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ABSTRACT
Electroencephalography (EEG) signals contain important information about the inner function-
ing of the brain. Effective extraction of this information will help in the detection of brain-related
health conditions and emotions of a person or it can also be used as a communication medium
between humans andmachines. In our proposed system, we introduced Adaptive DWT by com-
bining the temporal resolution capability of DWT, with the special capability of Fourier transform
to remove the artefacts in the signal. This is achieved by using an adaptive thresholding func-
tion rather than hard or soft thresholding to improve the quality parameters of the signal. The
proposed filteringmodel has improved the Signal toNoise ratiowhen compared to traditional fil-
tering techniques. EEG features are extractedwith thehelpofHeuristic-IndependentComponent
Analysis (ICA) by applying covariance to equalize or improve the data. The main drawback with
the existing CNN algorithm is gradient vanishing during training, this reduces the overall perfor-
mance of the algorithm during classification. Therefore, using the memory function to store the
previous value of iteration improves the classification accuracy and reduces the gradient vanish-
ingproblem. Theproposed technique is found tohavebetter accuracyof about98% in classifying
autism and epilepsy datasets.
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Introduction

Electroencephalography (EEG) is a neurophysiological
test to detect the neural activity of the brain. There are
many applications for EEG signals including emotion
detection, phycological disorder detection, etc. Many
studies in recent years that claim that we can even inter-
act with a machine using effective extraction of EEG
signals. The Brain Control Interface (BCI) can also act
as the interface between humans and machines. Many
disadvantages with BCI technologies include ampli-
tude suppression and the need for wet electrodes that
make it hard for outdoor applications [1,2]. Many stud-
ies experimented human-machine interfaces. Themain
disadvantage of these previous techniques is their low
accuracy and the need for training by test experiments,
inspite of high training the accuracy of selecting a par-
ticular target is about 63% or less [3–5]. This is because
data from each of the channels are the linear combina-
tion of output from many channels. The linear com-
bination of each electrode output (YS) is given by the
following function.

YS1 = (a1S1 + a2S2 + a3S3 + · · · 64S64) (1)

Frequency-based analysis or Fourier analysis is not a
suitable alternative for signal noise extraction because

of its inability to note the signal discontinuities and
breakdowns. This brings to a need for an effec-
tive signal-filtering method. The main advantage of
using a wavelet filter for noise reduction is its abil-
ity to extract the transient behaviour of the sig-
nal. There are many types of wavelets. The wavelets
are the type of signal that starts at some point
and ends at some finite point at the signal this is
not the case in the sinusoidal signal. Because the
sinusoidal signal goes from infinity and zero shown
Figure 1.

The main concepts in wavelet transform are scaling
and shifting. Scaling refers to the change in the centre
frequency in the signal. Whereas shifting refers to the
change in the position of the wavelet signal. Wavelets
are composed of waveform whose average values cor-
responds to zero. The important attribute of wavelet
transform is that the values can be scaled and positions
can be altered accordingly. After wavelet transform a
threshold value is applied to the deconstructed sig-
nal to extract the noiseless EEG signal. To select the
proper thresholding value for the function gradient-
based algorithms are used. The main drawback with
a gradient decent-based algorithm is the number of
iterations it takes to reach convergence. Themore com-
plex the signal, the more the number of iterations.
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Figure 1. Brain function.

Therefore, population-based threshold-finding meth-
ods gain interest [6–9].

Due to pseudo-Gibbs effects and deviation problems
during signal reconstruction hard and soft thresholding
functions cannot be used for noise suppression [10–13].
Therefore, an effective thresholding function needs to
be implemented along withWavelets used for the signal
that has abrupt changes in the data. Fourier transform
has no time or space concern so it can’t be used for
EEG data smoothening. The main function of ICA is to
extract the original EEG signal from the mixed signal.
Themain assumptions that aremade before ICA are the
signals are non-gaussian and independent of one other.
The main disadvantage of existing ICA techniques is
they use blunt elimination functions to extract the noisy
content from the signal. To improve the signal quality
and enhance the signal equalization we need a separate
technique that uses mutual information values of the
signals to extract the output of individual electrodes.
The applications of these techniques are limitless, easy
identification of affected brain parts, effective seizer
detection, and even it can be used in BCI applications.
The applications are endless. The main hurdle to be
crossed is to find an effective classification function to
extract the required signal component from the signal.

The main alternatives for classification algorithms
are simple heuristic algorithms which don’t serve the
purpose of accuracy enhancement or else we can use
machine learning algorithms which will increase the
computation time and cost. Therefore, a much more
effective and computationally reasonable algorithm
needs to be used. The viable alternative for that will
be SVM classifiers. The effectiveness of SVM classi-
fiers can be improved using effective kernel functions
which can increase the classification accuracy for our
problem. The things that are discussed are addressed
below.

