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ABSTRACT
Smart Grid is an intelligent power grid with a bidirectional flow of electricity and information,
that applies intelligent techniques to operate the grid autonomously near the stability limit. An
intelligent technique is developed to identify and predict the abnormalities due to changes in
customer behaviour and the unexpected disruption in the grid. A cost-sensitive stacked ensem-
ble classifier (CS-SEC) is proposed for predicting the operations in smart grid that combines four
cost-sensitive base classifiers, namely Extreme gradient boosting, Naive Bayes, Nu-support vec-
tormachine andRandom forest at level-1 and the support vectormachine as themeta classifier in
level-2. Themeta classifier uses theprobability of predictionof the first-level classifierswith strati-
fied5-fold cross-validation topredict thedecentralized smart grid stability. Theproposed stacked
ensemble classifier achieved an accuracy of 98.6%with specificity, recall and precision of 98.34%,
99.0% and 99.06%, respectively. Extensive experimental evaluation and results show that the
proposed CS-SEC provides an accurate prediction of grid stability compared with other state-of-
the-art models. The results reveal the robustness and competency of the proposed CS-SECs with
optimized parameters.
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1. Introduction

Smart cities are formed by the interconnection of smart
technological devices and intelligent equipment inte-
grated using information and communication tech-
nologies (ICT). Intelligent devices are a network of
related equipment that transmit data using wireless
communication technologies like wireless sensor net-
works (WSNs), wireless mesh networks (WMNs), wire-
less fidelity (WiFi) technologies and so on. These
devices utilize artificial intelligence for automatic deci-
sion making to improve the quality of life. However,
smart cities [1] require integrating socio-economical
and environmental development for sustainable growth
and development that includes advanced technologies
leveraging ICT to create efficient infrastructures like
smart parking, smart grid, traffic management, health-
care and so on. Smart Grid technologies play a vital
role in the modernization of the traditional power grid
with intelligent techniques that perform data analyt-
ics to improve the reliability and availability of electric
power for the customers to harness the sustainability
and development of society.

Smart grid (SG) is a cyber-physical system that inte-
grates a bidirectional flowof electricity and information
and communication technology (ICT) [2]. The smart
grid establishes the connection between the producers

and consumers with advanced metering infrastructure,
wireless networks and high-speed internet technologies
for autonomous grid operation. SG also helps to inte-
grate renewable, and non-renewable energy resources
[3], electric vehicles with plug-in technologies [4]. The
recent development in smart grid infrastructure [5]
with digitized metering and advanced communication
technologies help the consumer access energy con-
sumption, pricing data and responses accordingly dur-
ing peak hours of energy demand to reduce or shift
their electricity utilization. With effective monitoring
and control, the SG can identify and locate faults [6]
for the earlier restoration of the grid and to resume its
normal operation after the power outages.

The integration [7] of several technologies incurs
the technical problems and challenges associated with
stability that need to be addressed by SG. The issues
like data storage and management [8], cyber-attacks
and vulnerabilities [9], power demand and the most
prominent challenge of SG is to maintain the stabil-
ity [10] for effective and reliable operation of the grid.
The stable operation of the grid is maintained when the
amount of electricity supplied is equal to the amount
consumed in electrical grids. It is essential to meet
the energy requirement, so the power grid is inte-
grated with renewable and non-renewable resources to
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balance the demand with supply. Even though the inte-
gration of renewable energy [11] plays a critical role
in balancing demand with supply in the grid, it affects
the grid stability. It requires maintaining the system to
operate in equilibrium. The other factors affecting the
grid stability are power oscillation [12], power thefts
[13] and so on. Hence, it is essential to maintain the
grid’s stability by analysing the factors affecting the sta-
ble operation of the grid. This motivated us to develop
an intelligent machine learning model for predicting
the grid stability for reliable power transmission, dis-
tribution and maintaining the smart grid in a stable
state.

Smart grid applies artificial intelligent techniques
[14] to optimize energy utilization with real-timemon-
itoring of energy consumption, enhancing reliability
and security for resilience operation of the grid. Arti-
ficial intelligence, machine learning and deep learning
algorithms have gained huge popularity in handling
high-dimensional data in recent years. The perfor-
mance of any machine learning algorithm [15] can be
enhanced by selecting important and relevant features
that help to discriminate the data into the appropri-
ate category of operation. Feature selection or dimen-
sionality reduction plays a vital role in improving the
machine learning algorithm’s performance while han-
dling high dimensional data by selecting significant,
relevant and consistent features for model evaluation,
improving the performance and reducing the computa-
tional cost of themodel. The following feature selection
and dimensionality techniques are applied to choose
the features with greater significance for predicting the
stability of the grid, namely principal component anal-
ysis [16], random forest variable importance measure
[17], posterior feature removal [18], forward feature
construction [19] and correlation method [20]. The
proposed study utilizes the Pearson correlation coef-
ficient measure for selecting a significant and relevant
feature from the dataset.

