
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/taut20

Optimization of virtual machines performance
using fuzzy hashing and genetic algorithm-based
memory deduplication of static pages

N. Jagadeeswari, V. Mohanraj, Y. Suresh & J. Senthilkumar

To cite this article: N. Jagadeeswari, V. Mohanraj, Y. Suresh & J. Senthilkumar (2023)
Optimization of virtual machines performance using fuzzy hashing and genetic
algorithm-based memory deduplication of static pages, Automatika, 64:4, 868-877, DOI:
10.1080/00051144.2023.2223479

To link to this article: https://doi.org/10.1080/00051144.2023.2223479

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 27 Jun 2023.

Submit your article to this journal

Article views: 481

View related articles

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=taut20
https://www.tandfonline.com/journals/taut20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2023.2223479
https://doi.org/10.1080/00051144.2023.2223479
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2023.2223479?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2023.2223479?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2223479&domain=pdf&date_stamp=27 Jun 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2223479&domain=pdf&date_stamp=27 Jun 2023
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2023.2223479?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2023.2223479?src=pdf

AUTOMATIKA
2023, VOL. 64, NO. 4, 868–877
https://doi.org/10.1080/00051144.2023.2223479

Optimization of virtual machines performance using fuzzy hashing and genetic
algorithm-basedmemory deduplication of static pages

N. Jagadeeswaria, V. Mohanrajb, Y. Sureshb and J. Senthilkumarb

aDepartment of CSE, Thanthai Periyar Government Institute of Technology, Vellore, India; bDepartment of IT, Sona College of Technology,
Salem, India

ABSTRACT
The demand formemory capacity has increased, and cloud energy usage has soared. The perfor-
mance and scalability of virtualization interfaces in cloud computing are hampered by a lack of
sufficient memory. To figure out this problem, a technique defined as memory deduplication is
widely used to reduce memory consumption utilizing the page-sharing method. However, this
method ofmemory deduplication using KSMhas significant drawbacks, such as overhead owing
to many online comparisons, which will consume so many CPU resources. In this research, a
modified approach of Memory Deduplication of Static Memory Pages (mSMD), which is based
on the identification of similar applications by Fuzzy hashing and clustering them using the
Hierarchical Agglomerative Clustering approach, followed by similarity detection between static
memory pages based on Genetic Algorithm and details stored in Multilevel shared page table,
bothoperationsperformed inoffline and finalmemorydeduplication is carriedoutduringonline,
is proposed for achieving performance optimization in virtual machines by reducing memory
capacity requirements. When compared to existing techniques, the simulation results indicate
that the proposed approachmSMD efficaciously minimizes thememory capacity required while
improving performance.

ARTICLE HISTORY
Received 21 February 2023
Accepted 5 June 2023

KEYWORDS
Memory deduplication;
cloud computing;
classification; genetic
algorithm; fuzzy hashing;
hierarchical agglomerative
clustering

1. Introduction

Cloud computing, the widely accepted and most popu-
lar computational technique, is the delivery of various
services over the Internet and is best suited for both aca-
demic and industrial areas, as it reduces computational-
hardware management and cost of ownership while
increasing dexterity and resource on-demand scala-
bility [1]. Companies like Foursquare, Netflix, and
Snapchat serve billions of cloud customers by setting
up their own computer infrastructure framework and
then moving their operations to cloud environments
like EC2, or Amazon Elastic Computing Cloud, which
can readily scale services [2,3]. Various services like
Pinterest, Vivino, Kroger, Gameloft, Etsy, eBay, Twit-
ter, and Paypal serve millions of users through cloud
providers [4]. Several businesses and customers have
opted for cloud computing services in recent years due
to their great scalability and inexpensive cost. Due to
the limitless potential for automated resource pooling
and sharing and improved user interface that cloud
computing offers, it has become one of the hottest
topics in the study. A de facto prerequisite for offer-
ing services and scalable and effective resources is
cloud computing. Software, databases, data analytics,
servers, and networking are all computer services that

can be offered through the Internet for more flexible
resources, quicker deployment, and cost-effectiveness
due to economies of scale. The economic impact of
cloud computing is enormous, and it is rapidly devel-
oping. In order to provide flexible resources, quick
response, and scalability, cloud services employ the
Internet to deliver computer services such as servers,
databases, software, networking, and data analytics.

Virtualization creates a virtual framework by using
code that mimics the functionality of equipment. Vir-
tualization paradigm permits many operating systems
to contribute to share computing resources by man-
aging numerous virtual machine instances on an indi-
vidual physical server [5,6]. Each virtual machine can
handle multiple individual customers, and all virtual
machines share and make use of the same physical
resources, lowering the cost for all users. Various firms
are experimenting with virtualization technologies to
reduce operational expenses by accommodating mul-
tiple clients and an individual physical server. Because
the number of Virtual Machines on a real server grows,
the server’s memory requirements grow as well [7].
Two key limits that cause memory capacity to suf-
fer as requirements grow: (i) development of physical
memory is comparatively slower thanmemory demand
growth, and (ii) the power consumption rate is quite

CONTACT N. Jagadeeswari jagadeeswarin.cse@outlook.com; n.jagadeeswari@gmail.com Department of CSE, Thanthai Periyar Government
Institute of Technology, Vellore 632002, India

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in anymedium, provided the original work is properly cited. The terms onwhich this article has been published allow the posting of the Accepted
Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2223479&domain=pdf&date_stamp=2023-06-24
mailto:jagadeeswarin.cse@outlook.com
mailto:n.jagadeeswari@gmail.com
http://creativecommons.org/licenses/by/4.0/

AUTOMATIKA 869

high for servers with more memory than 64 GB. This
is the reason that memory capacity has become more
challenging in cloud computing environments [8,9].

