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Abstract 
Modelling of proton exchange membrane fuel cell (PEMFC) is important for better 
understanding, simulation, and design of high-efficiency fuel cell systems. PEMFC models 
are often multivariate with several nonlinear elements. Metaheuristic algorithms that are 
successful in solving nonlinear optimization problems are good candidates for this purpose. 
This study proposes a new metaheuristic algorithm called MFORS that uses the 
advantages of the moth-flame optimization algorithm in global search and the non-
deterministic properties of the random search algorithm to identify the optimal 
parameters of the PEMFC model. The sum of squared errors between the estimated and 
measured voltage is a quality of fit criterion. To show the effectiveness of the proposed 
algorithm, two case studies of zero-dimensional models of SR-12 Modular PEM Generator 
and Ballard Mark V fuel cell are considered. The sum of squared errors for the parameter 
estimated of electrical PEMFCs by the proposed MFORS algorithm is compared with recent 
works. The results showed that by the MFORS algorithm, the minimum sum of absolute 
errors of the actual stack voltage and the simulated stack voltage in the two PEMFC are 
0.095037 and 0.018019, compared with the second-best algorithm results giving 0.09681 
and 0.8092, respectively. 

Keywords 
Fuel cell system; parameters estimation; global optimization algorithm; chemical 
energy; hybrid algorithm 

 

Introduction 

The energy demand, environmental pollution, global warming and limited amount of fossil fuel 

sources are reasons to encourage researchers to study fuel cells (FCs) [1,2]. Fuel cells (FC) are an 

emerging technology used in portable power generation, electrification to island areas, etc. [3,4]. 

The proton exchange membrane fuel cell (PEMFC) converts most of the chemical energy of the 

hydrogen and oxygen reactions into electrical energy (along with the production of water and a heat 
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release) near room temperature without pollutant emissions [5]. Other advantages of PEMFC 

include low noise, high specific power and good energy efficiency [6,7].  

Recently, evolutionary and metaheuristic algorithms have been applied for optimizing the para-

meters of FCs. A moth-flame optimization algorithm is employed in [8] to estimate the optimal para-

meters of solid oxide fuel cells to improve the output power of this model. They compared the study 

with a genetic algorithm (GA), radial movement optimizer (RMO) and social spider optimizer (SSO). 

Abdullah et al. proposed a moth flame optimization algorithm for optimal modeling of the 

PEMFC [9]. To show the approach efficiency, the results were validated by comparing with the 

particle swarm optimization(PSO) algorithm and sine cosine algorithm (SCA). The hybrid water cycle 

moth-flame optimization (WCMFO) was applied to lessen the sum of squared errors (SSE) between 

the measured and the experimental stack voltage of PEMFC [10]. A comparative study was proposed 

on the optimal estimation of the PEMFC parameters based on two different metaheuristics. The 

results indicated that using MFO gives better results than methods in [11].  

Diab et al. [12] proposed a PEMFC numerical model using metaheuristic tools to estimate model 

parameters. Houssein et al. applied Archimedes optimization algorithm (AOA) using orthogonal 

learning to identify PEMFC parameters [13]. A robust method based on the gradient-based optimizer 

(GBO) was proposed to identify unknown parameters of PEMFC [14]. During the optimization process, 

the unknown parameters of PEMFC were used as decision variables, whereas the objective function 

needs to be minimum is presented by the SSE between the estimated and measured production 

voltage of the PEMFC. 

Three algorithms, namely the imperialist competitive algorithm (ICA), firefly optimization algorithm 

(FOA), and shuffled frog-leaping algorithm (SFLA), have been employed for the extraction of unknown 

BCS 500-W, Horizon 500-W FC and NedStack PS6 parameters [15]. A flower pollination algorithm (FPA) 

has been used to estimate the optimal parameters of different PEMFCs by selecting SSE as an objective 

function [16]. A combination of the two algorithms, including the JAYA algorithm and the Nelder-Mead 

simplex search algorithm (JAYA-NM), was presented to estimate the optimal parameters of PEMFC 

[17]. A hybrid of vortex search algorithm and differential evolution has been used for extracting the 

parameters of FC under different conditions [18]. A cuckoo search algorithm with an explosion 

operator (CS-EO) was proposed for solving unknown parameters of PEMFC. CS-EO has the ability to 

obtain better performance and avoid precipitate convergence [19]. The transient search optimization 

(TSO) algorithm was used to estimate the parameters by minimizing the SSEs between the calculated 

and measured voltages [20]. The chimp optimization algorithm (ChOA) has also been presented to 

determine the unknown parameters of the PEMFC [21]. 