Literature review

Ocular artefacts can be removed using haar wavelet-
based ICA techniques. Independent component analy-
sis can be done based on the assumption that each of
the electrode sources is linearly independent of each

other, and they are non-gaussian. In these methods, the
artefacts can be removed using wavelet-based meth-
ods, which are used to remove the harmonic compo-
nents in the signal. Therefore, wavelet transform and
ICA techniques are a natural partner to remove noise
signals from EEG [14,15]. The double-density wavelet
method along with the ICA algorithm can also be used
to remove artefacts from the signal. In this method,
the ICA algorithm was used to decompose the input
EEG signal and these decomposed signals are then
analysed using wavelet transform [16]. The main prob-
lem with ICA algorithms is their inability to reach a
global maximum, this can be improved using ICA-R
(ICA-reference) and constrained-ICA (cICA)methods.
The ICA-R algorithm separates each source from the
input using a deflationary scheme. To overcome the
problems of penalized contract function in ICA-R, the
combination of ICA and DE (Differential Evolution-
ary) algorithms [17–19] are used. Motor movement
in EEG signals can be removed using clustering algo-
rithms like KNN. The signal is decomposed using ICA
and the decomposed signals’ distance values are calcu-
lated and clustered to find the motor noise signals. The
main problemwith clustering techniques is their lack of
ability to denoise multi-variate inputs [20].

Hybrid methods also are used to extract original
EEG signals. The methods discussed above are offline-
based noise cancellation methods, for online signal
noise cancellation a combination of ICA and Adaptive
Noise Cancellation (ANC) can be used. This can be
done by calculating the interference pattern between
the input signals [21]. Deep learning methods are
employed to remove artefact noise from the signal.
Ocular artefact in the signal is stored and used to train
the Deep Learning Network (DLN). The deep learn-
ing methods show better efficiency than ICA meth-
ods [22–25]. The correlation between signals is used
to remove noise in the signal. The Canonical Correla-
tion Analysis method is used to find signals with high
correlation and low correlation. These correlation val-
ues are then selected with the spectral-slope rejection
technique [26–29].

Methodology

The EEG classification is divided basically into two
parts: noise removal and classification. Figure 2’s
flowchart can give a better understanding of the work-
ing of our proposed algorithm.

Pre-processing using DWT

To overcome the common problem of pre-mature con-
vergence in wavelet-based filtering using the global
thresholding technique, a new technique called adap-
tive thresholding is proposed.
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Figure 2. Flowchart of the proposed covariance based-ICA-SVM.

The thresholding function T(Wi,k, λ) can be
expressed as follows

T(Wi,k, λ)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Wi,k + λ) − λ

(2n + 1)
, if (Wi,k < −λ)

Wi,k
2n+1

(2n + 1)λ2n
. . . .., if (Wi,k ≤ λ)

Wi,k − λ + λ

(2n + 1)
, if (Wi,k > λ)

(2)

where W is the Ith wavelet coefficient of the signal
at scale “k” and λ is the threshold value and n is any
positive integer until infinity. The thresholding value is
calculated based on the population creation done with
the help of the population selection function.

λbest = λ − lrx
[
d(f (x))
dx

]
(3)

where lr is the learning rate of the algorithm. This will
reduce the number of iterations it takes to find the
suitable threshold value for each EEG channel.

ICA signal decomposition

The Noisy EEG signal can be modelled as Si = Si x n,
whereas Si is the pure EEG signal from channel “I” and
n is the mixing signal. The use of Independent Com-
ponent Analysis to separate each of the independent
components from the mixed signals. Then the value
of each signal is the most important assumption to be
made before the ICA algorithm is to analyse all the
sources of the signals as independent of each other.
This is not the same case for EEG signals as the sen-
sors will pick out the same type of output from the brain
at each different electrode. Therefore, in our proposed
method we are going to find out the mutual correlation
value between two electrodes. This can be found using
Shannon’s information theory.

H(x) = −
∑

P(x)log(P(x)) (4)

whereH is the entropy estimate value, f is the probabil-
ity of electrode mutual correlation between electrode x
and y.

The mutual information of each electrode can be
calculated using the following formula

l1(x1, x2) = H(x1) − H(x1, x2) (5)

where I(x) is the true information of electrode x. H is
the entropy value of the electrodes. The value of mutual
information is used to find the covariance between two
electrodes. The value ofmutual information is sorted in
ascending order and electrodes with order “k” is used
for separating independent components.