There is no previous study that compared the per-
formance of stacked ensemble learning technique using
feature selection for classification of stability in smart
grid networks to the best of our knowledge. This study
fills the gap by evaluating the performance of stacked
ensemble-learning technique. The results of this tech-
nique are compared with those of four traditional
machine-learning methods, namely the Extreme gradi-
ent boosting machine (GBM), Naive bayes (NB), Nu-
support vector machine (Nu-SVM) and random forest.

In this study, we have developed four machine
learning algorithms, namely extreme gradient boost-
ing algorithm (XGBoost), Nu-SVM, random forest
algorithm (RF) and NB for stability analysis. A cost-
sensitive stacked ensemble classifier (CS-SEC) is pro-
posed by combining the four base classifiers at the first
level and support vector machine as the meta learner
at the second level used for predicting the stability

of the decentralized smart grid. The dataset is taken
from the University of California Irvine (UCI)machine
learning repository [21]. The dataset consists of three
factors, namely, grid participant’s reaction times under
varying grid conditions (tau), each participant’s elec-
tricity generation/consumption volumes (P), and the
cost-sensitivity (g) that are used to predict whether
the grid is stable or not. The experimental tests for
evaluating the performance of the CS-SEC and the
other algorithms developed. The results indicate that
the proposed CS-SEC model has a high performance
with 98.57% accuracy and fewer false predictions. The
proposed model achieves a sensitivity of 99.0% and
specificity of 98.34% proving with the Area under the
curve (AUC) of 0.99, which proves the effectiveness and
robustness in better classifying the state of the smart
grid operation.

Most studies applied different machine learning
methods for classification of system (stable or unstable).
However, in some cases, individual machine learning
techniques classified the system but with poor perfor-
mance. One solution to address this issue is to use
ensemble-learning techniques. These techniques inte-
grate the decisions ofmultiplemachine learningmodels
to improve the overall classification performance.Using
a stacked ensemble learning technique, classification of
the system status is found. Their results show that this
technique performs much better than any of the indi-
vidual machine learning techniques, namely Extreme
GBM, NB, Nu-SVM and random forest.

The primary significance of this paper can be sum-
marized as follows.

(i) We have proposed a CS-SEC for predicting the
stability of the smart grid.

(ii) The significant features are selected using the Pear-
son correlation co-efficient.

(iii) The CS-SEC combines four heterogeneous classi-
fiers with structural diversity and learning capabil-
ity, namely XGBoost, Nu-SVM, RF and NB in the
first level and SVM in the second level.

(iv) A weight-based cost-sensitive computation is used
in the classifiers to reduce themisclassification cost
of prediction.

The contributions of this paper can be summarized
as follows:

(i) Review of stacked ensemble learning technique
(ii) Use of Pearson correlation feature selectionmethod

to identify the most important features
(iii) A comparative analysis of traditional machine

learning and ensemble learning methods using the
performance metrics such as TPR, FPR, FNR and
accuracy.

The flow of the paper is presented as follows:
Section 2 describes the previous literature works related
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to stability issues in smart grids. Section 3 describes
the dataset used, the feature selection algorithm and
the details about the implementation of the proposed
CS-SEC used to predict the stability of the smart grid.
Section 4 describes the different evaluation metrics
used for measuring the performance of the proposed
CS-SEC and the other developed machine learning
algorithms. The discussion about the significance of the
proposed algorithm and the developed classifiers in the
classification of stability of the smart grid is presented
in Section 5. In section 6, we summarize the findings
with directions for future research.

2. Related work

In recent years, artificial intelligence has a profound
application in different domains like health care analyt-
ics [22,23], cyber security [24], smart grid [25], social
network analysis [26] and so on.Machine learning algo-
rithms are used in power system for a variety of appli-
cations like time series classification using convolution
neural network [27,28,29], multivariate convolutional
neural networks [30] and envelop time series model
[31]. The artificial intelligence and machine learn-
ing algorithms are applied in different SG applications
to predict energy consumption [32], load forecasting
[33], stability analysis [34], demand-response predic-
tion [35], fault diagnosis [36], power flow optimization
[37] and so on. This section presents a discussion of the
state-of-the-art approaches related to the grid stability
analysis in smart grid control using machine learning
algorithms.

The grid stability analysis is an important measure
used to enhance the responsiveness, efficiency and reli-
able operation of an SG. The parameters associatedwith
the stable operation of the grid are used to develop a
data-driven predictivemodel for a Decentralized Smart
Grid Control (DSGC). Researchers have widely used
machine learning and deep learning algorithms to eval-
uate the stability of a grid. The most widely used artifi-
cial neural network (ANN), extreme learning machine
(ELM) and Random forest assess the grid’s stability.
The authors in [38] has developed a machine learn-
ing model using Artificial neural networks with the
Gram-Schmidt orthogonalization technique for signifi-
cant feature selection to assess the voltage stability of the
grid. The authors have used n features to attain a better
performance with a minimum error of 0.2391 RMSE in
predicting the voltage stability.

