Taylor & Francis
Taylor & Francis Group

Automatika

Journal for Control, Measurement, Electronics, Computing and
Communications

e

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/taut20

Secure cloud data storage solution with better
data accessibility and time efficiency

K. Roslin Dayana & P. Shobha Rani

To cite this article: K. Roslin Dayana & P. Shobha Rani (2023) Secure cloud data storage
solution with better data accessibility and time efficiency, Automatika, 64:4, 756-763, DOI:
10.1080/00051144.2023.2213564

To link to this article: https://doi.org/10.1080/00051144.2023.2213564

8 © 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

ﬁ Published online: 25 May 2023.

N
CJ/ Submit your article to this journal &

||I| Article views: 1175

A
& View related articles &'

View Crossmark data &'

@ Citing articles: 1 View citing articles &

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=taut20

https://www.tandfonline.com/action/journalInformation?journalCode=taut20
https://www.tandfonline.com/journals/taut20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2023.2213564
https://doi.org/10.1080/00051144.2023.2213564
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2023.2213564?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2023.2213564?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2213564&domain=pdf&date_stamp=25 May 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2213564&domain=pdf&date_stamp=25 May 2023
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2023.2213564?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2023.2213564?src=pdf

AUTOMATIKA
2023, VOL. 64, NO. 4, 756-763
https://doi.org/10.1080/00051144.2023.2213564

IVI N Taylor & Francis
N Taylor & Francis Group

8 OPEN ACCESS W) Check for updates

Secure cloud data storage solution with better data accessibility and time

efficiency

K. Roslin Dayana and P. Shobha Rani

Department of Computer Science and Engineering, R.M.D. Engineering College, Kavaraipettai, Tiruvallur, India

ABSTRACT

The environment of cloud computing provides several advantages and a variety of data storage
models, which entirely frees users from the vexing processes of storage equipment upgradation
and data administration. Nevertheless, the customers’ primary worry is the safety of their data,
and the literature offers a number of different security-based solutions for addressing this issue.
This paper proposes a technique for time-efficient cloud data storage that makes use of keccak
and Advanced Encryption Standard (AES) which enhances the data availability with a reasonable
storage space. Third party agents are not employed, due to the fact that a third party cannot be
relied upon to maintain a high level of data security. Thus, the proposed algorithm is applied by
cloud users before the process of outsourcing is carried out. This method is resistant to data tam-
per and analytical attacks. In addition, the execution of the work that has been proposed requires
a limited amount of time, which, in turn, minimizes the amount of energy that is required. In con-
trast to the already used algorithms, the presented work demonstrates superior performance in

ARTICLE HISTORY
Received 20 February 2023
Accepted 8 May 2023

KEYWORDS

Cloud data accessibility; time
efficiency; energy
conservation; security; data
outsourcing

terms of its overall effectiveness.

1. Introduction

In today’s environment, each and every second is spent
dealing with a vast amount of data. It is asserted that
most of the data are secret since they contain infor-
mation that is personally identifiable as well as health
and economic details. The quantity of data continues
to grow over time, making it extremely challenging for
enterprises to both store and manage the information.
In addition to this, the firms are required to acquire
costly storage equipment in order to function properly.
Another significant problem that the firms have to deal
with is the handling of their data.

The idea of computing in the cloud is a boon to
enterprises of both moderate and small sizes since it
provides the greatest option to avoid setting aside a sig-
nificant amount of money for the purposes of data stor-
age. In addition, cloud computing gives users access to
a plethora of appealing qualities, including on-demand
services, simple and affordable payment methods, sim-
plified data upkeep, and many more. These charac-
teristics encourage data owners to store their data
on the cloud and outsource the management of their
data.

In this manner, the owners of the data are able to
enjoy minimized overhead costs concerning data man-
agement and storage [1-5]. Yet, the data owners are hes-
itant to hand over their sensitive data to an untrustwor-
thy Cloud Service Provider (CSP) [6-10]. This raises a

number of concerns relating to security, including those
pertaining to the availability, integrity, and confidential-
ity of data. For example, certain clouds have behaved
inappropriately by erasing or otherwise altering data
that is only seldom accessed [11,12].