Many optimization alghoritms have been used to identify parameters of PEMFC (Table 1).   

However, the accuracy of the previous algorithms is not satisfactory. Some algorithms converge 

to suboptimum solutions. Thus, a new algorithm that could improve the quality of the solution is 

needed. Recently, a new metaheuristic algorithm called moth-flame optimization (MFO) was 

presented [22]. This algorithm has a promising performance in solving optimization problems [22]. 

An MFO was applied for the problem related to the strategic accommodation of fuel cells in an active 

distribution network that consists of wind turbines and photovoltaic modules [23]. 

An MFO was applied for the artificial neural network to improve its operational accuracy for providing 

an accurate predicting control scenario for the integration of fuel cells with photovoltaic and wave 

energy sources using the field programmable gate array (FPGA) technology [24]. An MFO based on sine 

mapping and Gaussian mutation was used for the economic optimization dispatch of the microgrid [25].  

https://www.sciencedirect.com/topics/engineering/archimedes
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Table 1. Some of algorithms utilized in recent years in PEMFC case studies 

Optimization algorithm 
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Shuffled frog-leaping algorithm (SFLA), firefly optimization algorithm 
(FOA), and imperialist competitive algorithm (ICA) 

+   +   +   2019 [15] 

Transient search optimization (TSO) +   +    +  2022 [20] 

Heap-based optimizer (HBO)  + + +    +  2021 [27] 

Simplified teaching-learning-based optimization algorithm (STLBO)         + 2014 [28] 

Aging and challenging P systems-based optimization algorithm (AC-
POA) 

        + 2016 [29] 

Harris Hawks optimizer (HHO) + + + +    +  2021 [30] 

Gravitational search algorithm (GSA), grey wolf optimizer (GWO), 
differential evolution (DE), sine cosine algorithm (SCA), RSA algorithm, 
and arithmetic optimization algorithm (AOA) 

 +  +      2022 [31] 

Pathfinder algorithm (PA) +       +  2021 [32] 

Salp Swarm algorithm (SSA)  + +  + +    2020 [33] 

Flower pollination algorithm (FPA) + +  +  +    2019 [16] 

Sparrow search algorithm (SSA) +   +    +  2021 [34] 

Bald eagle search (BES)  +  +    + + 2022 [35] 

Black widow optimization (BWO) +  +       2021 [36] 

Whale optimization algorithm (WOA) +  +     + + 2019 [37] 

Artificial bee colony differential evolution shuffled complex (ABCDESC) + +  +    + + 2022 [38] 

Artificial bee colony differential evolution optimizer (ABCDE) + + + +   + +  2022 [39] 

Bonobo optimizer (BO)  + +      + 2020 [40] 

Jellyfish search algorithm (JSA)  +  +     + 2021 [41] 

Ecosystem optimization (AEO)  + +   +   + 2020 [42] 

Marine predators algorithm (MPA)  + +      + 2020 [43] 

Shark smell optimizer (SSO) + + +   +    2019 [44] 

Grey wolf optimization (GWO)  + +      + 2022 [45] 
 

The MFO algorithm searches the solution space rapidly. However, sometimes, it cannot find the 

correct solution for a highly nonlinear problem and contains many local minima. A random search 

algorithm (RS) can obtain the global optimum solution for highly nonlinear functions [26]. However, it 

is slow in convergence. Unlike other heuristic algorithms inclined to close the best current solutions, 

the RS algorithm explores the space randomly without considering the best solutions [26]. In this 

study, a new optimization algorithm called MFORS is introduced. This algorithm uses the ability of the 

MFO algorithm in global search and non-deterministic properties of RS to obtain the optimal 

parameters of the PEMFC model. 