σ(x1, x2) = 1
n − 1

n∑
i=1

(x1(i) − x̄1(x2(i) − x̄2 (6)

The covariance value of each electrode is calculated
between each of the adjacent electrodes with the most
mutual information value. This value is then used to
find the eigenvalue and eigenvector for the value of
covariance. The value of covariance is assigned on the
basis of “I” value in amatric of order n∗k. The value of n
is equal to the k value to make it a square matrix to cal-
culate eigenvalues. The covariance values are organized,
as shown in the following equation.

⎡
⎣σ1(x1, x2) . σ1(x1, xk)

.
σn(x1, x2) . σn(x1, xk)

⎤
⎦
nxk

(7)

To eliminate the noise region from the data we need to
separate the data using the heuristic feature of support
vector machines. The component that we classified is
highly non-linear in nature to make this data into a lin-
ear space we used kernel multiplication (Form) to bring
the dimensional data into a higher dimension. Choos-
ing the best kernel for the classifier can improve the
training accuracy of the SVM classifier. The Gaussian
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kernel is used for the separation of data points.

k(x1, x2) = e(−Y|x1,x2|)2 (8)

x1-x2 is the Euclidean distance between two data points,
γ is the angular distance. The value of output data
is iterated every epoch and the Euclidean distance
between kernel and data points is calculated. This
is done on every iteration and data with minimum
Euclidean is selected to classify noisy regions from the
data. Then inverse ICA function is used to reconstruct
the signal.

Classification

The output signal extracted from the heuristic-ICA
technique is then classified using M-CNN (Memory-
based CNN). The main function of U-CNN is to elim-
inate the vanishing gradient problem and to reduce the
computational cost of the CNN algorithm. This is done
with the help of comparing the output value of the pre-
vious iteration to select the data instead of using other
pooling methods in the layer. The main advantage of
our proposed method is we eliminated a selection layer
from the GRUmethod shown in the update gate archi-
tecture, shown in Figure 3a,b.With the reduced number
of gates and activation function, computational cost is
reduced by 25%.

Zt = R(WzXt + Uzht−1 + b) (9)

ht = (1 − Zt) � ht−1 + Zt (10)

Our proposedM-CNN has the advantage of both CNN
and LSTM algorithms. To reduce the effect of gradient
descent, the value of output from the previous iteration
is saved for the net iteration. The value of output is used

for the next layer and the value of ht is stored for the
next iteration. Our proposed M-CNN consists of five
layers, three convolutional layers with Leaky-ReLu acti-
vation function and two layers with memory function.
The slope function of Leaky-ReLU is updated on each
iteration, the slope for positive values is higher than for
negative values.

f (x) =
{
dx(x) for x < 0
x for x ≥ 0 (11)

Applying the convolutional layer with the sequential
data processing capability of the GRU-RNN layer we
can develop an effective classification algorithm for
EEG abnormality classification.

Data processing steps

The EEG data were collected from healthy individu-
als with a sampling rate of 256 by placing electrodes
in international guidelines. The signal was recorded for
five seconds for each interval and the eye blink and
movement of eyeballs are noted and saved in an anno-
tation file. To simulatemotion artefacts in the signal the
two electrodes placed near aremoved in different direc-
tions simulating motion in individuals. The time value
of thesemotion artefacts is saved. To analyse the perfor-
mance of algorithms the motion artefact and eye blink
data are measured to find the sensitivity of algorithms.
Data processing is done with EEGLAB version 2021.1
in MATLAB.

Results

To prove the effectiveness of our proposed model the
output variables are compared with existing techniques

Figure 3. (a, b) Architecture of the proposed memory pooling layer. (a) Memory pooling layer architecture. (b) Update gate
architecture.
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Figure 4. Denoised EEG signal.

from heuristic models to machine learning models.
And the results were promising compared to previous
methods. The first step of our model is noise removal.
With the help of the A-DWT algorithm to find its
efficiency we compared our present outputs SNR and
RMSE valueswith previous techniques. The formula for

Table 1. Comparative analysis of proposed denoising tech-
niques.

Method SNR PSNR MSE

A-DWT 24 27 105.2
WPT [12] 16 23.0372 102.059
EMD-DFA 13 9.0388 102.069
EMD-DWT 12 17.1776 102.057
EMD-WPT 13 21.7598 102.029

SNR can be given as (11)

SNR = 10 log10

[ ∑
n X

2d(n)∑
n xd(n) − x(n))2

]
(12)

where Xd is the denoised EEG signal and x is the noise
EEG signal. The input EEG signal is filtered with the
help of our proposed A-DWT algorithm with adap-
tive thresholding function. The output EEG signal after
the A-DWT algorithm is compared with the input EEG
signal, as shown in Figure 4.