It has been stated that Amazon S3, Gmail, and Side-
kick all suffer from the same kind of problem, which
manifests itself as a failure, the deletion of emails, and a
disaster accordingly [13]. As a result, it is necessary to
protect the accuracy of the data, and the data’s integrity
must be preserved at all times. This research article’s
primary objective is to propose a secure data storage
model that maintains the data integrity of cloud storage
while ensuring better data accessibility. This is accom-
plished by combining two separate security protocols.

The work that is being proposed ensures the data
integrity of the information that is saved in the cloud
by utilizing the keccak hash function and the Advanced
Encryption Standard (AES) for the purpose of carry-
ing out the encryption operation. Therefore, the work
that is being presented offers dual layers of protection.
The efficacy of the proposed work is evaluated in com-
parison to the SHA-3 member algorithms, including
BLAKE, SKEIN, and SHA?2, with respect to through-
put and memory requirements. In addition to this, the
amount of time required for encryption is also indicated
below. The key points of this article are summarized in
the following list.

CONTACT K. Roslin Dayana @ krd.cse@rmd.ac.in e Department of Computer Science and Engineering, R.M.D. Engineering College, Kavaraipettai,

Tiruvallur, India

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted

Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2213564&domain=pdf&date_stamp=2023-11-01
mailto:krd.cse@rmd.ac.in
http://creativecommons.org/licenses/by/4.0/

e A security mechanism for cloud storage that employs
both hashing and encryption is described above as
having two layers of protection.

e Because the data nodes are organized in a structured
tree style, it is possible to update any section of the
data at any given moment in time.

e There is no need to look up any tables, and there are
no tables that are maintained.

e Hashing process of this work relies on Keccak’s hash
function, which enhances the security and process-
ing speed. This results in a reduction in the amount
of memory that is required, which in turn enhances
performance.

e The task that is being proposed does not include any
arithmetic or rotational operations.

e The AES algorithm is used for encryption because it
is well-known for being both quick and effective.

The remaining portions of the article are organized in
the following fashion: In the following section, the rele-
vant literature with regard to maintaining secure cloud
storage is examined. The proposed method is broken
down in greater detail in section 3. In section 4, the
effectiveness of the proposed work is proven. Section
5 concludes the article.

2. Review of literature

This section reviews the related literature concerning
data outsourcing schemes of cloud computing.

In [14], an identity-based Provable Data Possession
(PDP) scheme is presented on the basis of RSA assump-
tion for privacy ensured secure cloud storage. The
identity-based homomorphic authenticators are pro-
duced by taking the outsourced file and a time-bound
global parameter. The integrity verification of this work
is proven to be better with reduced computational and
communicational overhead.

A Lattice-based data outsourcing scheme is pre-
sented with public integrity verification in [15]. The
data integrity is verified by Third Party Auditor (TPA)
and this work ensures that the data is not deleted with-
out the concern of TPA. In [16], a secure identity-
based data outsourcing scheme is presented for public
integrity verification in cloud storage. This scheme is
based on lattice-based cryptography that prompts the
data owner to produce the signature of the data before
outsourcing. The data integrity is verified by the TPA,
without accessing the complete data. The certificate
management processes are also not required.

A range query scheme for outsourced data for the
cloud is presented in [17]. This work utilizes pivot map-
ping for data mapping to a low-dimensional space. In
addition, the data is encoded and the maps are coded to
multiple bloom filters, which are organized in a binary
tree-based index. This work ensures data privacy and
the data similarity is hidden. In [18], an identity-based

AUTOMATIKA (&) 757

signcryption scheme is presented with revocation. This
work focuses on confidentiality, integrity, and authen-
tication too.

A revocable attribute-based data storage scheme for
mobile clouds is presented in [19]. This work does not
prompt the data owners to show the authorized users
and the mobile users can authorize the Cloud Service
Provider (CSP). Finally, the file re-encryption process
and access update are carried out offload without dis-
turbing the users. In [20], a system with provenance
is presented for outsourced data with the blockchain
approach. The access logs are secured by blockchain
while maintaining two categories of data users and
accounts.