Memory deduplication is one of the best memory-
management strategies because it uses page sharing to
combine similar data into a single copy, thereby reduc-
ingmemory needs. Memory deduplication, as stated by
both Difference Engine and VMware, is used to save
memory in virtual machines. Furthermore, according
to VMware, 40 percent of RAM is saved, and it can
be increased to fifty percent according to Difference
Engine [10,11]. Because of its success, the memory
deduplication approach has been applied in various sys-
tems for their architecture. The Linux system uses Ker-
nel Same Page Merging (KSM) to implement memory
deduplication. This way of implementation is known
as content-based page sharing (CBPS), and it is used
to detect duplicate content by using page granularity
[12,13]. In the KSM, two comparison trees of global
red-black trees are presented, the first of which is
an unstable tree and the second of which is a stable
tree [14,15]. The shared pages with the copy-on-write-
protect policy are stored in the stable tree, while all
unique pages are saved in the unstable tree. Each candi-
date page is compared to both unstable and stable tree
pages, and the candidate pages are appropriately reor-
ganized [16,17]. Several machine learning algorithms
have been developed, and hybrid strategies have been
presented [18–20] for the classification of applications
and prediction and identification of similarity pages,
which can be used to categorize pages processed in
memory.

With the development of cloud computing, it is now
possible to host a huge number of virtual machine
instances on a single cloud server. Each virtual machine
instance can run several programmes, and the number
of virtual machines and the number of apps they can
run is constantly growing. As a result, memory capacity
has become more in demand, and cloud energy con-
sumption has skyrocketed. Insufficient memory hin-
ders the performance and scalability of virtualization
interfaces in cloud computing. In order to solve this
issue, the page-sharing method is frequently used in
conjunction with a technique known as memory dedu-
plication to lower memory use. KSM has a severe flaw,
which is that it is part of the Linux hypervisor and is
deployed as a kernel daemon thread which wakes up
every 20 milliseconds to scan memory pages. When
the process is operating with the crucial path-leading,
the system’s response time is enhanced by this frequent
scanning, which causes a significant drop in system
performance. The KSM performs several superfluous
comparisons, which is a severe issue that boosts the
system’s load [21,22].

In overview, this paper contains some important
contributions:

• Reducing thenumber of unnecessary correlations:
This is focused on the duplicate-content demand
zones’ specific profile. The code segment with the
highest likelihood of holding shared content is
detected. Even if the stack and data segments have
similar pages, their proportion is comparatively low
[22]. As a result, code segment comparison is lim-
ited, and the number of comparisons required is
reduced, resulting in improved speed.

• Similar content page detection in offline mode: A
thorough examination ofKSMreveals overhead pro-
filing [23]. Several online comparisons during the
execution of virtual machine instances will increase
the system’s response time, which is a factor of cru-
cial performance benchmark in cloud computing.
To address the problem, a modified Memory Dedu-
plication of Static Pages (mSMD) technique is pre-
sented, which can identify duplicate content pages
in an offline mode.

• ClassificationbasedonFuzzyHashing andGenetic
algorithm andPage comparison is limited to a sin-
gle cluster of application: Initially, all applications
are clustered based on Fuzzy Hashing approach and
Agglomerative hierarchical clustering, since similar
applications have more likelihood of having more
similar pages. Similar applications are identified
using Fuzzy Hashing and clustered using Hierarchi-
cal Agglomerative Clustering. The pages of the code
section of the clustered category of applications are
segmented and similarity is identified between static
pages which helps to reduce unwanted compar-
isons while maintaining the possibility of detecting
pages with comparable information using Genetic
algorithm approach and entered in the Multilevel
shared pages’ table. As a result, when pages are com-
pared within the same category, the count of the
number of several comparisons is reduced.

The remainder of the paper is structured as follows:
In Section 2, the literature review and research motiva-
tions are elaborated. In Section 3, the proposed tech-
nique and various implementation levels are explained.
In Section 4, the simulation framework and perfor-
mance are described. Segment 5 provides the conclu-
sion and future work of the research work.