The remainder of this paper is organized as follows: the problem formulation of PEMFC is presented 

in the Problem description section, and the basic MFO and RS algorithm are presented in the next 

section. After that, simulations and discussions about PEMFC are provided, followed by conclusions. 

Problem description 

The theory of PEMFC 

A PEMFC is electrochemical device that converts the chemical energy of oxygen and hydrogen 

into electrical and thermal energy. The chemical reactions that occur at PEMFC cathode and anode 

are defined as follows [46]: 
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Anode side: H2(g) → 2H+ + 2e- (1) 

Cathode side: 2H+ + 2e- + 1/2O2 → H2O (2) 

Overall reaction: H2(g) + 1/2O2 → H2O (3) 

The overall reaction (3) between oxygen (O2) and hydrogen (H2) has a large negative Gibbs energy 

change, which dictates a theoretical open circuit voltage of 1.23 V. During the overall reaction, the 

products are liquid water, electricity, and heat. To provide the required amount of power, many 

single cells can be assembled into a fuel cell stack system [47]. The operating temperature of PEMFC 

typically ranges from 70 to 85 °C. Figure 1 illustrates a basic scheme of a single PEMFC [46].  

 
Figure 1. Basic PEMFC operation 

The mathematical model of PEMFC 

In the present study, a zero-dimensional PEMFC model described earlier in [46] was employed. The 

value of the equilibrium potential voltage ENernst is obtained by the Nernst equation. Many factors 

cause voltage losses, including activation voltage drop (Vact), ohmic voltage drop (Vohmic), and 

concentration voltage drop (Vcon). The production voltage of the FC is given by equations (4-8) [48,49]: 

VSTACK = NS(ENernst - Vact - Vohmic - Vcon)  (4) 
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In the above equations, the fuel cell temperature (TFC), the hydrogen partial pressure (PH2) and 

the oxygen partial pressure (PO2) are dependent on the operating conditions of the system and are 

measurable. Ifc and Ns are the cell current and number of cells, j is the current, and jmax is the 

maximum current density. 

The other parameters (1, 2, 3, 4, Rc, b, ) are unknown parameters that need to be extracted 

for designing and simulation of the PEMFC model.  

The sum square error (SSE) between the measured and experimental production voltage of the 

PEMFC stack model can serve as an objective function (OF) to determine unknown parameters, 

which is represented by equations (9) and (10):  
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where N is the sampling rate of data points, Vmeasured is the measured output voltage PEMFC stack, 

Vstack is the computed output voltage by equation (2). Table 2 represents the lower and upper 

bounds of these parameters. 

Table 2. Lower and upper bounds of PEMFC parameters 

Parameter 1 2103 3105 4104 Rc / m  b(V) 

Max -0.5832 5 9.8  -0.954  0.8 24 5.0000 

Min -1.1997 1 3.6  -2.600 0.1 10 0.0136 
 

Proposed algorithm for optimizing the parameters of a PEMFC model 

This section presents the main conceptions of moth-flame optimization (MFO) and random 

search. 

1. Moth-flame optimization (MFO algorithm) 

Moth-flame optimization (MFO) is a promising optimization algorithm that is inspired by moth 

navigation at night when moths use moonlight for navigation. Moths are flying at an angle to the 

direction of the Moon. The orientation of moth travel during the night is shown in Figure 2. Since the 

distance between the Moon and the moth is long, the moth moves in a linear path [22]. However, 

when the light source is close to the moth flying at a constant angle toward the light, a spiral trajectory 
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is observed. The model of a flying path surrounding flame or light by moths is depicted in Figure 3 [22]. 

It can be concluded from Figure 3 that the moth lastly converges near the flame or light source.  

This is formulated mathematically to arrive at an optimizer termed the moth-flame optimization 

algorithm. In this method, candidate solutions are represented by the moths and parameters of the 

problems are described by moth positions. This approach allows moths to move in one or more dimen-

sions by replacing their position vectors. The moth population is represented as a matrix (11): 

 
Figure 2. Moth orientation toward the light 

 
Figure 3. Spiral flying path of moth around the light 

1,1 1,2 1,d

2,1 2,2 2,d

n,1 ,2 n,d

.... ....