In [39], the performance of an artificial intelligence
approach based on kernel extreme learning machine
is analysed for long-term voltage stability assessment
through the measure of MSE and RMSE with the high-
est estimation error of 0.01%.

Amachine learningmodel is developed in [40] using
a decision tree with different sampling techniques like
Random Over-Sampling Examples, Synthetic minority

oversampling technique, Borderline-Syntheticminority
oversampling technique and Adaptive Synthetic Sam-
pling to handle the imbalanced dataset. The decision
tree-based machine learning algorithms are applied
for assessing the performance of the power system
to forecast the short-term voltage stability with non-
linear SMOTE to handle imbalanced data. The Deci-
sion tree algorithm with the non-linear SMOTE tech-
nique achieved an accuracy of 97.78% which is supe-
rior to the performance achieved by other sampling
methods.

An active machine learning algorithm for monitor-
ing the stability to predict the states of the power system
is developed in [41] using three algorithms, namely
Random forest, Artificial neural networks and Support
Vector Machines. The performance evaluation shows
that the RF has relatively better predictive accuracy
with 90.01% than SVM and ANN. A multi-directional
long short-term memory(LSTM) is applied in [42] for
grid stability analysis and prediction. The developed
multidimensional LSTM achieved an accuracy of 99%,
which is comparatively better than other algorithms like
Recurrent neural network, Gated recurrent unit and
LSTM.

In [43], the authors used eight base classifiers and
gradient boosting decision tree as the meta-classifier
to achieve the real-time prediction of rock mass class
based on the stacking ensemble classifier. The com-
parison between the stacking ensemble classifier and
other individual classifiers is examined. It demonstrates
that for small and unbalanced data, the ensemble learn-
ingmodel outperforms individual classifiers in terms of
learning and generalization.

In [44], Algorithms for ensemble learning were
employed to examine the stability of 444 slope
instances. For the assessment of slope stability, various
ensemble learning techniques (Ada Boost, GBM, bag-
ging, extra trees (ET), random forest (RF), hist gradient
boosting, voting and stacking) are investigated and con-
trasted. The tenfold CV approach is used to increase the
classification models’ capacity for generalization. The
stacking model has the highest accuracy (84.74%) and
best performance.

The authors in [45] integrate the most recent
advances in artificial intelligence theory and suggest
a brand-new PV power forecast model based on the
stacking method. The analysis of the calculation exam-
ple demonstrates that the proposed stacking combines
the benefits of the single-model prediction algorithm
and looks at the data space and structure from vari-
ous perspectives to allow different algorithms to work
in conjunction with one another and produce the best
prediction outcomes. In terms of predicting PV power,
stacking provides high application value and excellent
accuracy.

In [46], through feature selection methods, the
stacking based ensemble learning techniquewas identified
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to produce improved performance over the other
ensemble andmachine learning techniques for anomaly
intrusion detection in smart grid.

In [47], to identify and categorize GPS spoof-
ing attacks on unmanned aerial vehicles, supervised
machine learning techniques like Gaussian Naive Bayes
(GNB), Classification and Regression Decision Tree,
Logistic Regression, Random Forest, Linear-Support
Vector Machine, Artificial Neural Network and Unsu-
pervised machine learning techniques namely Princi-
pal Component Analysis, K-means clustering and Auto
encoder have been used. In terms of accuracy, proba-
bility of detection, chance of misdetection, probability
of false alarm, processing time, training time, predic-
tion time and memory size, the performance of various
supervised models was compared with that of unsuper-
vised models.

The findings demonstrate that in terms of identify-
ing and categorizing GPS spoofing attempts, the Classi-
fication and Regression Decision Tree model performs
better than other supervised and unsupervised models.

The application of various ML approaches to
improve the reliability, stability, efficiency, security and
responsiveness of the smart grid is reviewed in [48]. The
authors also discussed the challenges in implementing
ML-based solutions in smart grids.

A review of ML application is done in [49] to study
the issues related to smart grid safety, reliability, fore-
casting and energy management.

The authors in [50] developed machine learning
algorithms, namely linear regression, random forest,
GBM and multi-layer perceptron, to predict the stabil-
ity of the power system. The author selected significant
features using Binary particle swarm optimization. The
BPSO-MLP algorithm achieved a classification accu-
racy of 93.8% in predicting stability and is better when
compared to other algorithms.