In [21], a cloud access control framework is pre-
sented on the basis of intelligent big data analytics. This
work utilizes a global identifier for providing access
control while providing data acquisition and decentral-
ized audit and ordering chain mechanisms. A Provable
Data Possession (PDP) scheme is presented with out-
sourced data transfer in [22]. This work focuses to
verify the security of the data belonging to an acquired
enterprise, to verify the integrity and privacy of the data,
and to outsource the transferable data computation.
In [23], a secure outsourcing scheme is presented on
the basis of user-side encrypted file system. This work
presents a user-based encryption technique, which is a
hybrid of symmetric and asymmetric techniques with
Identity Based Encryption (IBE).

In [24], a cloud storage system is presented on the
basis of batch leaves authenticated merkle hash tree.
This work supports dynamic updates to the outsourced
data and the indexes of all the leaf nodes are main-
tained. A highly secure k-Nearest Neighbour (k-NN)
classification technique is presented for cloud data in
[25]. This work relies on homomorphic cryptosystem
and secret sharing, which employs secure comparison,
sorting, frequency calculation and so on for attaining
efficiency.

A privacy preserving Support Vector Machine
(SVM) classification based data outsourcing is pre-
sented in [26]. Here, a client-server data classification
protocol is presented on the basis of SVM classifier. This
work can handle privacy preservation problems for two
and multiple classes. Secure two-party computation
and pailler homomorphic encryption are incorporated
in this work.

Inspired by these works, this article aims to present
a secure cloud storage solution that is based on Keccak
hash tree and AES algorithm, which can assure better
data accessibility.

3. Proposed secure cloud data storage
solution with effective data accessibility

Despite the fact that there are a number of research
problems linked with cloud computing, security has

758 . K. ROSLIN DAYANA AND P. SHOBHA RANI

Block Compute Hash code

Figure 1. Overview of the proposed work.

been the most researchable topic ever since its intro-
duction. Cloud services offer several benefits, including
elasticity, scalability, flexibility, and pay only for the ser-
vices that are utilized, and so on, which is why they are
appealing to businesses of all sizes, particularly those
of medium and small scale. Users have a great deal of
mistrust or scepticism in their CSPs, due to the unpleas-
ant experiences they have had with data exploitation
or leaking in real-world situations. The primary con-
cern of cloud users is the safety of their data [27-33].
Figure 1 illustrates the process through which the work
is completed in its entirety.

As a result, CSPs cannot be relied upon entirely by
customers, and users themselves need to take certain
safeguards. Encryption, which transforms the data into
a format that cannot be understood, is one of the safety
measures that has been confirmed to be the most suc-
cessful in preventing the misuse of data. The CSP is only
able to access the data after first conducting a number
of manipulations on them, and the ease with which the
data may be accessed depends on how well the encryp-
tion technique works. When an encryption technique is
more effective, it becomes increasingly difficult to pene-
trate the security line and interpret the data. The keccak
method uses a tree data structure and is based on the
idea of hashing, which is a cryptographic function. This
assists in achieving good data arrangement and helps
to achieve better data accessibility. It also contributes to
the effectiveness of the overall system.

The information is arranged in a bottom-up fash-
ion, and the root node contains the hash code for the
entire tree structure. As a result of the fact that the root
node is the most significant component of the tree, the
AES algorithm is utilized once more in order to encrypt
the hash code of the root node. This concept ensures
a higher level of security and has the potential to suc-
cessfully defend against assaults including data analysis
and data tampering. It is quite tough to manipulate the
data or analyze the data due to the fact that this task
relies on hash code. The standard organization of data
also makes it very difficult to analyze the data. The next
part provides an explanation for each stage that will be
involved in carrying out the proposed work.

Compute dynamic
key 256

‘—| Encrypt by AES 256

Store the cipher text

I

3.1. Keccak with AES

As was mentioned previously, the Keccak hash function
is a strong candidate for the SHA-3 algorithms, and it
is founded on the concept of sponge formation. The
creation of the sponge is determined by the relation-
ship between two significant parameters called bit rate
(br) and capacity (c). The sponge is formed based on
the values of br and ¢, and the total of these two val-
ues determines the permutation of the breadth of the
keccak. Initialization, absorption, and squeezing are the
three crucial steps that are involved in the operation of
the keccak algorithm, which can be seen as its under-
lying working principle. Figure 2 illustrates the basic
operations that are performed by the algorithm.