2. Literature review

Garg A. et al. (2017) implemented a memory dedupli-
cation approach assisted by GPU in virtualized envi-
ronments [24]. By finding and combining identical
pages, content-based memory page sharing approaches
increase the efficiency of memory in virtualized sys-
tems. Catalyst, the suggested solution, works in two
phases: the initial phase, where the GPU processes
pages’ of virtual machines to select likely similar

870 N. JAGADEESWARI ET AL.

pages’ for sharing, and the next, where the GPU exe-
cutes the actual sharing based on page-level similarity
and inspects an intended group of shareable memory
pages. In virtualization situations, opportunity-driven
use of the GPU-generated sharing suggestions allows
for quick and low-costmemory page sharing and dupli-
cation detection. The Catalyst is tested against a variety
of benchmark approaches andworkloads to show that it
can accomplish more memory sharing in less time and
at lower or equivalent compute costs than different scan
rate settings of KSM.

Sioh Lee et al. (2017) implemented an advanced
KSM approach for Cloud computing [25]. The authors
presented a page grouping approach to decrease page
comparisons in prior work, but it demands specific
monitoring hardware. XLH improved memory page
sharing by including information about guest virtual
machine I/O operation. However, XLH’s CPU over-
head remains considerable, equivalent to that of the
normal KSM. To CPU cycles. Based on the findings of
the simulation, a KSM advanced for cloud computing
(AKC) that uses fewer cycles of CPU than the default
KSM was developed. Checksums based on the RB-tree
structure were used to decrease the number of page
comparisons. AKC also uses a hardware-accelerated
CRC32 hash algorithm to reduce page checksum
overhead.

Vano Garcia et al. (2018) performed a kernel ran-
domization technique for cancelling memory dedu-
plication [26]. The memory deduplication paradigm
is rendered useless by the address space layout ran-
domization (ASLR) safeguard method, is a key exam-
ple. The authors of this research provided a detailed
investigation of how the address kernel randomization
technique affects the memory deduplication technique.
The findings show that the memory cost for running
24 kernels increases by 534% when kernel ASLR is
enabled (from 613 MiB to 3.9 GiB). In tests where
the host is running 24 virtual machines, 44.89 % of
the memory pages depend on kernel randomization.
The stopping of memory sharing is due to these pages.
The addresses of kernel components, which alter each
time the computer boots, are among their contents.
Thememory deduplication technique is unable to share
them when kernel randomization is enabled because
each virtual machine’s contents differ. The memory
saving rate decreases by about 50% when the kernels of
guest virtual machines are not randomly generated. As
a consequence, thememory needed to run the kernel of
the virtual machines is severely increased.

Santhosh Kumar et al. (2019), for secure mem-
ory deduplication, designed hardware-aided Copy-on-
write defect discovery [27]. Side-channel attacks based
on memory deduplication, on the other hand, are
threats of disclosure of information and stealthy covert
channel creation among virtual machines that can
be deployed utilizing timing information provided by

Copy-On-Write (CoW) fault management semantics.
In terms of deduplication, the CoW semantic has been
a necessary offensive because it not only supports guest
OS visible deduplication but also provides a special
channel for exploitation. They suggested CoWLight,
a combination of hardware and software technologies
for safely addressing CoW page faults, to lessen the
noticeable access time difference between a conven-
tional write and a write to a sharing page. In this
study, they argued that rather than reducing the side
effects, they should target security flaws at their root
by assigning CoW fault management to the hardware
itself. Additionally, it has been demonstrated that CoW-
Light significantly reduces access time delay disparities
(by up to 30×), which is far below the noise thresholds
in a moderately busy system.

Taehum Kima and Youngjoo Shin (2020) devel-
oped a way for mitigating memory-sharing-based side-
channel attacks in the Binary for Cloud environment
by encoding random data [28]. In this paper, they
proposed a novel mitigation technique for memory-
sharing-based side-channel attacks in cloud comput-
ing systems. With this technique, vulnerable apps are
turned into robust, secure ones. A secret random
value is explicitly inserted into an application’s exe-
cutable binary using binary instrumentation. The ran-
dom value will make it impossible for applications from
several other security domains to share the memory
with security-sensitive programmes. The application-
specific approach, on the other hand, offers system-
wide memory deduplication, maintaining memory
efficiency. They discussed the design and implemen-
tation of the recommended mitigation as well as the
findings of the evaluation.

Albalawi et al. in 2021 [29] introduced a method
of defence against side-channel assaults using a cloud
computing feature called memory deduplication. The
memory deduplication paradigm improves the effi-
ciency with which physical memory is used by virtual
machines running on the same server by maintain-
ing only one copy of the libraries and other software
required by several virtual machines in memory. How-
ever, because memory sites used by a victim’s virtual
machine and the associated operations are cached and
can be accessed more quickly than memory sites not
used by the victim, this enables the virtual machine
of an attacker to learn about the memory locations
and associated operations used by the victim’s virtual
machine. The hostile virtual machine must conduct
an abnormal series of cache flushes to carry out the
attack, which their novel technique detects by monitor-
ing memory locations linked with sensitive operations
like encryption and using logistic regression to iden-
tify the abnormal caching operations. By using its cache
flushing feature, this strategy also disrupts the side
channel, making it more challenging for the attacker to
gather pertinent data. The tests, which were conducted

AUTOMATIKA 871

on physical servers running CentOS and Debian 10
and the KVMhypervisor andUbuntu 18.04 LTS virtual
machines, reveal that the technique can identify attacks
with a 99 percent accuracy rate and can provide false
information to an attacker with a 2%–8% CPU cost.

