
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/taut20

Automated program and software defect root
cause analysis using machine learning techniques

C. Anjali, Julia Punitha Malar Dhas & J. Amar Pratap Singh

To cite this article: C. Anjali, Julia Punitha Malar Dhas & J. Amar Pratap Singh (2023) Automated
program and software defect root cause analysis using machine learning techniques,
Automatika, 64:4, 878-885, DOI: 10.1080/00051144.2023.2225344

To link to this article: https://doi.org/10.1080/00051144.2023.2225344

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 27 Jun 2023.

Submit your article to this journal

Article views: 813

View related articles

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=taut20
https://www.tandfonline.com/journals/taut20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2023.2225344
https://doi.org/10.1080/00051144.2023.2225344
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2023.2225344?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2023.2225344?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2225344&domain=pdf&date_stamp=27 Jun 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2225344&domain=pdf&date_stamp=27 Jun 2023
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2023.2225344?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2023.2225344?src=pdf

AUTOMATIKA
2023, VOL. 64, NO. 4, 878–885
https://doi.org/10.1080/00051144.2023.2225344

Automated program and software defect root cause analysis using machine
learning techniques

C. Anjalia, Julia Punitha Malar Dhasb and J. Amar Pratap Singha

aDepartment of CSE, Noorul Islam Centre For Higher Education, Kumaracoil, Tamilnadu, India; bDepartment of CSE, Karunya Institute of
Technology and Sciences, Coimbatore, Tamilnadu, India

ABSTRACT
For the automated root cause analysis (ARCA)methodand simplified RCA technique, their empir-
ical assessment is presented in this study. A focus group meeting is a foundation for the target
problem identification in the ARCA technique. This is compared to earlier RCA methodologies
which rely on problem sampling for target problem discovery and high beginning costs. In this
research, we suggest a naïve Bayes based machine learning method for identifying the underly-
ing causes of newly reported software issues, which will facilitate a quicker and more effective
resolution of software bugs. The ARCA technique produced a large number of high-quality cor-
rective actions while requiring a reasonable amount of effort. The strategy is an effective way to
find new opportunities for process improvement and produce fresh process improvement ideas
in contrast to the organization’s corporate practices. In addition it is simple to utilize. Ultimately,
we compared themethodologywith othermachine learning classifiers including support vector
machine and decision tree.

ARTICLE HISTORY
Received 23 April 2023
Accepted 9 June 2023

KEYWORDS
Software defect prediction
(SDP); machine learning;
RCA; problem prevention;
naïve Bayes

1. Introduction

Many software process improvement approaches, includ-
ing CMMI, ISO/IEC 12207, and Six Sigma take prob-
lem sources into account. Understanding the cause of
the problem is essential for successful problem preven-
tion. We think the fundamental reason behind this is
that the only way to avoid the issue from recurring is
to get rid of its root causes. An organized investiga-
tion issue to determine which underlying causes need
to be corrected is known as root cause analysis (RCA).
It can help with process improvement and address this
issue in a variety of situations and across all software
organizations, including product design, embedded
system, advanced manufacturing, and assembly. The
lightweight RCA approach and its actual assessment are
presented in this work. We created an RCA technique
known as theARCAmethod for our research and tested
it. The setting of using root analysis techniques software
design served the study’s environment. The business
requirement was to create a simple RCA approach that
was used for problem avoidance at medium-sized soft-
ware firms. A root cause analysis literature research
served to develop the knowledge base for the techni-
cal design. Four medium-sized software product firms’
target challenges served as the test cases for the ARCA
approach, which is used to evaluate the design through
industrial studies.