The keccak hash function is employed after the input
data has been segmented into a large number of smaller
data chunks during the phase of startup. During the sec-
ond phase, the XOR operation is conducted with the
current matrix using the data chunks that have fixed
standard bits and 24 rounds of permutations are per-
formed. After all of the input data have been processed
in this manner, the squeezing phase begins. During this
phase, the final matrix will be truncated, in order to
obtain the necessary hash value.

Consider the event that when the minimum needed
hash length is not attained, the procedure is redone
until the minimum required hash length is attained.
These steps are necessary for the development of
sponges, and they can be summed up below. The sponge
creation of the keccak hash tree operates on bits, and it
adheres to the idea that the total of br and ¢ must be as
high as possible, which is currently 1600. This value has
been permanently set to prevent bit attacks, which is the
reason for it. The work that is being proposed involves
256 bits length for the output. The data to be outsourced
is represented in the following way.

Data = {Datay;, Datay,, Datays,, Dataps, }

All of KeccaK’s operations are done using byte-based
operations. Now that all of these separated blocks have
been stacked in tree fashion, the construction of the
sponge is complete. After that, each bit is placed in its

Skegregate into Data

1

ﬂ_
E‘
N
ﬂ‘
w
E
(3,

I_B_4—,

B1...Bn = Data blocks

s ‘

AUTOMATIKA 759

E(H(B,C))
Poy

]
H(E) H(F)

H(D) H(G)

Figure 2. Proposed secure cloud data storage with better data accessibility.

proper location at the base of the tree, and the nodes on
the level below that one are responsible for calculating
the hash value. The keccak hash algorithm is utilized in
the computation of the hash value, and the structure of
the hash tree is laid out as follows.

In this case, the hash code of all of the data that is
present in the tree is stored at the node that is con-
sidered to be the tree’s root. With the assistance of the
AES algorithm, this work encrypts only the root node
of the tree rather than encrypting all of the nodes that
are engaged in the tree.

Keccak Sponge Formation

Input : Data CD;
Output : Formed sponge;
Begin
ST[a,b]=0 for all (a,b) in 0 to 4;
BL = Divide CD into bytes,
// Absorption
Forall BL; in BL
Do
ST [a,b]=ST[a,b] ® BL [a+5b]
ST = keccak — f[br + c](ST)
End do
End for;
//Squeeze
Q = Empty String;
0=0 || ST/a,b] //String concatenation
ST=Keccak - f [br + c](ST)
Return Q;
End;

Following the establishment of a tree with hash
codes, the implementation of encryption contributes an

additional layer of protection to the overall framework
of the system. During this stage of the process, the well-
known encryption technique AES is used. The execu-
tion speed of AES is well-known, as is the high level
of security it provides. The hash codes are encrypted
using the dynamic key so that the level of security can
be increased. The dynamic key is not divulged to any
third party by the owner of the data at any time. The
Codelgniter key generator, which has a length of 256
bits, is the one responsible for producing the dynamic
key for this work.

Because it operates across bytes rather than bits, AES
is the encryption method of choice for this activity. In
this study, the Advanced Encryption Standard (AES)
is utilized with a key size of 256 bits, which results in
14 rounds of encryption. The level of system security
also improves along with the amount of rounds that
are played in a game. Every single cycle makes use of a
128-bit key, the computation for which is performed by
the AES key itself. This section presents the algorithm
used for the encryption step.

Encryption phase

Begin

For all data blocks

Do

Compute dynamic key ‘d’ by Codelgniter key generator;
Pass d and hash code to AES;

Return cipher text;

End;

End;

Every round of AES requires a number of significant
actions, including shifting rows and columns, mixing
columns, substituting bytes, and adding round keys.
The bytes that are being input are initially passed into
the S box, which is laid out in the matrix form. After
that, the rows are rearranged taking into account the

760 K. ROSLIN DAYANA AND P. SHOBHA RANI

positioning constraints and then the columns are mixed
up by switching the old bytes with new ones, and this
process stops in the 14th round by itself.