Divyanshu et al. (2022) performed memory dedu-
plication for Serverless computing [30]. The resource
utilization and user experience trade-offs imposed by
Serverless platforms today are rigid. Operators need to
make considerable resource sacrifices to obtain high
performance due to the limited controls, which are
supplied via switching sandboxes between cold and
warm states and keep-alive. Medes, a serverless frame-
work that the authors offer, breaks the trade-off that
is rigid and enables operators to easily move through
the trade-off space. Medes takes use of the high rate
of memory footprint duplication in warm sandboxes
running on serverless platforms. They make use of
these duplicated chunks to build a new sandbox state
known as a “dedup” state that is quicker to recover
from than the cold state and uses less memory than the
warm state. They created innovative methods to detect
memory redundancy with the least amount of over-
head and the smallest possible memory footprint for
the “dedup” containers. Finally, they created a straight-
forward sandbox management strategy that exposes
a constrained, user-friendly interface for operators to
simultaneously regulate warm and “dedup” sandboxes
to trade-off speed for memory. Extensive tests with a
prototype utilizing actual serverless applications show
that Medes can reduce end-to-end latencies by up to
1–2.75 times. Medes can provide a reduction in end-
to-end latencies of up to 3.8 under memory pressure,
which increases its advantages.Medes does this bymin-
imizing the number of cold beginnings by 10–50% in
comparison to the most recent baselines.

Andreas et al. (2022) evaluated the performance
operational efficiency of Same domain memory dedu-
plication [31]. Memory deduplication, an Operating
System memory optimization method that combines
similar memory pages into one Copy-on-Write (CoW)
page, has been shown to be vulnerable to a number of
timing side-channel attacks. These attacks all originate
using the latency variations in write times to the CoW
page and the normal unique page. By offering two case
studies that demonstrate how an attacker can still use
the side channel for deduplication to leak information,
the authors of this research assessed the effectiveness of
memory deduplication in same domain as mitigation.
In the first case study, they looked into a client-server
model in which a server must inevitably data from an
unreliable source client and showed how the client may
manipulate the memory’s data alignment to reveal the
server’s confidential information. In the second case
study, they look at the latest Firefox browser that has
made significant ensuring that information from var-
ious origins is separated into different domains. They

show that despite these efforts, a malicious webpage
can still take advantage of Site isolation is only partially
implemented by the browser, causing leaks of sensitive
information across tabs. They concluded that same-
domain memory deduplication is insufficient since it is
challenging to perform correctly.

Jagadeeswari and Mohanraj [32], performed homo-
geneous batchmemory deduplication.Virtualmachines
with similar operating systems of active domains in
a node are recognised and organised into a homoge-
nous batch, with memory deduplication performed
inside that batch, to improve the memory pages shar-
ing efficiency. When compared to memory dedupli-
cation applied to the entire host, this homogeneous
approach merges more memory pages and implemen-
tation details demonstrate a significant increase in the
number of pages shared and CPU consumption.

3. Modified static memory deduplication
approach (mSMD)

In this research, amodified approach ofMemoryDedu-
plication of Static Memory Pages (mSMD), which is
based on the identification of similar applications by
Fuzzy hashing and clustering them using the Hier-
archical Agglomerative Clustering approach, followed
by similarity detection between static memory pages
based on Genetic Algorithm and details stored in Mul-
tilevel shared page table, both operations performed in
offline and final memory deduplication is carried out
during online, is proposed for achieving performance
optimization in virtual machines by reducing memory
capacity requirements.

In Segment 3.1, the proposed model overview is
discussed. In Segment 3.2, clustering of similar appli-
cations is explained. In Segment 3.2, classifications of
pages statically into various categories are explained.
In Segment 3.3, storing information of multilevel
page table is explained. In Segment 3.4, a modified
static memory deduplication technique is proposed for
reducing unnecessary memory page comparisons.

3.1. Proposedmodel

In this section, a novel approach of modified static
memory deduplication technique of static memory
pages is proposed for reducing the requirement of
memory capacity while response time is kept the same.
It includes twomain steps: (1) the overhead of response
time and unwanted page comparisons are reduced; first
all applications and all pages belong each cluster of
applications are partitioned into various categories in
accordance with the sample content. The processing
power consumption is saved as the technique is per-
formed in offline mode. The same sampled content
is present in the pages that are in the same cluster.
The number of total content samples is as large as

872 N. JAGADEESWARI ET AL.

the number of categories present in the system. Since
identical applications have similar content, first simi-
lar applications are categorized and code segment pages
are segmented, and the similarity of pages is identi-
fied. In this step, identical pages are detected within
each category. The selected candidate page is marked
as a shared memory page if the page is identical and
the shared memory page is linked to others. In this
way, the memory pages present in the code section are
analysed and the shared pages’ are identified. Themerg-
ing of shared pages is done after the process is sched-
uled online for alleviating the memory requirement
and overhead response time is decreased. The modi-
fied SMD approach is demonstrated in Figure 1 which
includes the above two processes.