Adding new features removing outmoded ones,
upgrading the idea or product, streamlining the code
base’s structure using coding standards, and enhancing
scalability are all examples of active software devel-
opment processes that increase the value of already-
existing software. This can lead the institutions to spend
a lot of money and time in defect prediction and man-
agement based on an appropriate model. The develop-
ment and use of a process performance model (PPM),
which considers the defect prediction model proves
itself to be one of the high maturity practices in the
software. These models help us in estimating software
reliabilitymeans including the average initial error con-
tent, the average interval of time within failures, the
average number of still existing errors at an imaginary
testing time point, and the software reliability function.

The number of bugs in large software systems can
increase significantly. It is a standard procedure for
someone testing software to run into a functional bug
and report it to the system. The developer then resolves
the bug after receiving it from the assigner. However,
these problems typically take time to manifest. It fre-
quently occurs that a developer who has not worked
on the root cause module or the functionality behind
the bug is mistakenly assigned to fix it. This is due to
the fact that recently reported bugs occasionally only
include the bug description and stack trace. As a result,

CONTACT C. Anjali anjali.c@mbcet.ac.in Department of CSE, Noorul Islam Centre for Higher Education, Kumaracoil, India

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in anymedium, provided the original work is properly cited. The terms onwhich this article has been published allow the posting of the Accepted
Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2225344&domain=pdf&date_stamp=2023-06-24
mailto:anjali.c@mbcet.ac.in
http://creativecommons.org/licenses/by/4.0/

AUTOMATIKA 879

it becomes quite challenging for the assigner to choose
the appropriate person to fix the fault. A supervised
machine learning technique is utilized to forecast the
root cause (RC) of the issues in order to address the
aforementioned issue.

Defect modules can be predicted to improve soft-
ware quality. Designing models for defect prediction is
a technique used in the early stages of the process to
find flawed systems, such as units or classes. By cate-
gorizing the modules as defect-prone or not, this can
be accomplished. The classification module is deter-
mined using a variety of techniques, the most popular
being support vector classifier (SVC), random forest,
naïve Bayes, decision trees (DT), and neural networks
(NN). During progress testing phases, the identified
defect-prone modules are given top priority and the
non-defect-prone modules. The main contribution of
the work is as follows:

• Design a naïve Bayes based machine learning
method for identifying the underlying causes of
newly reported software issues, which will facilitate
a quicker and more effective resolution of software
bugs.

• Categorizing the software dataset as a model for
bug prediction into a defective and non-defective
dataset.

• Evaluate the performance metrics such as accuracy,
precision, recall, and specificity and compared with
other machine learning algorithms.

The remainder of the paper is structured as follows:
related work of the systems is discussed in Section 2.
Section 3 contains information about techniques used
to obtain better results. The results of all analysed tech-
niques are included in Section 4, along with a compar-
ison of evaluation measures and analysed methods to
earlier approaches. Section 5 concludes the work.

2. Related work

This article compares five machine learning algorithms
support vector regression (SVR), using themetrics gen-
erated from entropy of changes. Web service and reg-
ular expressions are used to automate data extraction
for validation purposes [1]. Taking the advantage of the
relationship between models explains ability and pre-
dictive power. We offer a straightforward model sam-
pling method for identifying predictive results with the
smallest number of features. Our main premise is that
features that do not contribute to the model’s predic-
tive capacity should not be included [2]. The automatic
bug identification schemes evaluate the outcomes from
a set of controlled experiments. We demonstrate the
performance of individual classifiers for defect attri-
bution and is scalable to large-scale industrial applica-
tions, with an accuracy of the model ranging from 60%

to 85% using large-scale training sets. Finally, while
analysing automated bug assignment, we emphasize
the necessity of not only relying on cross-validation
results [3]. Software defect prediction helps engineers
enhance software security by locating the problematic
code. Existing research on software defect prediction,
on the other hand, is primarily limited to the source
code. Previous research has never looked into predic-
tion models for Android binary executables. We offer
an exploratory investigation of problem prediction in
Android apps [4].