The authors in [51] developed six machine learn-
ing algorithms like linear identification classification,
GNB classification, K-Nearest Neighbour (kNN) classi-
fication, CART decision tree (DT) classification andAB
(Ada-boost classification), RBF SVM (Kernel support
vector machine) to predict the stability of the network.
The test performance shows that the detection results
of NB and support vector machine achieved 97.1%
accuracy in predicting grid stability.

The smart grid stability analysis was done in [52]
using machine learning algorithms namely SVM (sup-
port vector machine), logistic regression (LR), KNN
method, NB, Decision Tree (DT), Random Forest (RF),
Stochastic Gradient Descent (SGD), Extreme gradient
boosting (XGB) classifiers. The experimental test result
shows that the XGB classifier outperformed all other
classifier models with 97.5% accuracy in finding the
stable operation of the grid.

Smart grid plays a role to minimize the power
loss during transmission, to predict dynamic needs

of customer, utilize the renewable power during peak
demand and maintain stability in grid operation.
Machine learning helps to predict the stability during
dynamically varying power demand and thereby avoids
breakdown situation.

In this study, we have proposed a cost-sensitive
stacked ensemble model with four base classifier mod-
els combining XGB, NB, Nu-SVC and RF to predict
and classify the stability of the smart grid control. The
comparison results show that the performance of the
stacked ensemble is superior to the performance of a
single model.

3. Materials andmethodologies used

In this section, we briefly discuss the dataset and
methods used for the classification of system stabil-
ity of a smart grid. The following subsection describes
the dataset and its characteristics, followed by the
data preprocessing technique. Next, the discussion of
data partitioning and the proposed ensemble stacking
algorithm with cost-sensitive learning is proposed to
improve classification accuracy.

3.1. Dataset used

The dataset is taken from the University of California
Irvine machine learning repository, prepared by Vadim
Arzamasov to illustrate the smart distribution grid sta-
bility control. The dataset considered here has input
factors related to total energy balance (assumed energy
generated or used in each grid area), response time
for participants to adjust consumption and/or produc-
tion in response to price changes, called response time
energy price increase and the percentage of price fluctu-
ations, all other factors are equal. The database consists
of 10,000 records with 12 feature attributes where the
predictable features are response time of power pro-
ducer, consumer −1, consumer −2, consumer −3, the
energy balance of power producer, consumer −1, con-
sumer−2, consumer−3 along with the price efficiency
and flexibility of power producer, consumer −1, con-
sumer −2 and consumer −3. The response or target
variable is categorical, either stable or unstable situa-
tion of the grid. The output variable is approximately
labelled as 0 for stable and 1 for unstable of the grid.
The in-depth analysis shows that the dataset is highly
imbalanced, with 3620 records belonging to stable. The
remaining 6380 sample represents the instability nature
of the grid, corresponding to a 36.2:63.8 ratio of unbal-
anced data. The description of the entire dataset is
illustrated in Table 1.

Three key factors of the model are:

(i) Pn: Power balance, illustrating the power produced
when n = 1 or power consumed when n = 2, 3
and 4
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Table 1. Attribute details of electrical grid stability simulated data set.

S.No Name of attribute Nature of attribute Description of attribute Type Min Max

1 tau1 Input Reaction time of electricity producer in sec Numerical 0.5 10
2 tau2 Input Reaction time of electricity consumer 1 in sec Numerical 0.5 10
3 tau3 Input Reaction time of electricity consumer 2 in sec Numerical 0.5 10
4 tau4 Input Reaction time of electricity consumer 3 in sec Numerical 0.5 10
5 p1 Input Nominal power produced Numerical 1.5 5.9
6 p2 Input Nominal power consumed by consumer 1 Numerical −2 −0.5
7 p3 Input Nominal power consumed by consumer 2 Numerical −2 −0.5
8 p4 Input Nominal power consumed by consumer 3 Numerical −2 −0.5
9 g1 Input Gamma coefficient proportional to price elasticity of producer Numerical 0.05 1
10 g2 Input Gamma coefficient proportional to price elasticity of consumer 1 Numerical 0.05 1
11 g3 Input Gamma coefficient proportional to price elasticity of consumer 2 Numerical 0.05 1
12 g4 Input Gamma coefficient proportional to price elasticity of consumer 3 Numerical 0.05 1
13 stabf Output Either unstable class or stable class Categorical (Discrete) 0 1

(ii) taun : Individual participants reaction time during
change in an electricity price

(iii) gn: Price elasticity co-efficient.

3.2. Preprocessing

Data preprocessing is a technique used to enhance the
algorithm’s performance by transforming the unpro-
cessed or raw data into an appropriate form for efficient
handling of data by the machine learning algorithm.
Then, the feature selection technique removes highly
correlated, insignificant and inconsistent data. Two
tasks were performed in data preprocessing, namely
normalization and feature selection.