3.2. Classification of applications

Due to a huge number of unwanted page comparisons,
the KSM approach will not be efficient, since it con-
sumes enormous CPU cycles. For this reason, all pages
are classified into various categories to avoid unneces-
sary comparisons. The same category pages are having
higher priority of being shared and other categories
of different groups are not shared. Furthermore, the
similarity detection of pages is limited based on their
similar category. The implementation of this applica-
tion classification is done in offline mode. The method
of fuzzy hashing, often referred to as similarity hashing,
is used to identify an application that is nearly iden-
tical to other applications but not quite. In contrast,
cryptographic hash algorithms are made to produce
dramatically different hashes for even the smallest vari-
ations. The following benefits of the clustering (or clas-
sification)method known as agglomerative hierarchical
clustering (AHC) include: It begins with the differences
among the items to be classified together. The type
of dissimilarity can be appropriate for the topic being
examined and the type of data being used. Algorithm 1
shows the grouping of similar applications using fuzzy
hashing and clusters are formed by the Agglomerative
hierarchical clustering approach.

Algorithm 1: Formation of Application Clusters.
Input:Given a dataset of applications of various virtual
machines represented as.

(V1A1, V1A2,V1An, V2A1,V2A2VnAm,
.VoA1,VoA2VoAx)

Output: Cluster of similar applications.
Step 1: Begin

for i 1 to p.
for j 1 to i
compute fuzzyhash (i,j)
if (% of similarity >30)

each data point is a singleton cluster
repeat

merge two clusters having remain

End
Step 2: Return clusters.

3.3. Classification of pages of code
section application clusters

Once the applications of virtual machines form a clus-
ter, it is followed by the process of page classifica-
tion based on a genetic algorithm, which is depicted
in Algorithm 2. Here, the initial population is gener-
ated based on the candidate pages. The code section of
applications installed in virtual machines is parti-
tioned into pages of segment size 4k which is the
default size and creates a new table for entry of the
list. The fitness is evaluated based on the similar-
ity of object dump of the code which is partitioned.
Until the termination condition is over, the process
is generated. Each sampled result is checked that is
present in the population P and selected based on
the fitness function and stored in the table as a new
population.

Algorithm 2: Identification of static similar pages of
applications
Input:
Step 1: P: Initial population of sampled results for the
candidate page.
Step 2: T: Creation of new table, Tj: index position of j
in Table T.
Output:
Step 3: Partition of code section of applications of VM
into pages.
Step 4: Begin.

Select candidate pages based on Roulette wheel
selection and partial selection for scanning.
Step 5: Fitness fitness evaluated based on the object
dump of the two candidate pages using:

Calculate objdump of page1 as a.
Calculate objdump of page2 as b.
if diff (a,b) = = 0 then.
pages similar and select operator applied.

else.
pages dissimilar.

Step 6: Repeat until the stop condition is not met do.
Step 7: Return Similar pages.

3.4. Each application usingmultilevel shared
pages table

For optimizing the systems response time, the cost is
reduced for the detection online with minimum effect
on the opportunities of sharing. For this reason, it is
proposed theMultilevel Shared Page Table based on the
page classification for each virtual machine. The mul-
tilevel shared page table is utilized for recording the
memory pages of virtual machines which are having

AUTOMATIKA 873

Figure 1. Framework of modified static Memory deduplication (mSMD).

similar contents to others. The size of the table is always
greater than the frame size in which the shared pages’
table is denoted as the variable size table, and if the
shared pages of a virtual machine are higher, then the
size of the table will be large or it will be small and
null for no pages. Algorithm 3 shows the demonstra-
tion of the implementation by the proposed multilevel
shared pages table for each cluster. In the First step, all
identical code section pages are detected from the vir-
tual machine. The one entry i is created in the page
table which has similar content. If it has no identical
pages then it will check for other pages with similar
content. The process is done in offline mode and sys-
tems response time is not affected. Before scheduling,
the memory pages that are shared by the applications
of all virtual machines are all identified through this
implementation algorithm.

Algorithm 3: Implementation Algorithm for Multi-
level page table
Input:
Step 1: A: each application cluster.
Step 2: Ri: sampled result of the i pages.
Step 3: S: page table size.
Step 4: F: frame size in the page table.
Step 5: TL: shared pages’ table.
Step 6: TLi: entry i in the table TL.
Output:
Step 7: Check S > F.
Step 8: while Ri do (i = 1 to n)

Classification of pages is found by PC, where
Riε PC;

Detect page i = PC (i) (detection of pages with
similar content)

if a page of then
Create a single entry in TLi
Pages with similar content stored in TLi