AutoODC was instructed using two cutting-edge
text different classifiers, naïve Bayes (NB) it reaches
general accuracy rate of 82.9% (NB) and 80.7% (SVM)
on the advancedmanufacturing fault report, and 77.5%
(NB) and 75.2% (SVM) on the greater, more diverse
open source defect list [5]. Our suggested model
intends to forecast new faults created in the latest
version by objectively and formally examining the
sorts of changes and taking into account changes in
lines of code (LOC) [6]. The research’s key findings
are that (a) the use of algorithms to speed up time-
consuming tasks in developing software like debug-
ging and supporting documents and (b) the structured
analysis of large data sets to identify trends and new
communications clusters are two AI’s major accom-
plishments and future potentials [7]. A literature eval-
uation is also conducted in order to ensure needs
management and to identify potential gaps in future
research directions in order to improve our under-
standing. Experts share their perspectives on the main
reason of the absence of security focus in requirement
analysis [8]. This study suggests mining bug reposito-
ries using deep-learning models and clustering tech-
niques to determine the risk level of recently reported
issues. We explored a variety of models because they
all had unique qualities; it can extract features from
input and condense the feature space [9]. Based on
33 research topics, we conducted a thorough mapping
study onMLS testing procedures. Tomaximize the con-
sistency and dependability of our findings, we used cur-
rent recommendations when developing our research
process [10].

They introduce a machine learning-based device
that effectively provides insight into mistake rates as
well as process improvement and recovery procedures
into the design phase, removing the requirement for
manual computation [11]. In this study, we present a
prediction system that takes information from earlier
issue submissions and suggests the most aspects for
brand-new issues. Our approach uses a deep-learning
technique called long short-term memory to automat-
ically extract semantic elements that reflect a prob-
lem report and combine them with traditional textual
similarity data [12]. This research presents that a rate
is usually a deep-learning structure for the classifica-
tion and extraction of boundary irregularities, which

880 C. ANJALI ET AL.

is demonstrated using surface fracture detection in a
particular location. The suggested approach is consis-
tent with various deep-learning approaches, including
existing software packages, and has been shown that
in the domain of outer edge recognition, the suggested
technique has similar methods [13].

Bayesian networks are used to determine the prob-
ability impact linkages between evaluation metrics and
issue tendency. In addition to the metrics used in the
Promise data store, we define two new indicators, NOD
for the team of developers and LOCQ for system soft-
ware quality. The Promised data repository’s source
code for the data sets is selected. We may accept these
metrics [14]. Regarding organizations that do not track
defect-related data, we provide a feasible defect pre-
diction approach. We specifically look into the use
of cross-company (CC) data for developing localized
defect predictors based on static code properties. To
begin, we examine the circumstances in which CC data
can be used directly. There are only a few of these
circumstances [15].

3. Proposedmethodology

The methods used for the RCA of the eclipse bugs
described above are given. In addition to being gram-
matically relevant and intuitive, our goal was to arrive
at a system that produced good outcomes based on
machine learningmeasures like accuracy and precision.
Supervised learning appears to be the solution that best
fits the issue previously stated. However, given the limi-
tations of the data that is currently accessible, the semi-
supervised technique performs well in the majority of
real-world circumstances.

3.1. Machine learningmethods for defect root
cause analysis

RCA is used to identify and classify the underlying
causes of incidents that have effects on production,
quality, dependability, safety, and the environment.
Investigatorswill not be able to pinpoint and implement
remedial measures to stop similar occurrences in the
future until they can establish why an event or failure
occurred.