The XOR operation is performed with the round key
when it comes to the final components of the matrix. In
order to produce the cipher text, this procedure must
be carried out for a total of 14 rounds. The security of
the system is significantly bolstered by the fact that the
dynamic key is never divulged to anyone. Additionally,
the original data text is not directly encrypted; rather,
the hash codes that are produced are encrypted.

Therefore, the results of this investigation give secu-
rity on two different levels. When the owner of the data
has to perform an integrity check, the AES algorithm is
decrypted using the dynamic key that is kept a secret.
This allows the hash code to be acquired. After that, the
hash codes can be compared with one another in order
to validate the data’s authenticity. By posing a challenge
to the cloud server, the owner of the data can run the
integrity check whenever they want at any moment in
time. The next section evaluates and discusses work
performance.

4, Results and discussion

The effectiveness of the proposed work is evaluated by
simulating it in Java on a stand-alone computer with
8 GB of RAM and one TB of hard drive space. The
performance of the proposed work is evaluated from
three different perspectives. Initially, the performance
of the proposed work is analyzed with respect to the
member algorithms of SHA3. The second round of per-
formance analysis is done by contrasting the proposed
work with Merkle hash tree. The third round of perfor-
mance analysis is performed to justify the choice of AES
algorithm.

The amount of time it takes to carry out an algorithm
is yet another crucial indicator for measuring its perfor-
mance. In order to reduce latency as much as feasible,
the amount of time spent in execution needs to be kept
to a minimum. It is not possible for an algorithm to
have a good performance and a long execution time at
the same time. Variations in the data size are used in
an effort to determine how the suggested twin-layered
security method would perform in terms of its execu-
tion time. This experiment is conducted in two distinct
settings by making adjustments to the amount of out-
put that is received. The length of the output can be
somewhere between 256 and 512 bytes.

It is possible to deduce from graph 3 that the length
of the output plays a significant role in determining the
amount of time required for the execution. The Intel
Corei7 processor was used to get the result that was just
discussed. When the output length is fixed at 512 bytes,
the process of execution takes up less time than when it
is set to 256 bytes, which causes the execution process
to take up more time overall. When speed is prioritized

=4—0L=256
6 =fi=—-0L=512

250 500 750 1000
Data (MB)

Figure 3. Execution time analysis.

over security, the output length can be lengthened to
accommodate the higher pace. When the output length
is set to 256, the br, ¢, and d values are respectively
set to 1088, 512, and 32. When the output length is
512 bytes instead of 512 bytes, the values of br, ¢, and
d are respectively set to 576, 1024, and 64. This is
another option. Therefore, an increase in the total num-
ber of rounds results in an improvement to the system’s
security Figure 3.

Thus, the main objective of the work is to present a
cloud data security model with better data accessibility
is achieved. The proposed security model is examined
with several performance metrics and the proposed
work outperforms the comparative algorithms.

4.1. Performance comparison between Keccak
and Merkle Hash tree

The existing auditing mechanisms confront multiple
drawbacks. Some of them are communication over-
head, authentication issues. These issues are proposed
to be addressed by the proposed work by employing
Keccak’s hash tree. The public auditing mechanism to
be proposed considers the degree of nodes, such that
the verification process of multiple replicas becomes
efficient and effective.

Keccak’s hash tree processes each block of the data
and it can process multiple blocks of data at a time. As
parallel processing is made possible, the execution time
is very much lower. The parallel computation can be
classified on the basis of multiple or single message.

In the case of multiple message scheme, the data
blocks which are sponges are not dependent on each
other. If it is a single message type, then the sponges are
interdependent and hence the outcome of a sponge will
be the input of another sponge.

The number of nodes in a keccak’s tree can
be decided by considering the length of the data.
Every node in the tree processes the sponge and the
higher-level node depends on the lower-level node. The
outcome is returned in the root node of the tree.

12000 -

10000

8000

6000

4000

Auditing communication (kb)

2000 -

Merkle Keccak

Figure 4. Auditing communication analysis.

AUTOMATIKA 761

14000

12000

10000

8000

6000

4000

Data Transfer (bytes)

2000

Merkle Keccak

Figure 6. Data transfer rate analysis.

Table 1. AVS of different encryption algorithms.