.... ....

.... ....n

m m m

m m m
M

m m m

 
 
 =
 
 
 

 (11) 

where n is the number of moths, and the number of variables is d. The array OM stores the 

corresponding fitness values for moths, equation (12).  

OM = [OM1, OM2, OM3] (12) 

The fitness value is the value of the objective function for each moth. Another main element of 

the algorithm is the flame matrix: 

1,1 1,2 1,d
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F F F
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 
 
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 (13)  

Size of matrices M and F are equal. For storing the fitness values of the flames, the array OF is 

defined by equation (14):  

OF = [OF1, OF2, OF3] (14)  

It is notable that moths and flames are both solutions, but how they are updated and generated 

differs. The moths are considered to be search candidates that explore the search space. The best 

positions of moths during the search are considered flames. Thus, a flame can be updated by a 

better solution obtained by a moth that searches around the flame. This mechanism keeps the best 

solution found by a moth. The MFO can be defined as tree-tuple approximation functions as follows. 

A random population and their corresponding fitness value are generated by I. Moths are moved 
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around search space by the P function. The matrix M is the input of function P and the output is its 

updated one, equation (15). 

MOF = (I,P,T); I: →{M,OM}; P:M →M (15) 

The T function output is true when termination criteria are satisfied, otherwise, it is false, 

equation (16). 

T:M{true, false}; Mi = S (Mi, Fj)  (16)  

The updated formula for the moth position with respect to the flame position is as presented by 

equation (17): 

S (Mi, Fj) = Di ebt cos(2t) (17) 

where Mi and Fj are ith moth and jth flame, respectively. The t is a random variable belonging to [-

1,1]. The spiral shape is defined by b. The Di (equation (18)) is the distance between the ith moth and 

jth flame.  

Di = Fj - Mi (18) 

The number of flames is reduced during the iterations as equation (19):  

 
 
 

N-1
Number of flame = round N-L

T
 (19) 

where the maximum number of the flame population is N, the current iteration is L and T is the 

maximum number of iterations. 

2. Random search (RS) algorithm 

A global optimization problem with continuous variables may be highly nonlinear or contain several 

local optima. Heuristic algorithms like random search can obtain the global optimum solution [26]. A 

random search (RS) algorithm uses a stochastic approach for randomness. A random search method has 

the ability to solve large-scale problems efficiently with respect to the deterministic approaches. It is a 

derivation-free algorithm and easy to implement on problems without knowing about the gradient 

information of the problem functions [50]. The main advantages of the RS method are: a) simple 

algorithm and easy implementation, b) robustness to the noise in the objective function, c) insensitivity 

to irregularity of the objective function behavior and increasing dimension of the problem.  

The procedure for this algorithm can be summarized as follows. In the initial step, a feasible 

solution is randomly chosen from the search space as the optimal solution. Then, other solutions 

are randomly generated in the feasible region and any solution with better fitness than the optimal 

solution updates it. After some iterations, the optimal solution can be shrunk around the optimal 

solution. The RS algorithm with more details has been described in [51,52]. 

3. Hybrid MFO and RS algorithm (MFORS) 

Usually, some optimization algorithms are good in global exploration, while others are good in 

local exploitation [53]. The MFO is a promising optimization algorithm with high performance in 

global optimization problems [54-56]. The hybrid of MFO and RS, which is called MFORS, has been 

applied to keep a balance between exploitation and exploration search space. In this study, RS has 

been used for exploiting the best solution around the initial solution obtained by MFO. MFO shows 

good performance in global optimization, while RS is good in local exploitation. Thus, by a hybrid of 

these two algorithms, the advantages of both can be utilized. Figure 4 shows the pseudo-code of 

the RS algorithm, while Figure 5 shows the stages of the proposed MFORS algorithm.  
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Figure 4. The pseudo code of RS algorithm 

 
Figure 5. The flowchart of proposed MFORS algorithm 
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Results and discussion  

Simulation of PEMFC 

In this subsection, the simulation results are presented in order to validate the proposed MFORS 

algorithm for estimating the PEMFC parameters. The MFORS and other algorithms were imple-

mented under MATLAB 2014 and simulations have been done on an Intel, core i5 CPU, 6 GB RAM 

and 2.4 GHz computer. In this study, the population size for MFORS and other algorithms is equal to 

30 and the maximum iteration is 5000 [47]. Simulations have been done for two case studies, 

including the SR-12 modular PEM generator and the Ballard Mark V FC [46,57,58].  