3.2.1. Data normalization
Data Normalization is a technique used to transform
or standardize the data to have a similar distribution.
The most widely used method for data normalization
is rescaling ormin–maxnormalization and z-score nor-
malization. In this study, we have applied z-score nor-
malization, a standardization technique with a mean
of 0 and having a standard deviation of 1. This scal-
ing technique transforms the values centred around the
average value with unit standard deviation. The z-score
normalization is defined as given in Equation (1).

E′ = E − M
σM

(1)

where
E′ and E are new and old for each data entry,M is the

mean, and σM is the standard deviation.

3.2.2. Feature selection and data splitting
Feature selection plays a crucial role in machine learn-
ing applications that helps to improve the performance
of the algorithms by eliminating irrelevant, inconsis-
tent, redundant features from the training process. The
attribute subset selection enhances the performance
and reduces the computational time in the training and
testing process. This study has applied the Pearson cor-
relation measure that measures the statistical relation-
ship between the linearly correlated feature attributes.

The correlation coefficient between attributes is esti-
mated using the Equation (2).

r =

n∑
i=1

(ai − a)(bi − b)√
n∑

i=1
(ai − a)2

n∑
i=1

(bi − b)
2

(2)

where a and b are variables.a and b are mean of that
variables, respectively.

The correlation of attributes before and after using
feature selection techniques are depicted in Figure
1(a,b), respectively. After using the feature selection
technique, the attributes p1, p2, p3 and p4 are dropped
out as it they are least significant.

The correlation of attributes before using feature
selection techniques is shown in Figure 1(a).

Data Splitting: The dataset consists of 10,000 records
split into training and testing data in the ratio of 90%
training and remaining for testing themachine learning
model. The model is trained using the training dataset,
and the performance of the trained model is evalu-
ated using the unseen test dataset. We have applied a
stratified 5-fold cross-validation technique to balance
the classes in training and data validation. In 5-fold
cross-validation, the training dataset is divided into 5
different folds, and we train the model with K-1 fold
(i.e. 4 fold), and the Kth fold is used for validation of the
classifier. Finally, the unseen test dataset is used to eval-
uate the classifier model’s ability to predict the stability
of the smart grid.

3.3. Proposed stacked ensemble classifier

Let us consider a dataset D = (xN,yN) with N observa-
tions andm classes having n-feature attributes such that
the ith sampleXi = (xi1, xi2, . . . , xin) and yi ∈ {0, 1}. Say
yi = 0 implies the stable class and yi = 1 implies the
grid is in unstable state. The dataset D is splitted into
training Tr and testing Te dataset.

The proposed stacked heterogeneous ensemble
learning model combines four base classifier models,
and the predictive results of the base classifiers are given
as input to the meta classifier for training the model.
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Figure 1. (a) Correlation of attributes before using feature selection techniques. The correlation of attributes after using feature
selection techniques is shown in Figure 1(b). (b) Correlation of attributes after using feature selection techniques.
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Figure 2. Implementation of meta classifier from base classifier.

The base classifiers of the stacked ensemble model,
such as XGB, NB, NuSVC and RF with SVC as meta-
classifier, combined to improve the predictions of grid
stability when compared with a single model.

Meta-classifier combines multiple classification
models by an ensemble learning technique (stacking).
The base classifiers (individual classification models)
are trained based on a complete training set, then the
meta-classifier is trained on the outputs of the base clas-
sifiers as features. The advantage of meta-classifier or
ensemble models is that suppose XGB gives an accu-
racy of 95.6%, NB gives an accuracy of 84.7%, NuSVC
gives an accuracy of 97.3%, RF gives an accuracy of
90.16%. So the end model will give an accuracy that
will be greater than 97.3% which is trained using meta
classifier. As the base classifiers often consist of dif-
ferent learning algorithms, the stacking ensembles are
often heterogeneous. The algorithm below summarizes
stacking.

Algorithm Stacking

1. Input Training Data TD = {xi, yi}mi=1
2. Output Ensemble Classifier E
3. Step 1: Learn Base-Classifiers
4. for t = 1 to T
5. learn et based on TD
6. end for
7. Step 2: Construct New Data Set of Predictions
8. for i = 1 to m
9. TDe = {x′i , yi}; x′i = {e1(xi), . . . . . . , eT (xi)}
10. end for
11. Step 3: Learn a meta-Classifier
12. Learn E based on TDe
13. Return E

The process of implementation of meta classifier
from base classifier is shown in Figure 2. SVM is a

supervisedmachine learning algorithmwhich uses ker-
nel trick technique to transform the data and then based
on these transformations it finds an optimal boundary
between the possible outputs. It does some extremely
complex data transformations, then figures out how to
seperate the data based on the labels or outputs defined.
For more complex data points, the boundary that the
algorithm calculates doesn’t have to be a straight line.

