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ABSTRACT
Cryptography field,whichenables secure communicationbetweencivilians, governmental orga-
nizations, military forces, and many more, addresses security, confidentiality, and integrity of
information being conveyed regardless of themedium used. Protection of priceless information
resources on intranets, the Internet, and the cloud has become a vital demand of contemporary
electronic security systems. In this paper, we deploy homomorphic data encryption (HDE) tech-
nique on Bipolar-valued Fuzzy Sub-Bigroups (BVFSB). Intuitionistic Fuzzy Sets were presented
by Atanassov in 1986, as a modification of Fuzzy Sets, by taking into consideration the grade of
membership value and non-membership value for each element in the universe. A fuzzy alge-
braic structure known as Bipolar-valued Fuzzy sub-bigroup of a bigroup has been established by
applying the concept of bipolar-valued Fuzzy sets to bigroups. Some of the theorems related to
homomorphism and anti-homomorphism, are stated and proved.

ARTICLE HISTORY
Received 27 April 2023
Accepted 13 June 2023

KEYWORDS
Bipolar-valued fuzzy set;
bipolar-valued
fuzzy-subgroup; bigroup;
bipolar-valued fuzzy
sub-bigroup; bipolar-valued
fuzzy normal sub-bigroup;
generalized characteristic
bipolar-valued fuzzy
sub-bigroup

I Introduction

The cyber-physical systems are used frequently in sev-
eral applications like smart home systems, equipment
diagnostics during production, security systems, health
care, military applications, etc. The development of IT
technology is accelerating over time. Often, wireless
sensor networks serve as the systems’ obvious base.
Sensor networks are wireless networksmade up ofmul-
tiple tiny sensors that are dispersed throughout space.
Because wireless sensor networks cannot be protected
using standard computer network security measures,
unique security measures that are appropriate for sen-
sor networks must be developed. One such measure is
the use of homomorphic encryption algorithms. Digi-
tal communication is now more susceptible than ever
to surveillance or hostile interference, such as hacking
or eavesdropping. New techniques for secure transmis-
sion via unsecure channels are needed to ensure the
security of sensitive data in applications including copy-
right protection, distant military communication, safe
storage, authentication, and secure video conferencing.
A unique class of cryptosystems called homomorphic
cryptosystems keeps track of group operations carried
out on the ciphertexts. The homomorphic character-
istic of public key cryptosystems has been utilized in
a large number of data security protocols, including
electronic voting systems, bidding protocols, cashing
systems, and asymmetric photo fingerprinting [1].

As an extension of Fuzzy sets [2], in 1994,W.R.Zhang
[3,4] introduced ‘Bipolar-valued Fuzzy sets’ and was
further developed by Lee [5,6]. In a bipolar-valued
Fuzzy set items with a membership degree of 0 are
irrelevant to the corresponding property whereas those
with a membership degree of 0 1 and −1 0] par-
tially meet the property and the implicit counter
property, respectively. Vasantha kandasamy.W.B [7]
introduced the basic idea of fuzzy bigroup. M.S.Anitha
et al. [8] introduced the bipolar-valued Fuzzy sub-
group and A.Balasubramanian et al. [9] introduced
intuitionistic fuzzy sub-bigroup of a bigroup. Justin
Prabu.T and K.Arjunan [10] introduced Q-fuzzy sub-
bigroup of a bigroup. In continuation with the works
related to Bipolar-valued Fuzzy Sets, Sheena. K. P and
K.Uma Devi [11] familiarized bipolar-valued Fuzzy
sub-bigroup (BVFSBG) of a bigroup by applying the
concept of bipolar-valued Fuzzy sets, on bigroups.
Bigroup is an algebraic structure consisting of two
groups with respective group operations.

Abdulatif Alabdulati et al. [12] presented the
lightweight homomorphic encryption algorithm in
privacy-preserving cloud-based practical and secure
billing system. The effectiveness, reliability, and adapt-
ability of operating smart infrastructure could be
considerably increased if sensors could be integrated
with cloud-based data storage and processing. One of
the most valuable features of this privacy-preserving
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system has the potential for secure transfer of billing
management into the cloud, with on-demand data
retrieval and statistical analyses. A scrambled image
can then be safely obtained by the dealer. In fact, using
this method, each player merely needs to deduct their
own key image from the scrambled image to extract the
secret image.

1.1. Objective

The objectives of this research are as follows:

(1) The extracted shared secret data is extracted once
the encryption anddecryption processes have been
completed in the proposed system.