Continue;
else
Next page detected from Ri Continue;

end if
end of the while

3.5. Memory deduplication process

The final step is to execute memory pages’ merging
after the creation of the shared memory pages’ table for
all the virtual machine instances online, i.e. when the
virtualmachines are switched on. The request formem-
ory capacity is alleviated by performing this step. The
implementation pseudo-code is shown in algorithm 3.
Here, all pages are checked for theVMs and each page is
analysed for its presence in the shared page table that is
processed for merging. Furthermore, the identical con-
tent in the pages from the list is founded and the page
table entry is revised by making a page entry with other
shared pages that are containing identical contents. If
the entry is not found identical, then the next page of
VMs is checked.
Algorithm 4: Memory Deduplication Implementa-
tion
Input:
Step 1: A:virtual machine is running.
Step 2: Ri: page i.
Step 3: TL: shared pages’ table.
Step 4: TLi: entry i in the table TL.
Output:
Step 5: while Ri do Check Pi in TL

874 N. JAGADEESWARI ET AL.

If Pi in TL then
Find pages’ entry TLi in the table;
Find pages in TLi; if available in TL, process

merge
else
end if Entry of Ri is revised in the table for the A;
Continue;
Continue;

end of while

4. Simulation framework and performance
results

4.1. Simulation framework

Table 1 shows the settings of the experimental setup and
workloads of the framework given in Table 2.

4.2. Performance ofmSMD

The system performance is defined by the metric
known as system throughput. The performance mea-
sure is calculated as given in the below equation.

Performance =
∑

i

IPCshared
i

IPCalone
i

(1)

The instruction per cycle is defined as IPCi of virtual
machine i. Furthermore, IPCshared

i denotes the same
with running parallel to different VMs, and IPCalone

i
is running alone in the system, where i represent each
virtual machine.

KSM is a thread of Linux hypervisor, which peri-
odically wakes up every 20 ms which enhances the
processing power. The normalized system performance
increase for various arrangements with the proposed
mSMD having 4 G and 8G memory without dedupli-
cation carried out is shown in Figure 2. The different
configurations are given on the x-axis andVMs running
parallellywith various combinations and entire physical

Table 1. Experimental configuration setup.

Variables Characteristics

CPU Processor i5 Processor, Intel Core 8th Generation
Data Cache/L1 instruction 256 KB, 4 – way
Cache Memory – L2 1024 KB, 8 – way
Cach Memory – L3 8MB, 16 – way
OS & Hypervisor Linux – Ubuntu, KVM – Kernel Based Virtual

Machine QEMU – Quick Emulator, virsh
OS for VM Ubuntu 16.0

Table 2. Simulation workloads.

Variable Values

.Net app Run dot net for creating web applications
Apache Server Run the ab[] with 24 concurrent-request on Apache

HTTPd Server
MySql Database Run the MySQL database with SysBench[] in guest VMs
Genymotion Run Genymotion (Android Emulator) installed on

Virtualbox

Figure 2. Performance increase of virtual machines with
different Guest OS.

Figure 3. Performance for simultaneous VMs for same OS.

Figure 4. Physical memory pages’ proportion for various times
of shared.

Figure 5. Response time of proposed mSMD.

AUTOMATIKA 875

Figure 6. VMs average runtime.

memory size. The n virtual machines are represented
as n-VMs-mG that run upon a parallel server with mG
memory. Different operating system is included in each
VM. Better performance of the system is obtainedwhen

a similar amount of memory is given for different VMs
with the proposed mSMD approach.

Figure 3 shows the performance improvement
of normalization when the same OS is running
simultaneously on the virtual machines. Using different
OS lead to a decrease in the performance while running
the same given higher. This is due to several identi-
cal contents present in various systems which lead to
the opportunity for finding shared contents. The per-
formance of the system is increased by alleviating the
memory capacity request.

The performance shared times with regard to
the percentage of physical pages of various virtual
machines shown in Figure 4. For the systems’ shared
pages, an increase in the count of running virtual
machines will lead to more pages’ sharing inside the
system. If pages’ sharing is increased in the system, then
the shared pages’ can be combined for alleviating the
system’s memory capacity. Hence, Figure 4 shows the

Figure 7. (a) Pages’ sharing: .Net Application. (b) Pages’ sharing: ApacheHTTP Server. (c) Pages’ sharing:MySQL database. (d): Pages’
sharing: Genymotion.

876 N. JAGADEESWARI ET AL.

better performance of the proposed mSMD approach
for the simultaneous running of virtual machines.

4.3. Optimization of time of responsemSMD

The shared memory pages’ are detected by using
the proposed mSMD algorithm which is performed
through offline mode. The online detection using the
Linux KSM is different from this offline approach.
Compared to KSM the proposed mSMD approach has
more improvement with regard to response time.

The system normalized average response time in
comparison with other approaches like KSM shown
in Figure 5. The response time results show that the
mSMD gives a low response time for different con-
figurations. The average runtime completion of vir-
tual machines or applications is shown in Figure 6.
The proposed approach shows the shortest runtime
when compared with other approaches which give bet-
ter performance. The KSM has higher runtime when
compared with mSMD. From these results, the dedu-
plication of memory is valuable in tweaking systems
performance measures when more virtual machines or
applications execute concurrently.