SVM is quite complicated when it comes to what
model parameters (Maximal margin, kernels and cost)
to pick, if it is used as base classifiers. So SVM can’t be
a base classifier.

The architecture of the proposed stacked ensem-
ble model is shown in Figure 3. The stacked ensemble
model utilized stratified K-fold cross-validation with
the probability of prediction results for training the
model. We have used a 5-fold cross-validation tech-
nique to train and validate the model.

Later the unseen test set is used to evaluate the per-
formance of the model with evaluation metrics like
accuracy, sensitivity, specificity, precision, MCCR and
AUC measures. In general, stacking of dissimilar clas-
sifiers improves the performance of classification. The
stacked ensemble model incorporates the underlying
structure dissimilarity to enhance the predictive per-
formance of the classifier by exploiting the strength
of these classifiers by combining different prediction
results.

4. Performance evaluationmeasure

In this section, we discuss the different predictive per-
formances of the evaluation metrics used to compute
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Figure 3. Proposed stacked heterogeneous ensemble learning workflow architecture.

the classifiers. The result of classification is repre-
sented in the confusion matrix table with four results:
True Positive (TP), True Negative (TN), False Posi-
tive (FP) and False Negative (FN). A situation where
positive feedback is expected to be a positive cate-
gory. False negatives are conditions where the actual
observation is positive, and the actual outcome is neg-
ative results. False positives are conditions where the
real observations belong to the negative category but
are likely to be predicted as positive. True negativity
predicted as truly is the condition in which observa-
tions from the negative category are expected to be
negative. Performance evaluation in classification is

justified by an accuracy classifier. However, the accu-
racy metric alone is not considered when the data
set is imbalanced. Hence, other metrics like precision,
recall and specificity are considered to assess the clas-
sifier’s performance in predicting the grid stability of a
smart grid.

Accuracy is the percentage of correct overall pre-
dictions across all observations in the dataset. The
true recall rate is the accuracy of the projections
in the positive category and the percentage of cor-
rect predictions for positive observations. In addi-
tion to accuracy, Performance evaluation is done with
metrics like accuracy, sensitivity, specificity, precision,
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f1 score, kappa, the AUC and Matthew’s correlation
coefficient.

Accuracy is the ratio of correctly classified class to
that of total class in the database and is mathematically
determined using Equation (3).

Accuracy(Acc) =
TP + TN

TP + TN + FP + FN
(3)

Sensitivity/True Positive rate and Specificity/Negative
positive rate is mathematically estimated using
Equations (4) and (5), respectively.

Sensitivity(Sens) = TP
TP + FN

(4)

Specificity(Spec) = TN
TN + FP

(5)

Precision is the ratio of correctly predicted posi-
tive observations to the sum of the predicted positive
observations and is mathematically represented as in
Equation (6).

Precision(Prec) =
TP

TP + FP
(6)

F1 score is estimated mathematically through the
harmonic mean of the precision and recall as in
Equation (7).

F1Score(F1) = 2 ∗ Precision ∗ Recall
Precision + Recall

(7)

Kappa is measured using random classifier output and
the accuracy of the algorithm as in Equation (8).

Kappa(K) =
P0 − Pe
1 − Pe

(8)

where

K is Kappa coefficient value
Po is total ratio of the main diagonal of the observed

frequency
Pe is total of the peripheral ratio of the observed

frequency.

Balanced accuracy is defined as the average of
recall obtained on each class and is represented in
Equation (9).

Balanced Accuracy(Bal Acc)

= Sensitivity + Specificity
2

(9)

The AUC is a measure of the classifier’s ability to dis-
tinguish classes.

(i) If AUC = 1, then the classifier correctly predicts
all the Positive and the Negative class

(ii) If AUC = 0, then the classifier predicts all the
Positive class as Negative and the Negative class as

(iii) Positive.
(iv) If 0.5 < AUC < 1, then true positive and true neg-

ative classes are predicted more correctly

MatthewsCorrelationCoefficient evaluates the qual-
ity of the classifier and is defined as the correlation
between predicted classes and ground truth. It can be
calculated based on values from the confusion matrix
as in Equation (10).

r =
(TP ∗ TN) − (FP ∗ FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(10)

4.1. Costmatrix for binary classification

The minor class is designated as a positive class in a
binary class task, whereas the major class is designated
as a negative class. The confusionmatrix is a representa-
tion tool that lists both the numbers that were correctly
categorized in the data rows as well as the ones that
were misclassified. The amount of data rows that have
a positive class and are categorized as such is known as
the true positive (TP); if they are categorized as a neg-
ative class, they are known as the false negative (FN).
The amount of data rows with a negative class and that
are categorized as such is known as the true negative
TN; if they are categorized as a positive class, they are
known as the false negative FP. TP, FN, TN andTN each
represent a different metric in a cost matrix as shown
below.