Case study 1: SR-12 modular PEM generator 

The SR-12 Modular PEM Generator was used as the first case study. Its rated power is 500W. The 

operating conditions parameters are T = 323 K, PH2=149.584 Pa (1.47628 atm), PO2= 21.228 Pa (0.2095 

atm), Ns = 48, Jmax = 672 mA/cm2 maximum current density [37,46,57].  

Table 3 shows the optimal parameters related to the optimum implementation of the algorithms 

and a comparison of the proposed MFO and MFORS with other metaheuristic algorithms. The 

algorithms studied in Table 3 are as follows: Shark smell optimizer (SSO) [44], Cuckoo search (CS) [19], 

Cuckoo search algorithm with explosion operator (CS-EO) [19], Vortex search algorithm and 

differential evolution (VSDE) [18], Bonobo optimizer (BO) [40], Harris hawks optimization (HHO) [40], 

Chaotic Harris Hawks optimization (CHHO) [40], Grey Wolf optimization (GWO) [45], Improved Grey 

Wolf optimization (IGWO) [45], Multi-verse optimization (MVO) [45], Selective opposition-based Grey 

Wolf optimization (SOGWO) [45], Dragonfly algorithm (DA) [45], Atom search optimization (ASO) [45], 

Ant lion optimization (ALO) [44, 45], Sparrow search algorithm (SSO) [34], Salp swarm optimization 

(SSO) [34], Flower pollination algorithm (FPA) [59], Shuffled frog-leaping algorithm (SFLA), Firefly 

algorithm (FA), Artificial bee colony (ABC), Moth-flame optimization (MFO). 

Table 3. The optimal parameters for different algorithms of Sr-12 
 Algorithm 1 2103 3105 4104  b / V Rc / m SSE Year Ref. 

SSO -0.9664 2.2833 2.2833 -0.954 15.796 0.1804 0.66853 1.15080 2019 [44] 
SC 1.0782 3.7309 8.8207 0.9540 10.0 0.1471 0.71274 7.57590 2019 [19] 

SC-EO -1.0353 -1.0353 3.354 -0.954 10.0 0.1471 0.71233 7.57530 2019 [19] 
VSDE −0.8576 3.0100 7.7800 9.5400 23 0.1339 0.01516 1.26600 2019 [18] 

BO -1.0972 3.80925 9.8000 -0.95 400 23 0.175320 0.67231 1.05663 2020 [40] 
CHHO -0.8532 3.0918 8.2387 -0.9540 22.91 0.17623 0.62468 1.05716 2020 [40] 
HHO -0.8533 2.4173 4.2487 -0.95412 15.34 0.17794 0.37166 1.05931 2020 [40] 

IGWO -1.14361 -0.14361 3.5748 -0.95405 22.87 0.17533 0.66936 1.05660 2022 [45] 
MVO -0.90495 -0.90495 3.4871 -0.9540 22.87 0.1757 0.64633 1.05680 2022 [45] 
GWO -1.17592 -1.1759 3.3486 -0.9540 21.93 0.1755 0.64448 1.057000 2022 [45] 

SOGWO -1.1759 -1.1759 3.34861 -0.9540 21.93 0.1755 0.64448 1.05702 2022 [45] 
DA -1.07150 -1.0715 3.55304 -0.9540 23.0 0.1743 0.72377 1.05724 2022 [45] 