(2) With the help of the encryption technique known
as homomorphic encryption, you can add and
multiply cipher texts in order to get this output
which match an outcome of similar one.

(3) Encoding messages or information so that only
authorized parties can read it is known as encryp-
tion in cryptography.

(4) Amessage or piece of information, known as plain-
text in an encryption scheme, is encrypted using an
encryption algorithm to create cipher text that can
only be decoded and read.

(5) An encryption technique typically employs a
pseudo-random encryption key produced by an
algorithm for technical reasons.

1. Preliminaries

Definition 1.1 ([8]): Let G be a group. If the fol-
lowing criteria are met, a bipolar-valued Fuzzy subset
N of G, with the two membership values, N+m and
N−m is said to be a bipolar-valued Fuzzy subgroup
of G if, (i) N+m(ab−1) ≥ min {N+m(a),N+m(b)}, (ii)
N−m(ab−1) ≤ max {N−m(a),N−m(b)}, for all a and b
in G.

Definition 1.2 ([11]): Let (G = G1 ∪ G2,+, ·) be a
bigroup. If there are two bipolar-valued Fuzzy subsets
A1 of G1 and A2 of G2 such that (i) A = A1 ∪ A2 (ii)
A1 is a bipolar-valued Fuzzy subgroup of (G1,+) (iii)
A2 is a bipolar-valued Fuzzy subgroup of (G2, ·), then
the bipolar-valued Fuzzy set A of G is said to be a
bipolar-valued Fuzzy sub-bigroup.

Definition 1.3 ([8]): Let (G, ∗) be a group. If N+m

(a ∗ b) = N+m (b ∗ a), and N−m(a ∗ b) = N−m (b ∗ a)
for every a and b in G, then the bipolar-valued Fuzzy
subgroup N of G is said to be a bipolar-valued Fuzzy
normal subgroup of G.

Definition1.4: Let (G = G1 ∪ G2,+, ·) be a bigroup. If
there are two bipolar-valued Fuzzy subsetsA1 ofG1 and
A2 of G2 such that, (i) A = A1 ∪ A2 (ii) A1 is a normal

bipolar-valued Fuzzy subgroup of (G1,+) (iii) A2 is a
normal bipolar-valued Fuzzy subgroup of (G2, ·), then
the bipolar-valued Fuzzy subset A of G is said to be a
bipolar-valued Fuzzy normal sub-bigroup of G.

Definition 1.5 ([13]): Let (G1 = H1 ∪ F1,+, ·) and
(G2 = H2 ∪ F2,+, ·) be any two bigroups. Then, the
function f : G1 → G2 is an anti-homomorphism if
f (x + y) = f (y) + f (x) for all x and y in H1 and
f (x · y) = f (y) · f (x) for all x and y in F1.

Definition 1.6 ([13]): Let (G1 = H1 ∪ F1,+, ·) and
(G2 = H2 ∪ F2,+, ·) be two bigroups. Let f : G1 → G2
be given as an anti-homomorphism. If f is one-to-one
and onto, then f is called an anti-isomorphism.

Theorem 1.7 ([10]): Let (G1 = H1 ∪ F1,+, ·) and
(G2 =
H2 ∪ F2,+, ·) be any two bigroups with identities. If f :
G1 → G2 is an anti-homomorphism, then f (0) = 0′,
f (1) = 1′ where 0, 1 and 0′, 1′ are identities of G1 and
G2 respectively. (ii) f (−a) = −f (a) for all a ∈ H1 and
f (a−1) = (f (a))−1 for all a ∈ F1

Definition 1.8 ([13]): Let f : X → X′ be an onto
function defined on X. Let A represent a fuzzy bi-
polar subset of X. Then, the image of A under
f is indicated by f (A) = V , which is a bipolar-
valued Fuzzy subset on f (X) = X′ and is defined by
V+m(q) = sup

p ∈ f−1(q)A
+m(p) and V−m(q) = inf

p ∈ f−1(q)
A−m(p) for all q in X′. Let B be a fuzzy bi-polar valued
subset of X′. The pre-image of B which is denoted as
f−1(B) = W is defined by W+m(p) = B+m(f (p) ) and
W−m(p) = B−m(f (p)) for every p in X.

2. Theorems

Theorem2.1: Given two bigroups (G1 = H1 ∪ F1,+, ·)
and (G2 = H2 ∪ F2,+, ·) and an isomorphism f from
G1 to G2. Then the image of a bipolar-valued Fuzzy
sub-bigroup of G1 under f is a bipolar-valued Fuzzy
sub-bigroup of G2.