The work presented here is based on earlier stud-
ies. The studies show a major difference in terms of
the proposed modelling technique, software metrics
used, and the verification technique used. The existing
models such as SVM, k nearest, and random forest are
used in different modelling techniques. These models
use function level, and field and file level or package
level granularity for prediction. Classification or rank-
ing techniques are used for the purpose of validation.
The term “fault” or “defect” or “bug” is used to repre-
sent defect in the source code. When the software fails
to perform the function specified, the failure occurs

3.1.1. Root cause detection
There are various techniques for gathering and organiz-
ing the target problem causes in root cause detection.
Utilizing techniques like questionnaires, brainwriting,
interviewing, and brainstorming, the causes are typi-
cally gathered from various partners. In comparison to
the discussion and brain writing processes, which are
carried out in front of others, the surveys and inter-
views aremore privatemethods. The objective problem
causes are typically arranged into an occurrence dia-
gram using a diagram, failure mode effect diagram,
reason map, matrix diagram, dispersion chart, reason-
ing tree, or cause element chart depending on their
cause-and-effect correlations. Listings, checklists, and
charts have been demonstrated to be effective tools
for organizing the causes. By examining the gathered
implement program causes and concentrating on the
sources that can be avoided; the root causes are ulti-
mately found.

• Naïve Bayes
• Maximum entropy
• Decision trees
• Support vector machine
• Safety-based RCA

Safety-based as the name implies, RCA is an analysis
carried out on a single premise of safety. These precau-
tions might be categorized as workplace safety, health
safety, etc. In this, the RCA method is used to detect or
examine problems if any problems or events arise in the
fields of safety, health, etc. in the absence of safety bar-
riers, potential risks, and damages. It may be the root
cause of this RCA.

Production-based RCA

Production-based RCA is a type of analysis that is
based on production. This production might be viewed
as quality assurance for businesses involved in product
manufacture. In this, the RCA technique is utilized to
examine or research any problems that may arise in the
manufacturing field. The root causes in this RCA could
include a function failure, a manufacturing line error,
etc.

3.1.1.1. Process-basedRCA. Production-based acronym
RCA stands for one basis of process analysis. In this,
the RCA technique is utilized to examine or explore any
problems that may arise in the field development pro-
cess, which includes the processes of enhancing design,
product management, and project management. The
root causes of this RCA could be a failure in an indi-
vidual’s procedure, an error in a process step, etc.

3.1.1.2. Failure-based RCA. Failure-based as its name
implies, RCA is an investigation of a single cause of

AUTOMATIKA 881

Figure 1. Proposed classification of RCA.

failure. RCA techniques aims to predict the estimated
amount of flaws in a particular method or software
segment and also it is a technique used to classify the
module . For the purpose of defect prediction, practi-
tioners use a number of different techniques and can
be broadly categorized into (i) defect prediction and
(ii) defect classification. Defect predictions is a tech-
nique for estimating the amount of defects that will be
detected in a software package. Figure 1 shows how to
classify problems using important software root cause
defect analysis algorithms.

Comparison metrics: The defect reports (data sets)
are divided into specific groups using multi-class clas-
sification, and the detection accuracy is evaluated using
highest accuracy results.

3.2. Concept of association rulemining and naïves
Bayesmethod:

The goal of structural sequential pattern mining is to
discover correlations between attributes that are shared
by a large number of entries. If property A is in rela-
tion with property B for the majority of positive exam-
ples in a binary classification issue, hence a record in
which feature A is in interaction with B may belong
to a negative occurrence. If only one rule involving
B is broken, it does not infer much, but if several
such rules are broken, it increases the possibility that
the object belongs to the negative class. In associa-
tion rule mining, frequently occurring attribute value
conditions are searched in a dataset and used for predic-
tion purposes thereby neglecting nonfrequent attribute
values.

3.3. Software reliability growthmodels (SRGMs)
using the naïves Bayesmethod:

SRGMs are scientific equivalences used in the devel-
opment or testing phase used to model the software
growth or reliability of the system. By empirically evalu-
ating the performance ofmodels using the testing data a
suitablemodel is selected and defect forecasting is done.
Whenwe apply SRGMs to a project, it is used to guessti-
mate the latent defects and final defect counts with the
help of appropriate mathematical models. During the
SDLC phase the reliability of the model is measured
by SRGMs. Wood applied various SRGMs on defect
dataset and foundmomentous connection amongst the
defect count through the period. It shows a comparative
study of SRGMs with consumer electronics embedded
software.