ASO -0.9940 -0.9940 3.40927 -0.9540 21.142 0.1751 0.64766 1.05724 2022 [45] 
ALO -1.10334 -1.1033 4.1130 -0.954 22.722 0.173 0.76773 1.05895 2022 [45] 
SSO -1.03331 3.72 9.57 -9.58 14.301 0.799 0.01421 0.09681 2021 [34] 
ALO -0.9438 3.4734 9.7898 1.1811 24.0 0.0136 0.03000 1.15130 2019 [44] 
FPA −0.85320 31.0 9.15 −0.954 13.00 0.571 0.01455 0.15982 2019 [59] 
ABC -1.082 3.4956 7.5015 -0.954 24 0.1711 0.17882 0.70821 - This study 
SFLA -0.9569 3.10183 7.45219 -0.954 24 0.171489 0.10000 0.70800 - This study 
FA -1.0882 3.7288 8.8773 -0.954 24 0.17149 0.10001 0.70800 - This study 

MFO -1.1733 3.18622 3.66397 -0.954 10 0.171487 0.10001 0.70801 - This study 

MFORS -1.1103 3.1041 3.75906 -0.954 15.532 0.2246 0.35008 0.09503 - 
This study 
(proposed) 

 

As shown in Table 3, the proposed MFORS could achieve the best results compared with the other 

algorithms. The average time to obtain parameters by the MFORS algorithm is 809 seconds. Current-
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Voltage dataset values, together with results of estimated voltage (Vmeasured) and SSE values obtained 

by proposed MFORS, are given in Table 4. 

Table 4. The I/V datasets of SR-12 found by the MFORS and voltage stack 

Sampling number Istack / A Vmeasured / V Vstack / V (Vmeasured - Vstack)2 / V2 
1 0 41.7791 42.1705 0.1532 
2 1.0188 41.1145 41.2848 0.0290 
3 1.9303 40.5010 40.6568 0.0243 
4 2.9491 40.0409 40.0512 0.0001 
5 3.9678 39.6319 39.5069 0.0156 
6 4.9330 38.9162 39.0276 0.0124 
7 6.0054 38.5583 38.5228 0.0013 
8 6.8633 38.1493 38.1335 0.0003 
9 7.9893 37.8425 37.6357 0.0427 

10 8.9544 37.3824 37.2171 0.0273 
11 9.8659 36.8712 36.8256 0.0021 
12 10.9383 36.2065 36.3674 0.0259 
13 11.9035 35.9509 35.9551 0.0000 
14 12.9759 35.4397 35.4950 0.0031 
15 13.8874 35.2352 35.1010 0.0180 
16 14.9598 34.7239 34.6322 0.0084 
17 15.8713 34.1616 34.2281 0.0044 
18 16.9437 34.1104 33.7446 0.1338 
19 17.9088 33.3947 33.3006 0.0089 
20 18.8204 33.0368 32.8725 0.0270 
21 19.8928 32.5256 32.3563 0.0287 
22 20.9651 31.9632 31.8250 0.0191 
23 21.9303 31.5031 31.3320 0.0293 
24 22.9491 30.9918 30.7947 0.0388 
25 23.9142 30.0716 30.2678 0.0385 
26 24.9866 29.4581 29.6596 0.0406 
27 26.0054 29.3047 29.0567 0.0615 
28 27.0241 27.7710 28.4266 0.4298 
29 27.9893 27.3108 27.8011 0.2404 
30 28.9544 27.3620 27.1447 0.0472 
31 30.0268 26.9530 26.3740 0.3353 
32 30.9383 26.0838 25.6799 0.1631 
33 31.9035 24.3967 24.9003 0.2536 
34 32.9759 23.0164 23.9716 0.9125 
35 34.0483 22.9952 22.9657 0.0009 
36 34.9598 21.9916 22.0384 0.0022 
37 35.9786 21.4871 20.9074 0.3360 
SSE    0.095037 

Case study 2: Ballard Mark V FC 

In this section, simulation has been done for Ballad Mark V FC, made by the Canadian company, 

with a rated power of 5 kW and operating conditions are T = 343 K, PH2=101 kPa (1 atm), PO2 = 101 

kPa (1 atm), Ns = 1, and Jmax = 1500 mA/cm2 [46,58]. Table 5 shows the optimal results obtained via 

the proposed and other algorithms [21]. 