Proof: Let f : G1 → G2 be an isomorphism and let A
= M ∪ N = (M ∪ N)+m , (M ∪ N)−m be a bipolar val-
ued fuzzy sub-bigroup of G1.

Then, f (A)=((f (M) ∪ f (N))+m , (f (M) ∪ f (N))−m),
where (f (M))+m(y) = sup

x ∈ f−1(y) M
+m(x); (f (M))−m(y)

= inf
x ∈ f−1(y) M

−m(x), for all y inH2 and (f (N))+m(y) =
sup

x ∈ f−1(y) N
+m(x); (f (N))−m(y) = inf

x ∈ f−1(y) N
−m(x), for

all y in F2.
Let f (a1) and f (b1) be in G2. If f (a1) and

f (b1) are in H2, then (f (M))+m(f (a1) − f (b1)) =
(f (M))+m(f (a1 − b1) = sup

x ∈ f−1(f (a1−b1) M
+m(x) =

sup
f (x) ∈(f (a1−b1)) M

+m(x) = M+m(a1 − b1) ≥ min
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{M+m(a1),M+m(b1)} = min {f (M)+m(f (a1)),
f (M)+m(f (b1))}, as f : G1 → G2 is an isomorphism.
Also (f (M))−m(f (a1) − f (b1)) = (f (M))−m(f (a1 − b1)
= inf

x ∈ f−1(f (a1−b1)
M−m(x)= inf

f (x) ∈(f (a1−b1)) M
−m(x)=

M−m(a1 − b1) ≤ max {M−m(a1),M−m(b1)} ≤ max
{f (M)−m(f (a1)), f (M)−m(f (b1))}.

Similarly, if f (a1) and f (b1) are in F2, then
(f (N))+m(f (a1)(f (b1))−1) = (f (N))+m(f (a1b1−1) =

sup
x ∈ f−1(f (a1b1−1) N

+m(x) = sup
f (x) ∈(f (a1b1−1)) N

+m(x) =
N+m(a1b1−1) ≥ min {N+m(a1),N+m(b1)} = min
{f (N)+m(f (a1)), f (N)+m(f (b1))}.

Also, (f (N))−m(f (a1)(f (b1))−1) = (f (N))−m(f (a1
b1−1) = inf

x ∈ f−1(f (a1b1−1)
N−m(x) = inf

f (x) ∈(f (a1b1−1)

N−m(x) = N−m(a1b1−1) ≤ max {N−m(a1),N−m(b1)}
≤ max {f (N)−m(f (a1)), f (N)−m(f (b1))}.

Hence f (A) = ((f (M) ∪ f (N))+m , (f (M) ∪
f (N))−m), is a bipolar valued fuzzy sub-bigroup of
G2. �

Theorem2.2: Given two bigroups (G1 = H1 ∪ F1,+, ·)
and (G2 = H2 ∪ F2,+, ·) and a homomorphism, f :
G1 → G2.Then for a bipolar valued fuzzy sub-bigroup of
G2 , its pre-image is a bipolar valued fuzzy sub-bigroup
of G1.

Proof: Let f : G1 → G2 be a homomorphism. Let
B = R ∪ S = (R ∪ S)+m , (R ∪ S)−m be a bipolar valued
fuzzy sub-bigroup of G2.

f−1(B) = f−1(R ∪ S) = f−1(R) ∪ f−1(S) = (f−1(R)

∪f−1(S))+m , f−1(R) ∪ f−1(S))−m , where (f−1(R))+m

(x) = R+m(f (x));(f−1(R))−m(x) = R−m(f (x)) for all x
in H1 and (f−1(S))+m (x) = S+m(f (x));(f−1(S))−m(x)
= S−m(f (x)) for all x in F1.

Let a1 and b1 be in G1. If a1 and b1 are in
H1, then (f−1(R))+m (a1 − b1) = R+m(f (a1 − b1) =
R+m(f (a1) − f (b1)) ≥ min{R+m(f (a1),R+m(f (b1)} ≥
min (f−1(R))+m(a1), (f−1(R))+m(b1)).

Also (f−1(R))−m(a1 − b1) = R−m(f (a1 − b1) =
R−m(f (a1) − f (b1)) ≤ max{R−m(f (a1),R−m(f (b1)} ≤
max (f−1(R))−m(a1), (f−1(R))−m(b1).

Similarly, if a1 and b1 are in F1, then,

(f−1(S))+m (a1b1−1) = S+m(f (a1b1−1)

= S+m(f (a1)(f (b1))−1)

≥ min {S+m(f (a1), S+m(f (b1)}
≥ min(f−1(S))+m(a1), (f−1(S))+m(b1)).