In datasets, the stable class to unstable class ratio is
frequently out of proportion, particularly in the electri-
cal smart grid dataset. The classificationmodel’s imbal-
ance class issue caused it to concentrate on the major
class (i.e. unstable), which has less significance for
decision-making. Modifying the model-building pro-
cess and the metrics used to gauge the effectiveness of
the categorization is the answer to this issue.

4.2. Cost-sensitivemetrics

To evaluate the efficiency of the binary classification
models, four metrics are used. These metrics are the
probability of detection (TPR), probability of misde-
tection (FNR), probability of false alarm (FPR) and
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accuracy.

TPR = TP
(TP + FN)

∗ 100

FPR = FP
(TN + FP)

∗ 100

FNR = FN
(TP + FN)

∗ 100

Accuracy = (TP + TN)

(TP + TN + FP + FN)
∗ 100

where TP is the number of correct predicted unstable
condition; TN is the number of predicted stable condi-
tion; FP is the number of incorrect predicted unstable
condition; FN is the number of incorrect predicted
stable condition

5. Experimental result and discussion

In this section, we discuss the experimental settings and
the performance of the classifier models in the predic-
tion and classification of the stable operation of a smart
grid. The machine learning algorithms are developed
using Google colaboratory in an Intel Core i5-11 35G7
windows 10 operating system operating at 2.40GHz,
having 16 GB main memory and 512 SSD.

The algorithm’s performance ismeasuredwith accu-
racy, sensitivity, specificity, precision, f1 score, kappa,
balanced accuracy, AUC and Matthews correlation
coefficient. The dataset is split into 90 % training, and
the remaining is used for testing the classifier. The
dataset consists of 10,000 samples with 12 attributes.
We have utilized 9000 samples for training consisting
of 3620 records in class 0 and 6380 records belong-
ing to class 1. The test data has 1000 records, with
362 data in stable and 638 records in an unstable
state.

This study has developed a CS-SEM with four base
classifiers, namely XGB, NB, NuSVC and RF. The per-
formance of the proposed CS-SEMwith other classifier
models is evaluated using the 90% training data set and
validated on the unseen test data set with the train-
test split approach. The proposed CS-SEM is trained
with stratified 5-fold cross-validation. The probabil-
ity of prediction of the base classifiers on the training
dataset and class labels are used by the SVM meta-
classifier to identify the stability status of the SDGC as
in a stable or unstable state. Then, the unseen test data
are used for validating themodel in predicting the states
of the grid stability. Initially, we have trained the clas-
sifier models with all the 12 feature attributes, and the
performance of the classifier with different seeds is exe-
cuted 10 times. The average of the performance testing
results is reported in Table 2.

FromTable 2, we observe that the performance of the
developed ML algorithms in terms of accuracy, sensi-
tivity, specificity, precision, kappa, f1 score, AUC and

Figure 4. Confusion Matrix for XGB, NB, NuSVC and RF, Confu-
sion Matrix for XGB, (b) Confusion Matrix for Naive Bayes clas-
sifier, (c) Confusion Matrix for NuSVC, (d) Confusion matrix for
Random forest.
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Table 2. Performance of algorithms when all the features are considered.

Classifier Sens Spec Acc Prec F1 K Bal AUC MCCR

XGB 0.97 0.93 95.61 0.96 0.97 0.90 0.95 0.95 0.90
NB 0.94 0.69 84.7 0.84 0.89 0.65 0.81 0.81 0.66
NuSVC 0.97 0.97 97.3 0.98 0.98 0.94 0.97 0.97 0.94
RF 0.96 0.79 90.16 0.89 0.93 0.78 0.88 0.88 0.79
SE-SVC 0.98 0.98 97.9 0.99 0.98 0.95 0.98 0.98 0.95

Table 3. Performance of algorithms when significant features are selected.

Classifier Sens Spec Acc Prec F1 K Bal AUC MCCR

XGB 0.97 0.94 96.20 0.97 0.97 0.92 0.96 0.96 0.92
NB 0.94 0.68 84.30 0.84 0.88 0.64 0.81 0.81 0.65
NuSVC 0.98 0.99 98.50 0.99 0.99 0.97 0.99 0.99 0.97
RF 0.94 0.89 92.22 0.94 0.94 0.83 0.92 0.92 0.83
SE-SVC 0.99 0.98 98.57 0.99 0.99 0.97 0.99 0.99 0.97

Table 4. Confusion matrix.

Actual value

1 0

Predicted value 1 True Positive False Positive
0 False Negative True Negative

MCCR is evaluated and tested. The testing results of
the predictive model show an insight that the CS-SEM
can perform comparatively better compared to other
classifier models.

To analyse and evaluate the classifier’s performance
and its efficiency in computation is experimented with
eight significant features using the statistical Pearson
Correlation measure. The experimental evaluation is
done with eight highly significant and relevant features
executed with different seeds 10 times. The results of
the execution are reported in Table 3.