The simulation results and experimental polarization curves I-V data for the SR-12 modular PEM 

generator and Ballard Mark V FC are illustrated in Figures 6 and 7. These results show that the model 

obtained by the proposed MFORS matches well with the experimental data. Figures 8 and 9 show 

convergence curves of MFORS and other algorithms for minimizing SSE. The algorithms studied in 

Table 5 are as follows: Whale optimization algorithm (WOA) [37], Grasshopper optimizer (GHO) [37], 

Enhanced transient search optimization (ETSO) [20], Lightning search algorithm (LSA) [60], Dandelion 

optimizer (DO) [61], Artificial rabbits optimization (ARO) [62], Transient search optimization (ETSO) 
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[20], Harris hawks optimization (HHO) [20], Artificial bee colony (ABC), Shuffled frog-leaping algorithm 

(SFLA), Firefly algorithm (FA), Moth-flame optimization (MFO). 

These results show that the convergence behavior of MFO is improved by using the RS algorithm, 

showing that MFORS could converge to better results. The average time to obtain parameters by 

the MFORS algorithm is 455 seconds. Furthermore, we ran the algorithm many times. When the 

obtained solution did not change much during different runs, the data variance was low and better 

results could be achieved from other algorithms. This shows the robustness of the algorithm, which 

is an advantage of RS in the proposed algorithm.  

Table 5. The optimal parameters for different algorithms of Ballard V Fc  

Algorithm 1 2103 3105 4104  b / V Rc / m SSE Year Ref. 
WOA -1.1978 4.4183 9.72 -16.27 23.0 1.002 0-1002 0.8537 2019 [37] 
GHO -0.8532 3.4173 9.8 -15.95 22.84 1.000 0.1000 0.871 2019 [37] 
ETSO -0.8534 2.5591 3.61 -16.28 23.0 1.000 0.1000 0.8536 2022 [20] 
LSA -1.0624 3.597 6.65 -16.49 23.00 1.030 0.1030 0.8140 2022 [60] 
DO -0.8532 2.8687 5.93 -14.75 23.00 1.000 0.1000 0.8092 2023 [61] 

ARO -1.1588 3.5208 4.05 -16.72 23.99 1.000 0.1000 0.81391 2023 [62] 
TSO -0.8741 3.0843 7.96 -9.77 2.713 7.636 0.7636 1.721 2022 [20] 
HHO -1.0098 3.492 7.82 -11.00 22.98 5.5000 0.5500 1.418 2022 [20] 
ABC -1.1985 1.5000 0.0001 -1.19 24 1.000 0.1000 1.7426 - This study 
SFLA -1.1077 1.4505 8.73 -1.03 19.97 1.944 0.1944 2.0138 - This study 
FA -1.0876 1.4408 8.62 -1.17 19.21 3.053 0.3053 2.9369 - This study 

MFO -1.0768 1.2329 7.83 -1.02 18.55 2.532 0.2532 1.9731 - This study 

MFORS -1.0593 2.9279 3.737 -1.3920 23.025 1.1815 0.1002 0.01802 - 
This study 
(proposed) 

 

 
Figure 6. I-V characteristic for experimental and simulation results of sr-12 problem 

 
Figure 7. I-V characteristic for experimental and simulation results of Ballard V FC 
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Figure 8. The convergence behavior of MFO and proposed MFORS for SR-12 

 
Figure 9. The convergence behavior of MFO and proposed MFORS for Ballard V FC  

Conclusion  

An accurate mathematical model of the FC system is suitable for control, evaluation, simulation 

and optimal operation of the FC system. However, the I-V characteristic of FC is nonlinear and an 

optimization algorithm is needed to find optimal parameters of its model. In this study, a new hybrid 

optimized algorithm called moth flame optimization-random search (MFORS) was proposed to 

identify the optimal parameters of PEMFC. This algorithm used the power of MFO in global 

exploration and the advantage of RS in the exploitation of the search space around the solutions. 

Simulation results showed that the proposed algorithm could achieve less SSE in comparison with 

the other algorithms. Based on the performance of this algorithm, using MFORS for complex energy 

problems, such as optimization in active distribution with microgrids, is proposed for future works. 
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Another direction for future work is considering uncertainty in modeling energy systems and 

adopting MFORS to solve these problems. 
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