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Abstract 
The local deposition process from copper sulfate electrolyte was investigated depending 
on nozzle moving speed and additive concentration in the electrolyte. A 2×2 cm square 
model was created and sliced in Ultimaker Cura software, uploaded in a 3D printer, and 
printed from the copper electrolyte on the stainless-steel surface. Low additive 
concentration in the electrolyte was found to influence dendrite formation in the corner 
sections of a square model. Nozzle movement speed was found to influence the deposition 
area and the thickness of the metal. The lowest tested nozzle movement speed of 5 
s / voxel increased the deposition area by nearly 40 % in horizontal direction compared to 
2.5 s / voxel. Further increase of nozzle movement speed to 1.6 s / voxel does not change 
the deposition area. The thickness in the corners increases by 2.5 times compared to the 
straight section of the square when the nozzle movement speed increases from 5 to 
1.6 s / voxel. The non-uniform thickness of the deposited metal is caused by a considerable 
reduction of nozzle movement speed when it moves through the corner. The results 
obtained in this work can be further used to develop electrochemical 3D printing 
technology.  

Keywords 
Additive manufacturing; copper electroplating; slicing; profilometry 

 

Introduction 

Additive manufacturing is a novel and fast-developing technique based on the bottom-up 

approach. Unlike traditional manufacturing, the part is produced by forming it from the material 

layer by layer when excessive material is mechanically or physically removed. Non-metallic additive 

manufacturing technologies are rapidly developing and, in some industries, have already replaced 

traditional ones, but metal parts additive manufacturing remains a challenge [1,2].  
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Most metal additive manufacturing technologies require high energy to melt the metal. Laser or 

electromagnetic sources are used [3,4]. Compared to them, the electrochemical additive manu-

facturing technique, when metal parts are formed by metal deposition from ions in the electrolyte 

solution is much cheaper because it does not require high energies and prior preparation of 

expandable materials.  

Different techniques have been developed for electrochemical additive manufacturing (ECAM). 

They can be divided into two main groups: mask-based and maskless electrochemical manufactur-

ing [5]. It is generally agreed that maskless manufacturing is a more promising technique because it 

does not require mask preparation and can be performed easily using only electrolyte and 

electrodes.  

Several maskless ECAM techniques with different manufacturing speeds and accuracy are 

developing. Among them are fluidic force microscope (FluidFM) [6-10], meniscus-confined 

deposition [11-16], jet electrodeposition [17-19] and localized electrochemical deposition [20-24]. 

In the localized electrochemical deposition technique, the electric field distribution in the electrolyte 

determines the deposition area; the electrolyte composition and current mode determine the 

deposition rate. In our previous works, it was established that electrolyte composition can influence 

the slope of the polarization curve and influence the deposition area [24].  

The aim of the present work is to study the influence of additive concentration in the electrolyte 

and the 3D-printer nozzle moving speed on the deposition area and thickness distribution of the 

deposited copper layer. 

Experimental  

The local electrochemical deposition process was investigated in square model printing. The 

appearance of the model in the UltiMaker Cura software is shown in Figure 1. The size of the object 

was 2020 mm and the height was 2 mm. The object was sliced in g-code with the following 

parameters: nozzle moving speed F1200, coordinate movement direction (X60.178, Y60.179), layer 

height (Z0.001) that corresponds to 1 m in the slicer. The g-code was loaded in a 3D printer. 
 