4.4. Unnecessary comparison andmemory
capacity request ofmSMD

The memory page sharing opportunities in which the
maximum is obtained through long – time process
is shown in Figure 7(a,b,c,d). The proposed mSMD
approach detects memory page-sharing opportunities
in offline mode. Therefore, the proposed approach
detects the pages, before running the applications or
VMs. The page sharing opportunities onDot Net appli-
cations shown in Figure 7(a), Apache Server shown
in Figure 7(b), MySQL database shown in Figure 7(c),
and Genymotion shown in Figure 7(d). The page
detection opportunities are compared with the tra-
ditional KSM approach when running the particular
application.

Figure 8. Rate reduction percentage for four VMs.

Figure 8 shows the proposedmSMD for the percent-
age of unnecessary page comparison rate reduction.
The proposed work decreases about 28% of unneces-
sary futile comparisons. The reduction is shown for the
workloads due to the page content samples of mSMD
for each application.

5. Conclusion

In this research, a modified Static Memory Dedupli-
cation (mSMD) approach is proposed for reducing
the requirements of memory demand for performance
optimization in cloud computing. The proposed work
includesmajor three steps: (1) Similarity between appli-
cation performed using the Fuzzy hashing approach
followed by Clustering of applications based on the
Agglomerative Hierarchical Clustering approach; (2)
The code section of various applications are segmented
and similar static pages are identified using Genetic
Algorithm methodology. (3) Multilevel shared page
stable implementation is proposed for reducing the
repeated comparisons that should affect the sharing
opportunities; (3) The memory deduplication is per-
formed after building shared pages’ table for every VM
online, i.e. 4e after switching on of virtualmachine. This
leads to alleviating the requirements of memory capac-
ity. Themajor innovation of the proposedmSMD is that
the performance is improved by executing the process
of similar page detection of similar applications car-
ried out offline and memory deduplication was carried
out online. Through the simulation results, it is identi-
fied that the performance is improved and the require-
ment for memory capacity is reduced when using the
proposed mSMD technique. The future work includes
the grouping of virtual machines with similar operat-
ing systems and classifying static memory pages and
performing a memory deduplication approach.

Acknowledgment

The author with a deep sense of gratitude would thank the
Almighty for its blessings for this effort of article writing and
completion.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

References

[1] Xu F, Liu F, Jin H, et al. Managing performance over-
head of virtual machines in cloud computing: A sur-
vey, state of the art, and future directions. Proc IEEE.
2013;102(1):11–31.

[2] Customer Success. Powered by the AWS Cloud.
[Online] Available: http://aws.amazon.com/solutions/
case-studies

[3] AmazonElastic ComputeCloud (AmazonEC2). [Online]
Available: http://aws.amazon.com/ec2/

http://aws.amazon.com/solutions/case-studies
http://aws.amazon.com/ec2/

AUTOMATIKA 877

[4] https://customerthink.com/top-10-companies-using-cl
oud-and-why/

[5] Goldberg RP. Survey of virtual machine research. Com-
puter (LongBeachCalif). 1974;7(6):34–45. doi:10.1109/
MC.1974.6323581

[6] He S, Chen J, Li X, et al. Mobility and intruder
prior information improving the barrier coverage of
sparse sensor networks. IEEE Trans Mob Comput.
2013;13(6):1268–1282.

[7] Mutlu O, Subramanian L. Research problems and
opportunities in memory systems. Supercomput Front
Innov. 2015;1(3):19–55.

[8] Kong Y, Zhang M, Ye D. A belief propagation-based
method for task allocation in open and dynamic cloud
environments. Knowl Based Syst. 2017;115:123–132.

[9] Waldspurger CA. Memory resource management in
VMware ESX server. Oper Syst Rev (ACM). 2002;36
(SI):181–194. doi:10.1145/844128.844146

[10] Gupta D, Lee S, Vrable M, et al. Difference engine:
harnessing memory redundancy in virtual machines.
Commun ACM. 2010;53(10):85–93.

[11] Xia Z, Wang X, Sun X, et al. A secure and dynamic
multi-keyword ranked search scheme over encrypted
cloud data. IEEE Trans Parallel Distrib Syst. 2016;27(2):
340–352. doi:10.1109/TPDS.2015.2401003

[12] Ren YJ, Shen J, Wang J, et al. Mutual verifiable provable
data auditing in public cloud storage. J Internet Technol.
2015;16(2):317–323.

[13] FuZ, SunX, LiuQ, et al. Achieving efficient cloud search
services: multi-keyword ranked search over encrypted
cloud data supporting parallel computing. IEICE Trans
Commun. 2015;98(1):190–200.

[14] Liu Q, Cai W, Shen J, et al. A speculative approach
to spatial-temporal efficiency with multi-objective opti-
mization in a heterogeneous cloud environment. Secur
Commun Netw. 2016;9(17):4002–4012. doi:10.1002/
sec.1582

[15] Chen L, Wei Z, Cui Z, et al. CMD: classification-
based memory deduplication through page access
characteristic. ACM SIGPLAN Not. 2014;49(7):65–76.
doi:10.1145/2674025.2576204

[16] Jia G, Han G, Wang H, et al. Cost aware cache
replacement policy in shared last-level cache for
hybrid memory based fog computing. Enterp Inf Syst.
2018;12(4):435–451. doi:10.1080/17517575.2017.129
5321

[17] Jia G, Han G, Rodrigues JJPC, et al. Coordinate mem-
ory deduplication and partition for improving perfor-
mance in cloud computing. IEEE Trans Cloud Comput.
2019;7(2):357–368. doi:10.1109/TCC.2015.2511738

[18] McMillan C, Grechanik M, Poshyvanyk D. Detect-
ing similar software applications. 34th International
Conference on Software Engineering (ICSE); 2012.
p. 364–374

[19] Reyhani Hamedani M, Shin D, et al. Androclass: an
effective method to classify android applications by
applying deep neural networks to comprehensive fea-
tures. Wireless Commun Mobile Comput. 2018: 21,
Article ID 1250359.