3.4. Phase wise root causes analysis of software
failures

It is clear that software testing, especially upgrades,
environment issues, cloud-related issues, and config-
uration changes are concerns that require attention if
software failures are to be avoided. Due to the inte-
gration of numerous applications created in multiple
networks of various sectors employing web services
and other applications, configuration and environment
degradation emerge. The following explanations of the
root causes from each stage of software failures were
compiled. The support vector machine with the Gaus-
sian kernel is employed in this study, and it is indicated
by Equation (1).

K(x, y) = exp
(
x − y
σ 2

)
(1)

3.4.1. Supervised approach
Supervised learning is the term used to describe the
machine learning task of trying to insinuate a function
from labelled data. The training data consist of a set of
training examples. In supervised learning, each sam-
ple is a pair that consists of the intended output value
and an input item. After examining the training data,
a supervised learning algorithm generates an inference
value that may be applied to instances. Instances that
are not yet visible in a perfect environment will be able
to have their class labels determined with accuracy by
the algorithm. A classified data set that can be uti-
lized to train and test if the classification algorithms are
necessary for supervised learning.

Some of the supervised learning methods that have
been examined for the RCA use case include the ones
listed below:

• Naïve Bayes
• Maximum entropy

882 C. ANJALI ET AL.

• Decision trees
• Support vector machine

3.4.2. Unsupervised approach
A sort of machine learning algorithm called unsu-
pervised learning is used to derive conclusions from
datasets that only contain input data without tagged
replies. The most popular unsupervised learning
algorithm is cluster analytics, which reveals interesting
patterns or grouping in data by retrieving useful infor-
mation. The algorithm groups the data-based feature
similarity. With this method we clustered the training
dataset and produced a classifier using an unsuper-
vised learning algorithm. Then, we assigned the correct
groupings to newly received bug files using our cluster-
ing methodology. When the clustered data were exam-
ined for potential RCAs, it was discovered that some of
the data fell into the same category.

3.5. Proposed naïve Bayes algorithm

Naïve Bayes is an applied training that is used for the
statistical technique knowledge grouping. As the name
naïve suggests, this method blithely asserts that the
characteristics of a given class are autonomous. Fea-
tures presuppose strong or gullible isolation. It serves
as a template that is used to apply class labels to prob-
lematic items and is allocated as a vector that is uti-
lized to extract class descriptors from finite collections.
Given their oversimplified character and presumptions,
naïve Bayes is categorized under the complex issue of
real-world difficulties.

The Bayes theorem is the foundation of NB, a family
of simple probabilistic techniques featuring unconven-
tionality suppositions among the predictors. The NB
model is accurate, easy to build, and can be used to anal-
yse any dataset with a lot of data. A combination of P(c),
P(x), and P(x|c) yields the posterior probability, P(c|x).

The impact of a forecaster’s value (x) on the pre-
sumptive class (c) is unaffected by the value of other
forecasters.

P(c|x) = P(x|c)P(c)
P(x)

(2)

The group of variables with the highest prediction
accuracy would involve a thorough evaluation of all
potential selected features. Wemight also take a sample
of the simulation area in order to generate a simulation
for each classification purpose. To generate the model,
they explore the supermodel by identifying a collection
of characteristics at random. We begin with counting
models with a specific attribute and gradually increase
the size of the models until we have a suitable sam-
ple size. Each module’s characteristics were randomly
chosen. As a result, we take a different strategy than
the standard XGBoost implementation. The first part
of our sampling technique is explained in Algorithm 1.