 
Figure 1. The appearance of square model, used in 3D printing in the UltiMaker Cura software 

The laboratory setup is shown in Figure 2. The printing process is performed on the surface of 

the stainless-steel plate placed on the bottom of the plastic vessel. 1 L of electrolyte was poured 

into the vessel, and its level was 1.5-2 cm above the plate. The vessel was placed inside the 3D 

printer frame. The steel plate was attached to the negative pole of the direct current source, while 

the positive pole was attached to the anode placed inside the printer nozzle. The anode was made 

of lead. An insoluble lead anode was used because lead in a sulfate solution is chemically stable and 

is potentially cheaper than platinum. The main purpose of the insoluble anode application is to avoid 

the formation of monovalent copper ions in the solution, which can provoke the formation of coarse 



R. Babchuk et al. J. Electrochem. Sci. Eng. 14(2) (2024) 265-273 

http://dx.doi.org/10.5599/jese.2291   267 

crystalline sediments (disproportionation with the formation of metallic dispersed copper, which is 

transferred to the cathode and provokes the formation of dendrites). The printing process was 

started by turning on the current once the anode was placed in a certain position of vessel. The 

current source maintained a constant current value, varying the applied voltage. 

 
Figure 2. The laboratory setup for local electrodeposition 

The copper plating electrolyte was used for metallic copper deposition. Two electrolyte 

compositions were used with different concentrations of the additive. Electrolyte compositions are 

given in Table 1, while deposition conditions are presented in Table 2. A total of 5 objects were 

printed in both electrolytes and at 3 different nozzle moving speeds. 

Table 1. Electrolytes composition 

Component 
Content, g/L 

Electrolyte 1 Electrolyte 2 

CuSO4·5H2O 200 200 

H2SO4 75 75 

KCl 0.3 0.3 

Additive RUBIN T-200* 
1 mL/L of Rubin T200-A 
4 mL/L of Rubin T200-G  
1 mL/L of Rubin T200-E 

2 mL/L of Rubin T200-A 
8 mL/L of Rubin T200-G  
2 mL/L of Rubin T200-E 

*Leveling and brightness additive, KIESOW OBERFLÄCHENCHEMIE GmbH & Co. KG 

Table 2. Deposition conditions used for local copper deposition investigation 

Exp. No Electrolyte Anode moving speed, s/voxel Applied current density, A / cm2 Deposition duration, h 

1 1 2.5 4 6 

2 1 1.6 4 6 

3 2 5.0 4 6 

4 2 2.5 4 6 

5 2 1.6 4 6 
 

The 3D-printed objects were characterized by 3D profilometry. Two cross-sections were 

measured and used for analysis: a cross-section of the edge and a cross-section of the corner 

(Figure 3). 
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Figure 3. The scheme showing cross-section regions in the printed square object used for analysis:  

1 - cross-section of the edge; 2 - cross-section of the corner 

Results and discussion 

The copper deposition process in the sulfate electrolyte is a simple electrochemical process that 

can be summarized with the equation: 

Cu2+ + 2e− = Cu (1) 

Every 2 electrons reduce one copper atom, which is deposited on the surface of the metal 

substrate. According to Faraday’s law, the amount of electricity determines the mass of deposited 

metal. At the same time, the morphology of deposited metal depends on the kinetic parameters of 

the electrochemical process as well as the electric field distribution between the anode located in 

the nozzle and a cathode placed at the bottom of the vessel. 

The photos of deposited objects are given in Figure 4. All the deposited objects are square-shaped. 

However, depending on the deposition conditions, the morphology of deposited metal is different.  
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Figure 4. Photographs of 3D-printed square objects: 1 to 5 - correspond to experiment numbers in Table 2 
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In Electrolyte 1, with reduced additive content, the dendrites formation appears in the corners 

of the square (Figure 4.1, 4.2). Also, the reduction of nozzle moving speed leads to an increase in 

deposition area (Figure 4.3). 