Also (f−1(S))−m(a1b1−1) = S−m(f (a1b1−1) = S−m

(f (a1)(f (b1))−1) ≤ max {S−m(f (a1), S−m(f (b1)} =
max{(f−1(S))−m(a1), (f−1(S))−m(b1)}

Hence f−1(B) = f−1(R ∪ S) = f−1(R) ∪ f−1(S) =
(f−1(R) ∪ f−1(S))+m , (f−1(R) ∪ f−1(S))−m , is a bipo-
lar valued fuzzy sub-bigroup of G1. �

Theorem 2.3: Let (G1 = H1 ∪ F1,+, ·) and (G2 = H2
∪F2,+, ·) be any two bigroups. Then the anti-isomorphic

image of a bipolar valued fuzzy sub-bigroup of G1 is a
bipolar valued fuzzy sub-bigroup of G2.

Proof: Let f : G1 → G2 be an anti-isomorphism. Let
A = M ∪ N = (M ∪ N)+m , (M ∪ N)−m be a bipolar
valued fuzzy sub-bigroup of G1 = H1 ∪ F1. To prove
that f (A) = ((f (M) ∪ f (N))+m , (f (M) ∪ f (N))−m), is a
bipolar valued fuzzy sub-bigroup of G2.

Let f (a1) and f (b1) be inG2. If f (a1) and f (b1) are in
H2, then

(f (M))+m(f (a1) − f (b1))

= (f (M))+m(f (−b1 + a1))

= sup
x ∈ f−1(f (−b1+a1) M

+m(x)

= sup
f (x) ∈(f (−b1+a1)) M

+m(x) = M+m(−b1 + a1)

≥ min{M+m(a1), M+m(b1)}
= min {(f (M))+m(f (a1), (f (M))+m(f (b1)}.

Also, (f (M))−m(f (a1) − f (b1)) = (f (M))−m(f (−b1
+a1)) = inf

x ∈ f−1(f (−b1+a1)
M−m(x) = inf

f (x) ∈(f (−b1+a1))
M−m(x) = M−m(−b1 + a1) ≤ max{M−m(a1),M−m

(b1)} = max {f (M)−m(f (a1), f (M)−m(f (b1)}
If f (a1) and f (b1) are in F2, then (f (N))+m(f (a1)

(f (b1))−1) = f (N)+m(f (b1−1a1) = sup
x ∈ f−1(f (b1−1a1)

N+m(x) = sup
f (x) ∈(f (b1−1a1) N

+m(x) = N+m(b1−1a1) ≥
min {N+m(a1),N+m(b1)}=min {f (N)+m(f (a1)),
f (N)+m(f (b1))}.

Also, (f (N))−m(f (a1)(f (b1))−1) = (f (N))−m(f (b1−1

a1) = inf
x ∈ f−1(f (b1−1a1)

N−m(x) = inf
f (x) ∈(f (b1−1a1))

N−m

(x)=N−m(b1−1a1) ≤ max{N−m(a1),N−m(b1)} ≤
max{f (N)−m(f (a1)), f (N)−m(f (b1))}

Hence, f (A)=((f (M) ∪ f (N))+m , (f (M)∪f (N))−m),
is a bipolar valued fuzzy sub-bigroup of G2. �

Theorem 2.4: Let (G1 = H1 ∪ F1,+, ·) and (G2 = H2
∪F2,+, ·) be any two bigroups. Then the anti-homomor-
phic preimage of a bipolar valued fuzzy sub-bigroup of
G2 is a bipolar valued fuzzy sub-bigroup of G1.

Proof: Let f : G1 → G2 be an anti-homomorphism.
LetB = R ∪ S = (R ∪ S)+m , (R ∪ S)−m be a bipolar val-
ued fuzzy sub-bigroup of G2.

Let a1 and b1 be in G1. If a1 and b1 are in
H1, then (f−1(R))+m (a1 − b1) = R+m(f (a1 − b1) =
R+m(f (−b1) + f (a1)) = R+m(−f (b1) + f (a1)) ≥ min
{R+m(f (a1),R+m(f (b1)} ≥ min (f−1(R))+m(a1), (f−1

(R))+m(b1)).
Also (f−1(R))−m(a1 − b1) = R−m(f (a1 − b1) =

R−m(f (−b1) + f (a1)) ≤ max{R−m(f (a1),R−m(f (b1)}
≤ max (f−1(R))−m(a1), (f−1(R))−m(b1).
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Similarly, if a1 and b1 are in F1, then,

(f−1(S))+m(a1b1−1) = S+m(f (a1b1−1)

= S+m((f (b1))−1f (a1))

≥ min {S+m(f (a1), S+m(f (b1)}
≥ min(f−1(S))+m(a1), (f−1(S))+m(b1)).