ALGORITHM 1: Taking a sample of the Naïve Bayes
model space

Input: Dataset Train data = {xt, yc}nt=1, Test data =
{xc, yt}t=1

Proposed Naïve bayes algorithm
Output: Predict the error in terms of SRG and SDP
Initialization: N= 100 for number of runs
Procedure: SDP – Naïve bayes

For i= 1 to N
Selectm top features from train data
Dnew−train = x2 =∑

r=1
p ∑q

x=1
(D−E
E

rs)2

Dnew–test = Select same features from Test data
as Dnew−test

Model = naïve Bayes (Dnew–train Validation
size = 0.2)

End for

4. Experimental results

The experiments were carried out by utilizing the
eclipse bugs, public data set can be proposed as naïve
bayes algorithm when compared with the existing
classifiers, namely SVM, random forest, and K near-
est method. The findings of the quality measurement
assessment of the suggested software defect prediction
model are listed and explained below.

4.1. Sensitivity (recall)

Sensitivity measure can also be referred as “Recall”
which is computed by taking the ratio of number and it
is divided by the number of true positives and false neg-
ative instances. If the sensitivity is high then, it suggests
that the Experimental Study 72 has higher aggregate of
class label predicted as 1 appropriately. It will not permit
us to misclassify the positive class labels of the model
which is under consideration.

Sensitivity = Number of true positives
Number of true positives

+Number of false negatives

(3)

4.2. Specificity

A parameter that can be measured is the ratio of
true negatives divided by the sum of true negative
things and positive result occurrence. If the specificity
is high enough, it means that we accurately anticipated
a higher percentage of class labels as 0. This mea-
sure performance measure will not permit to misclas-
sify the negative class labels of the model taken under
consideration.

Specificity = Number of true negatives
Number of true negatives
+Number of false positives

(4)

AUTOMATIKA 883

Table 1. Naïve Bayes classifier was used to perform statistical functional testing on the KC1 sample.

Labels Precision Sensitivity Specificity Recall F-score False positive True negative True positive Accuracy

Class1 0.5024 0.6544 0.88564 0.6754 0.5545 234 1534 205 85.34%
Class 2 0.6785 0.8796 0.5354 0.7556 0.3498 765 5569 456

Figure 2. Classification performance of the SVM classifier.

Table 2. Statistical evaluation process and use a decision tree classifier for the eclipse bugs database.

Section Accurate Sensitivity Specificity Recall F-score False positive True negative True positive Accuracy

Class 1 0.7653 0.8653 0.5467 0.8743 0.4875 70 1772 145 96.56
Class 2 0.5657 0.8786 0.3765 0.2657 0.5643 205 145 1665

4.3. Accurate

Accuracy is the ratio of the total number of true pos-
itive and false positive cases. When the accuracy of
prediction is high, the percentage of positive classifier
expected from all positive class labels is indeed high
(Table 1).

Accuracy = Number of true positives
Number of true positives

+Number of false positives

(5)

In the next phase, we present statistical performance
measurement using the SVM classifier where sev-
eral performance measurement metrics are consid-
ered such as precision, sensitivity, specificity, recall, F-
measurement false positive, true negative, true positive
and, finally, the accuracy of the classifier is given. The
present ROC analysis is shown in Figure 2.

It is equal to 1 occurs when there is no overlapping
in distribution and a perfect separation of two groups is
possible and because of that the graph reaches the upper
left corner without any overlap and correctly classifies
defective and non-defective modules.

They present statistical performance measurement
using the decision tree classifier where the following

several performance measurement metrics are consid-
ered specificity, susceptibility, selectivity, recalls and
F-measurement. The reliability of the classifiers is
reported in terms of false positive, true negative, true
positive, and ultimately, false positive. Now, we present
ROC analysis as labelled in Table 2 false positive
(Figure 3).

The area is equal to when the curve will coincide
with the diagonal. The curve is equal to 1 occurs when
there is no over lapping in distribution and there a per-
fect separation of two groups is possible and because
of that the curve reaches the upper left corner with-
out any overlap and correctly classifies defective and
non-defective modules (Table 3).