Depending on deposition conditions, size distribution in printed objects was measured using 3D 

profilometry. The profilograms are shown in Figure 5. The formation of dendrites is clearly visible in 

the corner section for the objects printed in Electrolyte 1 at both nozzle moving speeds. The cross-

sections of printed objects are presented in Figures 6 and 7. 
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Figure 5. Profilograms of 3D-printed square objects: 1 to 5 - correspond to experiment numbers in Table 2 

Figure 5 (1,2) shows active dendrite formation on the corner section of the square. The cross-

section profile (Figure 7, curve 1, 2) shows that the height of dendrites is nearly the height of the 

deposited metal thickness. The reason for dendrite formation is the high current density in the 

corner section and a longer period of deposition because the anode stays longer above the corner 

compared to the straight section of the square edge. An increase in the thickness of the copper 

deposit, as well as the formation of dendrites at the corners, is associated with a decrease in the 

speed of movement and some delay of the nozzle when passing the corner of the trajectory. As a 

result, the amount of electricity that falls on this part of the trajectory increases, and because of 
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slowing down, the average current density will increase, which provokes dendrite formation. The 

dendrite formation problem is solved by increasing the additive concentration. The additive is 

known to increase the deposition polarization, thus reducing the deposition rate. In this work, the 

dendrite formation was hindered when additive concentration was corrected according to 

recommendation: 2 mL/L of Rubin T200-A, 8 mL/L of Rubin T200-G and 2 mL/L of Rubin T200-E. 
 

 
Figure 6. Typical cross-section of the edge of the printed square object. Numbers 1 to 5 correspond to 

experiment numbers in Table 2 

 
Figure 7. Typical cross-section of the corner of the printed square object. Numbers 1 to 5 correspond to the 

experiment number in Table 2 

The movement speed of the nozzle influences the deposition process in both the corner and 

straight sections. Very low speed increased the deposited metal area. The cross-section of the edge 

shows a 40 % wider deposition area. The increase in nozzle movement speed from 2.5 to 1.6 s/voxel 

does not further reduce the deposited surface area.  

In the corner section, the lowest tested speed of 5 s/voxel, the most uniform layer was deposited. 

The thickness of the deposited metal in the corner is only 15 % higher than on the edge. The next 
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tested speed of 2.5 s/voxel increased the thickness in the corner to 1.5 times, and when the nozzle 

speed reached 1.6 s/voxel, the corner thickness was nearly 2.5 times higher than the edge one.  

The change in the deposited metal thickness in the corner section is caused by the reduction of 

nozzle movement speed (Figure 8). At the lowest tested speed of 5 s/voxel, the nozzle moves 

through the corner section with nearly the same speed as through the straight section. Thus, the 

amount of deposited metal remains the same. When the speed increases to 2.5-1.6 s/voxel, the 

nozzle passes the straight section faster than the corner section. So, the thickness of the deposited 

metal on the straight section becomes lower, and in the corner section – higher. 
 

 
Figure 8. Schematic explanation of nozzle moving speed influence on the thickness of deposited metal:  

1 - low nozzle moving speed; 2 - high nozzle moving speed 

Further investigation should be aimed at current control over the corners in a manner that 

reduces the current value proportional to the speed reduction. 

Conclusions 

The local deposition process from copper sulfate electrolyte was investigated. The additive 

concentration in the electrolyte was found to influence dendrite formation. The dendrites are formed 

on the corner sections of a square model. The use of recommended additive concentration 2 mL/L of 

Rubin T200-A, 8 mL/L of Rubin T200-G and 2 mL/L of Rubin T200-E reduces the formation of dendrites. 

Nozzle movement speed influences the deposition area of the metal and its thickness. The lowest 

tested nozzle movement speed of 5 s / voxel increased the deposition area by nearly 40 % compared 

to 2.5 s/voxel. Further increase of nozzle movement speed to 1.6 s/voxel does not change the 

deposition area. 

The increase in nozzle movement speed influences the deposited metal thickness in the corner 

sections. The thickness in the corners increases by 2.5 times compared to the edges of the square 

when the nozzle movement speed increases from 5 to 1.6 s/voxel. 

The results obtained in this work can be further used to develop electrochemical 3D printing 

technology. The further investigation direction should be aimed at current control over the corners 

in a manner that reduces the current value proportional to the speed reduction. 
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