Also (f−1(S))−m(a1b1−1) = S−m(f (a1b1−1) = S−m

((f (b1))−1f (a1))≤ max {S−m(f (a1), S−m(f (b1)}= max
{(f−1(S))−m(a1), (f−1(S))−m(b1)}

Hence f−1(B) = f−1(R ∪ S) == (f−1(R) ∪ f−1

(S))+m , (f−1(R) ∪ f−1(S))−m), is a bipolar valued fuzzy
sub-bigroup of G1. �

Theorem 2.5: Let (G1 = H1 ∪ F1,+, ·) and (G2 = H2
∪F2,+, ·) be any two bigroups. The isomorphic image
of a bipolar valued fuzzy normal sub-bigroup of G1 is a
bipolar valued fuzzy normal sub-bigroup of G2.

Proof: Let f : G1 → G2 be an isomorphism and let
A = M ∪ N = (M ∪ N)+m , (M ∪ N)−m be a bipolar
valued fuzzy normal sub-bigroup of G1. To prove that
f (A) is a bipolar valued fuzzy normal sub-bigroup
of G2.

By theorem 2.1, f (A) is a bipolar valued fuzzy sub-
bigroup of G2.

Let f (a1) and f (b1) be inG2. If f (a1) and f (b1) are in
H2, then

f (M)+m(f (a1) + f (b1)) = f (M)+m(f (a1 + b1))

= M+m(a1 + b1) = M+m(b1 + a1)

= f (M)+m(f (b1 + a1)) = f (M)+m(f (b1) + (f (a1)

Also, f (M)−m(f (a1) + f (b1))= f (M)−m(f (a1 + b1)) =
M−m(a1 + b1) =M−m(b1 + a1)= f (M)−m(f (b1 + a1))
= f (M)−m(f (b1) + f (a1)).

If f (a1) and f (b1) are in F2, then f (N)+m(f (a1)f (b1))
= f (N)+m(f (a1b1) = N+m(a1b1) = N+m(b1a1) =
f (N)+m(f (b1a1) = f (N)+m(f (b1)f (a1)).

Also f (N)−m(f (a1)f (b1)) = f (N)−m(f (a1b1) =
N−m(a1b1) = N−m(b1a1) = f (N)−m(f (b1a1) =
f (N)−m(f (b1)f (a1)).

Hence f (A) is a bipolar valued fuzzy normal sub-
bigroup of G2. �

Theorem 2.6: Let (G1 = H1 ∪ F1,+, ·) and (G2 = H2
∪F2,+, ·) be any two bigroups. The homomorphic preim-
age of a bipolar valued fuzzy normal sub-bigroup of G2
is a bipolar valued fuzzy normal sub-bigroup of G1.

Proof: Let f : G1 → G2 be a homomorphism.
Let B = R ∪ S = (R ∪ S)+m , (R ∪ S)−m be a bipolar

valued fuzzy sub-bigroup of G2. Then, by theorem 2.2,
its homomorphic preimage f−1(B) = f−1(R ∪ S) =
((f−1(R) ∪ f−1(S))+m , (f−1(R) ∪ f−1(S))−m)), is a
bipolar valued fuzzy sub-bigroup of G1.

Let a1 and b1 be in G1. If a1 and b1 are
in H1, then f−1(R)+m(a1 + b1) = R+m(f (a1 + b1) =
R+m(f (a1) + f (b1)) = R+m(f (b1) + f (a1)) = R+m

(f (b1 + a1) = f−1(R)+m(b1 + a1).
Also, f−1(R)−m(a1 + b1) = R−m(f (a1 + b1) = R−m

((f (a1 + b1)) = R−m(f (a1) + f (b1)) = R−m(f (b1)+
f (a1)) = R−m(f (b1 + a1) = f−1(R)−m(b1 + a1).

If a1 and b1 are in F1, then f−1(S)+m(a1b1) =
S+m(f (a1b1) = S+m(f (a1)f (b1)) = S+m(f (b1)f (a1)) =
S+m(f (b1a1) = f−1(S)+m(b1a1).