From Table 3, it can be observed that the perfor-
mance of the developed ML algorithms is evaluated
and tested through performance metrics. The testing
results of the predictive model show an insight that
the CS-SEM is able to perform comparatively better in
comparison with other classifier models.

Complete understanding about the performance of
algorithm is known from the confusion matrix. For a
binary classification problem, we have a 2× 2 matrix as
shown in Table 4 with four values namely True Positive,
False Positive, True Negative and False Negative.

The Confusion matrix obtained for the base clas-
sifiers for a single run of the four base classifiers are
shown in Figure 4.

The confusion matrix of the proposed stacked
ensemble classifier with low values of false negatives
and false positive is shown in Figure 5.

It is clear from Table 5 that performance measure-
ments are used to assess and test the effectiveness of
the built ML algorithms. The prediction model’s test-
ing results provide insight into how much better the
CS-SEM performs when compared to other classifier
models.

Figure 5. Confusion matrix for stacked ensemble SVC.

From the table, it is clear that SE-SVC outperformed
the other base classifier with 99.01% True Positive Rate,
2.20% False positive rate, 0.94% False Negative rate and
98.6% accuracy.

The receiver operating characteristic curve for the
developed classifier models on the given data set is
shown in Figure 6.

From the ROC curve, it can be visualized that the
proposed CS-SEM performed better with and without
feature selection. The AUC is 0.99, which illustrates the
effectiveness and robustness of the proposed CS-SEM
classifier model.

Table 6 shows the comparison of proposedworkwith
the previous work. The proposedmethod produced the
better result than the previous other methods.

In this subsection, the proposed CS-SEM is com-
pared with other classifier models developed in pre-
vious studies. The comparison is made in terms of a
number of features selected for model evaluation, such
as accuracy, sensitivity, specificity, precision and AUC
of the classifiers.

As sensitivity increases, specificity tends to decrease
and vice versa. Highly sensitive tests will lead to positive
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Table 5. Performance of base classifier and meta classifier based on cost-sensitive metrics.

Classifier TP TN FP FN TPR (%) FPR (%) FNR (%) Accuracy

XGB 620 343 18 19 97.03 4.99 2.97 96.3
NB 597 246 41 116 83.73 14.29 16.27 84.3
NuSVC 628 357 10 5 99.21 2.72 0.79 98.5
RF 603 326 35 36 94.37 9.70 5.63 92.9
SE-SVC 630 356 8 6 99.06 2.20 0.94 98.6

Figure 6. ROC with all features and Feature selection, ROC with all features, ROC with feature selection.

findings, whereas highly specific tests will lead to nega-
tive findings.

The proposed study and the previous literature
works used the same dataset publicly available in the
UCI machine learning repository.

6. Conclusion

The smart grid is the recent advancement in the tra-
ditional power grid with a bidirectional flow of elec-
tricity and information communication technology.
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Table 6. Comparison of previous work with proposed work.

Method No. of features Acc. Sens. Spec. AUC Prec.

Multi-layer perceptron classifier [50] 12 93.8 93.8 93.8 93.8 93.8
RBF SVM [51] 12 97.1 97.4 93.7 99.6 98.1
XGBoost classifier [52] 12 97.5 98.4 95.8 99.9 97.6
Optimizable SVM [53] 13 99.9 99.9 99.9 100 99.8
Optimized DL model [54] 12 97.5 – – – 98.6
Optimized artificial neural network [55] 12 97.27 – – – 96.79
Ensemblebagging algorithm [56] 12 90 – – – 90
Proposed cost-sensitive stacked ensemble classifier 12 98.6 99 98 99 99

In this study, the stability of the smart grid is anal-
ysed and assessed to minimize the instability problem
in the decentralized smart grid to maintain a stable
operation of the grid. The stability analysis provides
uninterrupted power to the customers, reduces power
losses andmeets demand-supply needs.Here aCS-SEM
model is proposed to predict the stability of the smart
grid. The proposed model combines four ML classi-
fiers: Extreme GBM, NB, Nu-SVM and Random Forest
at level-1 with SVM as meta classifiers at level-2 in
the stacking model. The performance of the developed
model is evaluated using eight significant and discrim-
inant features selected using the Pearson correlation
measure. The experimental results show that the pro-
posed CS-SEM has the ability to predict the stability of
decentralized smart grid effectively with 98.57% accu-
racy, 98.6% sensitivity, 98.3% specificity, 99% precision
with 98.5%AUC. The proposedmodel has obtained the
best performance result in predicting the stability of the
smart grid than other prediction models.

As the extension of future work, the stability anal-
ysis of the smart grid can be done with deep learning
algorithms to handle large dataset and improve the
prediction of grid stability of smart grid.
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