We offer quantitative assessment using the naïve
bayes classifier, which considers accuracy, sensitivity,
specificity, recalls, and F-measurement among other
performance parameters. Figure 4 shows the false pos-
itive, true negative, true positive, and accuracy of the
classification. Performance comparison is shown in
Table 4.

5. Conclusion

This work mainly proposed software defect prediction
using data-mining techniques with a machine learning

884 C. ANJALI ET AL.

Figure 3. Classification performance of the decision tree classifier.

Table 3. Analytical assessment of the eclipse bugs dataset.

Class Precision Sensitivity Specificity Recall False positive True negative True positive Accuracy

defective 0.4863 0.8562 0.8664 0.8867 56 432 245 84.56
Non- defective 0.8455 0.8788 0.8772 0.8678 54 342 321

Table 4. Performance comparison.

Method Accuracy

RF-FS [16] 85.20
SVM-AdaBoost [18] 79
SVM-PCA [17] 83
RF-PCA [17] 83
Proposed 85.34

approach. However, this area has turned into a fasci-
nating field for scientists where numerous practices are
performed for promoting and refining the performance

of defect detection or bug prediction. The proposed
work concentrates on constructing a new combined
approach using feature reduction and classification for
the purpose of addressing the classification accuracy for
a huge dataset. The eclipse bugs dataset is appliedwhere
maximum likelihood is also combined to reduce the
error while reconstructing the eclipse bugs dataset to
obtain the feature reductionmodel. Themajor objective
of this article was to use software system analysis to
reducemanual interaction in the software development

Figure 4. Classification performance of the naïve Bayes classifier.

AUTOMATIKA 885

process. For the most frequent coding errors we built
root cause analyses and attributed those to eclipse bugs
and issues. In the future, we will try to analyse various
ensemble classifier types after applying data balanc-
ing approaches because these techniques allow us to
enhance errormeasure as well as obtain the best results.
On a large dataset, we will additionally use a different
optimization strategy.

Disclosure statement

No potential conflict of interest was reported by the
author(s).

References

[1] Kaur A, Kaur K, Chopra D. An empirical study of
software entropy based bug prediction using machine
learning. Int J Syst Assurance Eng Manage. 2016;8(S2):
599–616. doi:10.1007/s13198-016-0479-2

[2] Jonsson L, Borg M, Broman D, et al. Automated
bug assignment: ensemble-based machine learning
in large scale industrial contexts. Empir Softw Eng.
2015;21(4):1533–1578. doi:10.1007/s10664-015-9401-9

[3] Esteves G, Figueiredo E, Veloso A, et al. Understanding
machine learning software defect predictions. Autom
Softw Eng. 2020;27:369–392. doi:10.1007/s10515-020-
00277-4

[4] Dong F, Wang J, Li Q, et al. Defect prediction
in android binary executables using deep neural
network. Wirel Pers Commun. 2017;102:2261–2285.
doi:10.1007/s11277-017-5069-3

[5] Huang L, Ng V, Persing I, et al. AutoODC: automated
generation of orthogonal defect classifications. Autom
Softw Eng. 2014;22(1):3–46. doi:10.1007/s10515-014-
0155-1

[6] Kastro Y, Bener AB. A defect prediction method for
software versioning. Softw Qual J. 2008;16(4):543–562.
doi:10.1007/s11219-008-9053-8

[7] Barenkamp M, Rebstadt J, Thomas O. Applications of
AI in classical software engineering. AI Perspectives.
2020;2(1):1–15. doi:10.1186/s42467-020-00005-4.