The proposed A-DWT algorithm is compared with
existing techniques which use transform functions. The
noise reduction performance of our proposed A-DWT
with existing transform algorithms is shown in Table 1.
PSNR can be used to find the power of noise to the total

Figure 5. ICA output for k = 64.
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Figure 6. Topoplot of EEG data at different time intervals after the Heuristic ICA algorithm.

Figure 7. Data quality before and after proposed the Heuristic
ICA algorithm. (a) Data after heuristic-ICA equalization. (b) Data
before heuristic ICA equalization.

power input signal. The higher the value of PSNR, the
higher the quality of signal with minimum noise in the
signal. Mean Squared Error is the estimate the differ-
ence between the square of actual value to the square
of original value. It is shown in the table that our pro-
posed algorithm performs better in noise removal and
error reduction.

After denoizing the input EEG signal, independent
component analysis is applied to the input EEG signal.
The value of k is set equal to n, this is used to make
the input a square matrix to reduce the error in eigen-
value calculation. The independent component value
calculated using our proposed technique is shown in
Figure 5.

After decomposition by ICA, the components of
individual electrodes are shown in the above figure. The
total components are equal to the input channels. The
independent components value are shown in Figure 5.

Figure 6 shows the topological plot of EEG data for
all the 64 channels after applying our proposedmethod.
The above figure shows the sensitivity of electrode val-
ues after denoising using ICA. The blue region in the
image shows the lower intensity and the yellow region
shows the higher intensity.

The scatter plot shows the sensitivity of EEG equal-
ization that is done using our proposed Heuristic-ICA
algorithm. The sensitivity calculation of epilepsy and
autisim detection of different datasets shows that our
proposed ICA algorithm is effective in seperating dif-
ferent types of data shown in Figure 7.
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Figure 8. Variance value of ICA components.

Figure 9. Entropy value of the proposed heuristic ICA algorithm.

Figure 10. Receiver operating characteristic curve.
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The variance value is used to measure the amount
of correlation between two different electrodes. These
component variance values are used to separate the
amount of signal integrated between the electrodes.
From Figure 8 it is seen that components IC1, IC2 and
IC3 have the most variance value among all other com-
ponents. This component shows the most amount of
shared information between electrodes.

Shanon entropy is used to measure the amount of
information that is shared between all the components.
Therefore, the higher the entropy the higher will be the
chance of the presence of correlation. This will be evi-
dent in Figure 9 that component with high variance
shows higher entropy.

The value of ROC gives the comparison between
both sensitivity and specificity values. The higher the
distance between the output curve and the median
curve at 45° higher the accuracy of the algorithm to
predict accurately. From Figure 10 it is shown that
our proposed M-CNN algorithm performs better than
other deep learning techniques. The accuracy is higher
than deep learning algorithms with memory function
and other algorithm with heuristic function.

The computational cost of neural networks for dif-
ferent batch sizes is compared in Figure 11. In Figure
11, it is shown that the proposed M-CNN algorithm
consumes 30% less computational time and power than
RNN and CNN algorithms [30–39]. Due to the fewer
gates andmemory functions in the algorithm the train-
ing time will be reduced drastically.

Table 2 shows the accuracy and sensitivity compar-
ison of the existing deep learning algorithms. Accu-
racy and sensitivity are calculated using the formula

Figure 11. Computation performance of the proposed M-CNN
algorithm.

Accuracy = TP+TN
TP+FP+FN+TN and Sensitivity = TP

TP+FN . It
is clear from the comparison table that the proposedM-
CNN deep learning method has higher accuracy and
high sensitivity in detecting both autism and epilepsy .
Therefore, the proposed algorithm is more sensitive for
different types of abnormalities and they can be used
for classifying all the other abnormalities.

Conclusion

We designed an efficient and hybrid classification tech-
nique to classify different types of abnormality data.
The proposed A-DWT algorithm has better noise
removal than compared to other filters. The overall
noise value in the signal is reduced for about 20%.
The filtered EEG signal is then equalized with the help
of the Heuristic-ICA algorithm. Our proposed system
was effective in separating different types of datasets
effectively. The values of Shannon entropy and vari-
ance values are used to calculate the mutual informa-
tion between different independent components. After
the equalization of EEG signals, the signal is classified
using the M-CNN algorithm. The proposed M-CNN
algorithm has the advantage of reducing the computa-
tion cost of upto 30% during the classification of abnor-
mality. Apart from the reduced computation time, the
M-CNN algorithm has higher accuracy of about 98.1%
and higher sensitivity for different abnormalities. The
proposed method is more sensitive for all different
types of abnormality; therefore, this technique can be
used for different types of prediction in EEG signal. In
future, this method needs to be implemented in BCI
applications and calculate its performance.
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