Also f−1(S)−m(a1b1) = S−m(f (a1b1) = S−m(f (a1)
f (b1)) = S−m(f (b1)f (a1)) = S−m(f (b1a1) = f−1(S)−m

(b1a1)
Hence f−1(B) = f−1(R ∪ S) = ((f−1(R) ∪ f−1

(S))+m , (f−1(R) ∪ f−1(S))−m)), is a bipolar valued
fuzzy normal sub-bigroup of G1. �

Theorem 2.7: Let (G1 = H1 ∪ F1,+, ·) and (G2 = H2
∪F2,+, ·) be any two bigroups. The anti-isomorphic
image of a bipolar valued fuzzy normal sub-bigroup of
G1 is a bipolar valued fuzzy normal sub-bigroup of G2.

Proof: Let f : G1 → G2 be an anti-isomorphism. Let
A = M ∪ N = (M ∪ N)+m , (M ∪ N)−m be a bipolar
valued fuzzy normal sub-bigroup of G1.

By theorem 2.3, f (A) = ((f (M) ∪ f (N))+m , (f (M)∪
f (N))−m) is a bipolar valued fuzzy sub-bigroup of G2.

Let f (a1) and f (b1) be inG2. If f (a1) and f (b1) are in
H2, then

f (M)+m(f (a1) + f (b1)) = f (M)+m(f (b1 + a1))

= M+m(b1 + a1) = M+m(a1 + b1)

= f (M)+m(f (a1 + b1)) = f (M)+m(f (b1) + (f (a1))

Also, f (M)−m(f (a1) + f (b1)) = f (M)−m(f (b1 + a1))
= M−m(b1 + a1) = M−m(a1 + b1) = f (M)−m(f (a1+
b1)) = f (M)−m(f (b1) + (f (a1))

If f (a1) and f (b1) are in F2, then f (N)+m(f (a1)f (b1))
= f (N)+m(f (b1a1) = N+m(b1a1) = N+m(a1b1o9) =
f (N)+m(f (a1b1) = f (N)+m(f (b1)f (a1))

Also f (N)−m(f (a1)f (b1)) = f (N)−m(f (b1a1) =
N−m(b1a1) = N−m(a1b1) = f (N)−m(f (a1b1) =
f (N)−m(f (b1)f (a1))

Hence f (A) =((f (M) ∪ f (N))+m , (f (M) ∪ f (N))−m)
is a bipolar valued fuzzy normal sub-bigroup ofG2. �

Theorem 2.8: Let (G1 = H1 ∪ F1,+, ·) and (G2 = H2
∪F2,+, ·) be any two bigroups. The anti-homomorphic
preimage of a bipolar valued fuzzy normal sub-bigroup
of G2 is a bipolar valued fuzzy normal sub-bigroup of G1.

Proof: Let f : G1 → G2 be an anti-homomorphism.
LetB = R ∪ S = (R ∪ S)+m , (R ∪ S)−m be a bipolar val-
ued fuzzy normal sub-bigroup of G2. By theorem 2.4,
f−1(B) = f−1(R ∪ S) = ((f−1(R) ∪ f−1(S))+m , (f−1

(R) ∪ f−1(S))−m), is a bipolar valued fuzzy sub-bigroup
of G1. Let a1 and b1 be in G1. If a1 and b1 are
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in H1, then, f−1(R)+m(a1 + b1) = R+m(f (a1 + b1) =
R+m(f (b1) + f (a1)) = R+m(f (a1) + f (b1)) = R+m

(f (b1 + a1) = f−1(R)+m(b1 + a1).
Also, f−1(R)−m(a1 + b1) = R−m(f (a1 + b1)=R−m

(f (b1) + f (a1)) = R−m(f (a1) + f (b1)) = R−m(f (b1+
a1) = f−1(R)−m(b1 + a1)

If a1 and b1 are in F1, then f−1(S)+m(a1b1) =
S+m(f (a1b1) = S+m(f (b1)f (a1)) = S+m(f (a1)f (b1)) =
S+m(f (b1a1) = f−1(S)+m(b1a1)

Also f−1(S)−m(a1b1) = S−m(f (a1b1) = S−m

(f (b1)f (a1)) = S−m(f (a1)f (b1)) = S−m(f (b1a1) = f−1

(S)−m(b1a1)
Hence f−1(B) = f−1(R ∪ S) = ((f−1(R) ∪ f−1

(S))+m , (f−1(R) ∪ f−1(S))−m), is a bipolar valued fuzzy
normal sub-bigroup of G1. �

Theorem 2.9: Let A = M ∪ N = (M ∪ N)+m , (M
∪ N)−m be a bipolar valued fuzzy sub-bigroup of a
bigroup (G2 = H2 ∪ F2,+, ·) and f is an isomorphism
from a bigroup G1 = H1 ∪ F1 onto G2 = H2 ∪ F2. Then

A ◦ f = A+m ◦ f ,A−m ◦ f = (M+m ◦ f )

∪ (N+m ◦ f ), (M−m ◦ f ) ∪ (N−m ◦ f )

is a bipolar valued fuzzy sub-bigroup of G1.