7000
Place of Bit modification Blowfish DES AES
AGOOO | Initial 0.008 043 0.996
£5000 | Middle 0.007 0.46 0.994
= Last 0.007 0.44 0.996
24000
g
©3000 1 encryption time and throughput. Finally, the perfor-
§2000] mance of keccak and AES algorithm is analyzed by
& Avalanche effect.
1000 | In the proposed approach, AES-256 is utilized and
0 the reason for the choice of AES-256 is justified

Merkle Keccak

Figure 5. Storage overhead analysis.

The inputs passed to this tree are height, degree,
block size to be processed, rate, and capacity. The
parameter rate decides the speed at which the data has
to be absorbed by the node. Capacity is the number
of bits. Height is the number of levels that a tree can
grow. Degree is the parameter that decides the number
of children that a node can possess.

The growth mode of the keccaK’s tree to be used in
our work is leaf interleaving, as such a tree can work
for any sized input. In addition to this, the proposed
work compares the performance of the Keccak is ana-
lyzed against Merkle hash tree in terms of auditing
communication, storage overhead, and data transfer.

Auditing communication overhead is considered, as
this work maintains a tree like structure with leaves. As
the work has to consider all the data in the leaves, the
auditing communication is a bit higher than the Merkle
hash tree. On the other hand, the storage overhead is
minimal for the proposed approach with a better data
transfer rate, as shown in Figures 4-6. The proposed
work is analyzed to prove the efficacy of AES algorithm
in the following section.

4.2. Performance analysis by varying encryption
algorithms

This section aims to emphasize the efficiency of the pro-
posed security scheme in two ways. Initially, the choice
of AES algorithm is proven by comparing with the anal-
ogous algorithms such as DES, Blowfish in terms of

by performing comparative analysis with the analo-
gous encryption algorithms such as Data Encryption
Standard (DES), Blowfish, AES-128. The efficiency of
encryption can be judged with the help of Avalanche
effect.

The avalanche effect is measured by the variation
of output data when the input data is altered. Hence,
an encryption algorithm must show greater avalanche
effect score, such that any alteration made can show sig-
nificant changes. Suppose when a single bit is modified,
considerable changes are observed. The avalanche score
(AVS) ranges in the scale of 0-1 and is computed by the
following formula.

AVS = %

Ty
Cump is the total count of modified bits in the cipher text
and Ty is the total number of bits in the cipher text.
When the AVS is greater, the encryption algorithm is
proven to be stronger and more efficient. The following
Table 1 presents the AVS of different encryption algo-
rithms. The cipher text is altered by a single bit, to carry
out this analysis in different places (initial, middle, and
last).

This analysis is carried out by varying the size of the
data and the average AVS is presented in the above table.
On observing the AVS, the AES algorithm is found to
be a better performer than other algorithms and so AES
is chosen for TSS. Additionally, the time consumption
of AES is analyzed and the results are as follows. This
analysis is performed by varying the input size Table 2.

The time complexity is measured in terms of
milliseconds. Blowfish algorithm consumes minimal

762 K. ROSLIN DAYANA AND P. SHOBHA RANI

Table 2. Time consumption analysis of encryption algorithms.

Size of input (kb) Blowfish (ms) DES (ms) AES (ms)
10 48 8.3 11.9
39 8.8 33.2 209
56 16.20 53.6 224
112 26.8 67.4 328
168 36.7 83.1 431

Table 3. AVS of the combination of encryption algorithms.

Place of Bit

modification Blowfish 4 Keccak DES + Keccak ~ AES + Keccak
Initial 0.032 0.48 0.998
Middle 0.029 0.49 0.997
Last 0.030 0.47 0.998

period of time, but it fails in exhibiting better AVS. The
main intention of this work is to ensure better secu-
rity rather than time conservation. Yet, the time con-
sumption is tolerable. The time consumption of DES
is greater, as the size of data increases. AES shows sta-
ble performance. For this reason, AES is utilized in
combination with keccak. The AVS of the combina-
tion of keccak with other algorithms is presented in the
following table Table 3.

Hence, the choice of AES among the encryption
algorithms and the combination of keccak with AES is
justified. The proposed approach is evaluated by vary-
ing the encryption algorithms, SHA3 member algo-
rithms. Finally, the keccak is combined with different
encryption algorithms and the results are discussed.
From the experimental results, it is proven that the per-
formance of the combination of AES with Keccak is
proven with better results. The following section con-
cludes the chapter.