[8] Althar RR, Samanta D. The realist approach for
evaluation of computational intelligence in software
engineering. Innov Syst Softw Eng. 2021;17(1):17–27.
doi:10.1007/s11334-020-00383-2

[9] Hamdy A, Ezzat G. Deep mining of open source soft-
ware bug repositories. Int J Comput Appl. 2020;44:1–9.
doi:10.1080/1206212x.2020.1855705

[10] RiccioV, JahangirovaG, StoccoA, et al. Testingmachine
learning based systems: a systematic mapping. Empir
Softw Eng. 2020;25:5193–5254.. doi:10.1007/s10664-
020-09881-0

[11] Nalbach O, Linn C, Derouet M, et al. Predictive quality:
towards aNewunderstanding of quality assurance using
machine learning tools. Lecture Notes Business Inform
Proc. 2018;320:30–42. doi:10.1007/978-3-319-93931-
5_3

[12] Choetkiertikul M, Dam HK, Tran T, et al. Automat-
ically recommending components for issue reports
using deep learning. Empir Softw Eng. 2021;26(2):39.
doi:10.1007/s10664-020-09898-5.

[13] Tabernik D, Šela S, Skvarč J, et al. Segmentation-based
deep-learning approach for surface-defect detection.
J Intell Manuf. 2019;31:759–776. doi:10.1007/s10845-
019-01476-x

[14] Okutan A, Yıldız OT. Software defect prediction using
BayesiannetworkEmpir SoftwEng 2012;19(1):154–181.
doi:10.1007/s10664-012-9218-8

[15] Tabernik D, Šela S, Skvarč J, et al. Segmentation based
deep-learning approach for surface-defect detection.
J Intell Manuf. 2019;31:759–776. doi:10.1007/s10845-
019-01476-x

[16] Mumtaz B, Kanwal S, Alamri S, et al. Feature selec-
tion using artificial immune network: an approach for
software defect prediction. Intell Autom Soft Comput.
2021;29:669–684. doi:10.32604/iasc.2021.018405

[17] Cetiner M, Sahingoz OK. A comparative analysis for
machine learning based software defect prediction sys-
tems. Proceedings of the 2020 11th International Con-
ference on Computing Communication and Network-
ing Technologies (ICCCNT), 2020 1–3 July.; Kharagpur,
India; 2020. p. 1–7.

[18] Alsaeedi A, Khan MZ. Software defect prediction using
supervised machine learning and ensemble techniques:
a comparative study. J Softw En. Appl. 2019;12:85–100.
doi:10.4236/jsea.2019.125007

https://doi.org/10.1007/s13198-016-0479-2
https://doi.org/10.1007/s10664-015-9401-9
https://doi.org/10.1007/s10515-020-00277-4
https://doi.org/10.1007/s11277-017-5069-3
https://doi.org/10.1007/s10515-014-0155-1
https://doi.org/10.1007/s11219-008-9053-8
https://doi.org/10.1186/s42467-020-00005-4
https://doi.org/10.1007/s11334-020-00383-2
https://doi.org/10.1080/1206212x.2020.1855705
https://doi.org/10.1007/s10664-020-09881-0
https://doi.org/10.1007/978-3-319-93931-5_3
https://doi.org/10.1007/s10664-020-09898-5
https://doi.org/10.1007/s10845-019-01476-x
https://doi.org/10.1007/s10664-012-9218-8
https://doi.org/10.1007/s10845-019-01476-x
https://doi.org/10.32604/iasc.2021.018405
https://doi.org/10.4236/jsea.2019.125007

	1. Introduction
	2. Related work
	3. Proposed methodology
	3.1. Machine learning methods for defect root cause analysis
	3.1.1. Root cause detection

	3.2. Concept of association rule mining and naïves Bayes method:
	3.3. Software reliability growth models (SRGMs) using the naïves Bayes method:
	3.4. Phase wise root causes analysis of software failures
	3.4.1. Supervised approach
	3.4.2. Unsupervised approach

	3.5. Proposed naïve Bayes algorithm

	4. Experimental results
	4.1. Sensitivity (recall)
	4.2. Specificity
	4.3. Accurate

	5. Conclusion
	Disclosure statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

