∞):∫ t

0
J(s)dt − zT(t)φz(t) ≥ ρ, (A1)

where J(t) = zT(t)ψ1z(t)+ 2zT(t)ψ2w(t)+ wT(t)ψ3w(t).

It can be seen from Definition 1 that the following perfor-
mance indexes hold.

(1) Choosing φ = 0, ψ1 = −I, ψ2 = 0, ψ3 = γ 2I and
ρ = 0 the inequality (59) reduces to the H∞ perfor-
mance [13].

(2) Let φ = I, ψ1 = 0, ψ2 = 0, ψ3 = γ 2I and ρ = 0 the
inequality (59) becomes the L2 − L∞(energy-to-peak)
performance [14].

(3) If the dimension of output z(t) is the same as that of
disturbance w(t), then the inequality (59) with φ =
0, ψ1 = 0, ψ2 = I, ψ3 = γ I and ρ = 0 becomes the
passivity performance [15].

(4) Let φ = 0, ψ1 = −εI, ψ2 = I, ψ3 = −σ I with ε > 0
and σ > 0, inequality (59) becomes the very-strict pas-
sivity performance [16].

(5) Let φ = 0, ψ1 = Q, ψ2 = S, ψ3 = R − αI and ρ = 0,
inequality (59) reduces to the strict (Q, S,R)-dissipativity
[17].

Lemma 1 ([37] (Jensen’s inequality)): For any constant pos-
itive semidefinite symmetric matrixW ∈ Rn×n, WT = W ≥ 0
two positive integers d2 and d1 satisfy d2 ≥ d1 ≥ 1 then the
following inequality holds:⎛

⎝ d2∑
k=d1

x(k)

⎞
⎠

T

W

⎛
⎝ d2∑

k=d1

x(k)

⎞
⎠ ≤ d̄

d2∑
k=d1

xT(k)Wx(k)

where d̄ = d2 − d1 + 1.

Lemma 2: for given matrices x̄ ∈ Rn, ȳ and scaler κ > 0 we
have:

2x̄T ȳ ≤ κ−1x̄T x̄ + κ ȳT ȳ
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