[20] Sarantinos N, Benzaïd C, Arabiat O, et al. Forensic
Malware analysis: the value of fuzzy hashing algo-
rithms in identifying similarities. 2016 IEEE Trust-
com/BigDataSE/ISPA; 2016. p. 1782–1787.

[21] Borate M, Kumar A, Agrawal A, et al. U.S. Patent Appli-
cation No.16/171,010, 2019.

[22] Jia G, Han G, Wang H, et al. Static memory deduplica-
tion for performance optimization in cloud computing.
Sensors. 2017;17:968.

[23] Veni T, MarySairaBhanu S. Mdedup++: exploiting
temporal and spatial page-sharing behaviors for mem-
ory deduplication enhancement. Comput J. 2016;59(3):
353–370. doi:10.1093/comjnl/bxu149

[24] Garg A, Mishra D, Kulkarani P. Catalyst: GPU-assisted
rapid memory deduplication in virtualization environ-
ments. VEE ‘17: Proceedings of the 13th ACM SIG-
PLAN/SIGOPS International Conference on Virtual
Execution Environments; 2017. p. 44–59.

[25] Lee S, KimB, KimY, et al. Akc: advanced KSM for cloud
computing. SoCC ‘17: Proceedings of the 2017 Sym-
posium on Cloud Computing; California, Santa Clara;
September 2017. p 634.

[26] VañóGarcía F, Marco-Gisbert H. How kernel random-
ization is canceling memory deduplication in cloud
computing systems. 2018 IEEE 17th international sym-
posium on network computing and applications, Cam-
bridge, MA, USA; November 1–3. 2018.

[27] Santhosh Kumar T, Mishra D, Panda B, et al. Cow-
light: hardware-assisted copy-on-write fault handling
for secure deduplication. Hasp ‘19: proceedings of the
8th international workshop on hardware and architec-
tural support for security and privacy, New York, USA;
Article No.: 3, June 2019. p 1–8.

[28] Kim T, Shin Y. Poster: mitigating memory sharing-
based side-channel attack by embedding random values
in binary for cloud environment. Asia CCS ‘20: pro-
ceedings of the 15th ACMAsia conference on computer
and communications security; Taipei, Taiwan; October
2020. p 919–921.

[29] Albalawi A, Vassilakis V, Calinescu R, et al. Mem-
ory deduplication as a protective factor in virtualized
systems. Applied Cryptography and Network Security
Workshops. ACNS 2021. Lecture Notes in Computer
Science; vol 12809. Springer, 2021.

[30] Saxena D, Ji T, Singhvi A, et al. Memory deduplica-
tion for serverless computing with medes. Seventeenth
European conference on computer systems (EuroSys
’22), RENNES, France; April 5–8, 2022; ACM, New
York, NY, USA, 2022.

[31] Costi A, Johannesmeyer B, Bosman E, et al. On
the effectiveness of same-domain memory deduplica-
tion. 15th European Workshop on Systems Security
(EUROSEC ‘22), RENNES, France; April 5–8, 2022;
ACM, New York, NY, USA, 2022.

[32] Jagadeeswari N, Raj VM. Homogeneous batch mem-
ory deduplication using clustering of virtual machines.
Comput Syst Sci Eng. 2023;44(1):929–943. doi:10.3260
4/csse.2023.024945

https://customerthink.com/top-10-companies-using-cloud-and-why/
https://doi.org/10.1109/MC.1974.6323581
https://doi.org/10.1145/844128.844146
https://doi.org/10.1109/TPDS.2015.2401003
https://doi.org/10.1002/sec.1582
https://doi.org/10.1145/2674025.2576204
https://doi.org/10.1080/17517575.2017.1295321
https://doi.org/10.1109/TCC.2015.2511738
https://doi.org/10.1093/comjnl/bxu149
https://doi.org/10.32604/csse.2023.024945

	1. Introduction
	2. Literature review
	3. Modified static memory deduplication approach (mSMD)
	3.1. Proposed model
	3.2. Classification of applications
	3.3. Classification of pages of code section application clusters
	3.4. Each application using multilevel shared pages table
	3.5. Memory deduplication process

	4. Simulation framework and performance results
	4.1. Simulation framework
	4.2. Performance of mSMD
	4.3. Optimization of time of response mSMD
	4.4. Unnecessary comparison and memory capacity request of mSMD

	5. Conclusion
	Acknowledgment
	Disclosure statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