Proof: Let a1 and b1 be inG1 andA be a bipolar valued
fuzzy sub-bigroup of the bigroupG2. If a1 and b1 inH1,
then,

(M+m ◦ f )(a1 − b1) = M+m(f (a1 − b1)) = M+m

(f (a1) − f (b1)) ≥ min{M+m(f (a1)),M+m(f (b1))} ≥
min{(M+m ◦ f )(a1), (M+m ◦ f )(b1)} which implies
that (M+m ◦ f )(a1 − b1) ≥ min{(M+m ◦ f )(a1), (M+m

◦f )(b1)}
Also (M−m ◦ f )(a1 − b1) = M−m(f (a1 − b1)) =

M−m(f (a1) − f (b1)) ≤ max {M−m(f (a1)),M−m

(f (b1))} ≤ max{(M−m ◦ f )(a1), (M−m ◦ f )(b1)}which
implies that (M−m ◦ f )(a1 − b1) ≤ max{(M−m ◦ f )
(a1), (M−m ◦ f )(b1)}

If a1 and b1 are in F1, then, (N+m ◦ f (a1b1−1) =
N+m(f (a1b1−1)) = N+m(f (a1)(f (b1))−1) ≥ min
{N+m(f (a1)),N+m(f (b1))} ≥ min{(N+m ◦ f )(a1),
(N+m ◦ f )(b1)} which implies that (N+m ◦ f )(a1b1−1)

≥ min {(N+m ◦ f )(a1), (N+m ◦ f )(b1)}
Also (N−m ◦ f )(a1b1−1) = N−m(f (a1b1−1))

= N−m((f (a1)f (b1))−1) ≤ max{N−m(f (a1)),N−m

(f (b1))} ≤ max{(N−m ◦ f )(a1), (N−m ◦ f )(b1)} which
implies that (N−m ◦ f )(a1b1−1) ≤ max {(N−m ◦ f )(a1),
(N−m ◦ f )(b1)}

Hence A ◦ f is a bipolar valued fuzzy sub-bigroup
of G1. �

Theorem 2.10: Let A = M ∪ N = (M ∪ N)+m , (M ∪
N)−m be a bipolar valued fuzzy subbigroup of a bigroup
G2 = H2 ∪ F2 and f is an anti-isomorphism from a
bigroup, G1 = H1 ∪ F1 onto G2. Then A ◦ f = A+m

◦ f ,A−m ◦ f = (M+m ◦ f ) ∪ (N+m ◦ f ), (M−m ◦ f ) ∪
(N−m ◦ f ) is a bipolar valued fuzzy subbigroup of G1.

Proof: Let a1 and b1 be inG1 andA be a bipolar valued
fuzzy sub-bigroup of the bigroup G2 = H2 ∪ F2.

If a1 and b1 in H1, then, (M+m ◦ f )(a1 − b1) =
M+m(f (a1 − b1)) = M+m(f (−b1) + f (a1)) ≥ min
{M+m(f (a1)),M+m(f (b1))} ≥ min{(M+m ◦ f )(a1),
(M+m ◦ f )(b1)}which implies that (M+m ◦ f )(a1 − b1)
≥ min{(M+m ◦ f )(a1), (M+m ◦ f )(b1)}.

Also (M−m ◦ f )(a1 − b1) = M−m(f (a1 − b1)) =
M−m(f (−b1) + f (a1)) ≤ max{M−m(f (a1)),M−m

(f (b1))} ≤ max{(M−m ◦ f )(a1), (M−m ◦ f )(b1)} which
implies that (M−m ◦ f )(a1 − b1) ≤ max{(M−m ◦ f )
(a1), (M−m ◦ f )(b1)}

If a1 and b1 are in F1, then (N+m ◦ f )(a1b1−1) =
N+m(f (a1b1−1)) = N+m((f (b1))−1f (a1)) ≥
min{N+m(f (a1)),N+m(f (b1))} ≥ min {(N+m ◦ f )(a1),
(N+m ◦ f )(b1)} which implies that (N+m ◦ f )(a1b1−1)

≥ min {(N+m ◦ f )(a1), (N+m ◦ f )(b1)}
Also (N−m ◦ f )(a1b1−1) = N−m(f (a1b1−1)) =