5. Conclusions

This article describes a time-saving and safe cloud data
storage solution with better data accessibility based on
keccak hash tree and AES algorithms. However, with-
out jeopardizing the algorithm’s integrity, the purpose
of this study is to reduce the amount of time and mem-
ory consumption, while still accomplishing the goal of
improving the algorithm’s performance. The combina-
tion of keccak and AES techniques that was suggested
is applied to the data and the effectiveness of the task
that has been suggested is evaluated with regard to the
Avalanche effect, the amount of time it takes, and the
memory overhead it creates. When the obtained results
are compared with those of algorithms with similar
functionality, the performance of the suggested method
is shown to be superior. In the future, this work will
be expanded, in order to make it operate with digital
images on cloud storage.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

(1]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Rimal BP, Choi E, Lumb I. A taxonomy and survey of
cloud computing systems. 2009 fifth international joint
conference on INC, IMS and IDC; 2009, August. pp.
44-51. Jeee.

Zhou, M., Zhang, R., Xie, W, et al. Security and privacy
in cloud computing: a survey. In: 2010 sixth interna-
tional conference on semantics, knowledge and grids.
Beijing, China: IEEE; 2010, November. pp. 105-112.
DOI:10.1109/SKG.2010.19

Zhou L, Varadharajan V, Hitchens M. Trust enhanced
cryptographic role-based access control for secure
cloud data storage. IEEE Trans Inf Forensics Secur.
2015;10(11):2381-2395.

Ali M, Malik SU, Khan SU. DaSCE: data security for
cloud environment with semi-trusted third party. IEEE
Trans Cloud Comp. 2015;5(4):642-655.

Tian J, Jing X. A lightweight secure auditing scheme for
shared data in cloud storage. IEEE Access. 2019;7:68071—
68082. DOI:10.1109/ACCESS.2019.2916889

Al Hamid HA, Rahman SMM, Hossain MS, et al. A
security model for preserving the privacy of medical
big data in a healthcare cloud using a fog computing
facility with pairing-based cryptography. IEEE Access.
2017;5:22313-22328.

YuJ, Lu P, Zhu Y, et al. Toward secure multikeyword
top-k retrieval over encrypted cloud data. IEEE Trans
Dependable Secure Comput. 2013;10(4):239-250.
Wang Y, Wu Q, Qin B, et al. Identity-based data out-
sourcing with comprehensive auditing in clouds. IEEE
Trans Inf Forensics Secur. 2016;12(4):940-952.
Varadharajan V, Tupakula U. Security as a service model
for cloud environment. IEEE Trans Netw Serv Manage.
2014;11(1):60-75.

Wang H, He D, Tang S. Identity-based proxy-oriented
data uploading and remote data integrity checking
in public cloud. IEEE Trans Inf Forensics Secur.
2016;11(6):1165-1176.

Zhu H, Yuan Y, Chen Y, et al. A secure and efficient
data integrity verification scheme for cloud-IoT based
on short signature. IEEE Access. 2019;7:90036-90044.
Gonzales D, Kaplan JM, Saltzman E, et al. Cloud-
trust—A security assessment model for infrastructure
as a service (IaaS) clouds. IEEE Trans Cloud Comp.
2015;5(3):523-536.

Shen], Zhou T, He D, et al. Block design-based key
agreement for group data sharing in cloud computing.
IEEE Trans Depend Secure Comput. 2017;16(6):996—
1010.

Ni J, Zhang K, Yu Y, et al. Identity-based prov-
able data possession from RSA assumption for secure
cloud storage. IEEE Trans Depend Secure Comput.
2020;19(3):1753-1769.

Li H, Liu L, Lan C, et al. Lattice-based privacy-
preserving and forward-secure cloud storage public
auditing scheme. IEEE Access. 2020;8:86797-86809.
Zhang X, Zhao J, Xu C, et al. Dopiv: post-quantum
secure identity-based data outsourcing with public
integrity verification in cloud storage. IEEE Trans Serv
Comp. 2019;15(1):334-345.

Guo C, Su S, Choo KKR, et al. A provably secure
and efficient range query scheme for outsourced
encrypted uncertain data from cloud-based internet of
things systems. IEEE Internet Things J. 2021;9(3):1848-
1860.

Xiong H, Choo KKR, Vasilakos AV. Revocable identity-
based access control for big data with verifiable

https://doi.org/10.1109/SKG.2010.19
https://doi.org/10.1109/ACCESS.2019.2916889

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

outsourced computing. IEEE Trans Big Data. 2017;8(1):
1-13.

Wang H, Zheng Z, Wu L, et al. New directly revoca-
ble attribute-based encryption scheme and its appli-
cation in cloud storage environment. Cluster Comput.
2017;20:2385-2392.

Sifah EB, Xia Q, Agyekum KOBO, et al. A blockchain
approach to ensuring provenance to outsourced cloud
data in a sharing ecosystem. IEEE Syst J. 2021;16(1):
1673-1684.

Ra G, Kim D, Seo D, et al. A federated framework
for fine-grained cloud access control for intelligent
big data analytic by service providers. IEEE Access.
2021;9:47084-47095.

LiY, Yu Y, Chen R, et al. Integritychain: provable data
possession for decentralized storage. IEEE] Sel Areas
Commun. 2020;38(6):1205-1217.

Khashan OA. Secure outsourcing and sharing of cloud
data using a user-side encrypted file system. IEEE
Access. 2020;8:210855-210867.

Rao L, Zhang H, Tu T. Dynamic outsourced audit-
ing services for cloud storage based on batch-leaves-
authenticated merkle hash tree. IEEE Trans Serv Comp.
2017;13(3):451-463.

LiuL, SuJ, Liu X, et al. Toward highly secure yet efficient
KNN classification scheme on outsourced cloud data.
IEEE Internet Things J. 2019;6(6):9841-9852.

Chen Y, Mao Q, Wang B, et al. Privacy-Preserving multi-
class support vector machine model on medical diag-
nosis. IEEE] Biomed Health Inform. 2022;26(7):3342—
3353.

(27]

(28]

(29]

(30]

(31]

(32]

[33]

AUTOMATIKA 763

Gupta I, Singh AK, Lee CN, et al. (2022). Secure data
storage and sharing techniques for data protection in
cloud environments: A systematic review, analysis, and
future directions. IEEE Access.

Mahajan HB, Rashid AS, Junnarkar AA, et al. Integra-
tion of healthcare 4.0 and blockchain into secure cloud-
based electronic health records systems. Appl Nanosci.
2023;13:2329-2342. DOI:10.1007/5s13204-021-02164-0
Yang C, Song B, Ding Y, et al. Efficient data integrity
auditing supporting provable data update for secure
cloud storage. Wirel Commun Mob Comput. 2022:1-12.
DOI:10.1155/2022/5721917

Mohiyuddin A, Javed AR, Chakraborty C, et al.
Secure cloud storage for medical IoT data using adap-
tive neuro-fuzzy inference system. Int J Fuzzy Syst.
2022;24(2):1203-1215.

Seth B, Dalal S, Jaglan V, et al. Integrating encryption
techniques for secure data storage in the cloud. Trans
Emerg Telecommun Techn. 2022;33(4):1-24.

Sajid, E, Hassan, M. A., Khan, A. A,, et al. (2022).
Secure and efficient data storage operations by using
intelligent classification technique and RSA algorithm
in IoT-based cloud computing. Sci Program; 2022:1-10.
DOI:10.1155/2022/2195646

Ullah Z, Raza B, Shah H, et al. Towards blockchain-
based secure storage and trusted data sharing scheme
for ToT environment. IEEE Access. 2022;10:36978-
36994.

https://doi.org/10.1007/s13204-021-02164-0
https://doi.org/10.1155/2022/5721917
https://doi.org/10.1155/2022/2195646

	1. Introduction
	2. Review of literature
	3. Proposed secure cloud data storage solution with effective data accessibility
	3.1. Keccak with AES

	4. Results and discussion
	4.1. Performance comparison between Keccak and Merkle Hash tree
	4.2. Performance analysis by varying encryption algorithms

	5. Conclusions
	Disclosure statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