N−m((f (b1))−1f (a1)) ≤ max{N−m(f (a1)),N−m

(f (b1))} ≤ max{(N−m ◦ f )(a1), (N−m ◦ f )(b1)} which
implies that (N−m ◦ f )(a1b1−1) ≤ max {(N−m ◦ f )(a1),
(N−m ◦ f )(b1)}

Hence A ◦ f is a bipolar valued fuzzy sub-bigroup
of G1. �

Theorem 2.11: Let A = M ∪ N = (M ∪ N)+m , (M ∪
N)−m be a bipolar valued fuzzy sub-bigroup of a bigroup
G2 = H2 ∪ F2 and f is an isomorphism from a bigroup
G1 = H1 ∪ F1 onto G2. Then we have the following:

(i) If A is a generalized characteristic bipolar val-
ued fuzzy sub-bigroup of G2 , then A ◦ f = A+m ◦
f ,A−m ◦ f = (M+m ◦ f ) ∪ (N+m ◦ f ), (M−m ◦ f ) ∪
(N−m ◦ f ) is a generalized characteristic bipolar val-
ued fuzzy sub-bigroup of G1.

(ii) If A is a generalized characteristic bipolar valued
fuzzy sub-bigroup and f is an automorphism on G1
, then A ◦ f = A.

Proof: (i) Let A be a generalized characteristic bipo-
lar valued fuzzy sub-bigroup of G2. By Theorem
2.9, A ◦ f is a bipolar valued fuzzy sub-bigroup
of G1. Let a1 and b1 be in G1. If a1 and b1
in H1 and o(a1) = o(b1), then (M+m ◦ f )(a1) =
M+m(f (a1)) = M+m(f (b1)) = (M+m ◦ f )(b1)which
implies that (M+m ◦ f )(a1) = (M+m ◦ f )(b1).

Also (M−m ◦ f )(a1) = M−m(f (a1)) = M−m(f (b1))
= (M−m ◦ f )(b1) which implies that (M−m ◦ f )(a1) =
(M−m ◦ f )(b1).
If a1 and b1 in F1 and o(a1) = o(b1), then (N+m ◦

f )(a1) = N+m(f (a1)) = N+m(f (b1)) = (N+m ◦ f )
(b1)which implies that (N+m ◦ f )(a1)=(N+m ◦ f )(b1).

Also (N−m ◦ f )(a1) = N−m(f (a1))=N−m(f (b1))
= (N−m ◦ f )(b1) which implies that (N−m ◦ f )(a1) =
(N−m ◦ f )(b1).
Hence A ◦ f is a generalized characteristic bipolar

valued fuzzy sub-bigroup of G1.
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(ii) is clear, asM+m ◦ f = M+m ;M−m ◦ f = M−m and
N+m ◦ f = N+m ; N−m ◦ f = N−m �

Theorem 2.12: Let A = M ∪ N = (M ∪ N)+m , (M ∪
N)−m be a bipolar valued fuzzy sub-bigroup of a bigroup
G2 = H2 ∪ F2 and f is an anti-isomorphism from a
bigroup, G1 = H1 ∪ F1 onto G2. Then we have the
following:

(i) If A is a generalized characteristic bipolar val-
ued fuzzy sub-bigroup of G2 , then A ◦ f = A+m

◦ f ,A−m ◦ f = (M+m ◦ f ) ∪ (N+m ◦ f ), (M−m ◦ f )
∪ (N−m ◦ f ) is a generalized characteristic bipolar
valued fuzzy sub-bigroup of G1.

(ii) If A is a generalized characteristic bipolar valued
fuzzy sub-bigroup of G2 and f is an automorphism
on G1 , then A ◦ f = A.

Proof: (i) Let A be a generalized characteristic bipolar
valued fuzzy sub-bigroup ofG2. By Theorem 2.10,A ◦ f
is a bipolar valued fuzzy sub-bigroup of G1.

Let a1 and b1 be in G1. If a1 and b1 in H1 and
(a1) = (b1), then (M+m ◦ f )(a1) = M+m(f (a1)) =
M+m(f (b1)) = (M+m ◦ f )(b1) which implies that
(M+m ◦ f )(a1) = (M+m ◦ f )(b1).

Also (M− ◦ f )(a1) = M−m(f (a1)) = M−m(f (b1))
= (M−m ◦ f )(b1) which implies that (M−m ◦ f )(a1) =
(M−m ◦ f )(b1).
If a1 and b1 in F1 and o(a1) = o(b1), then (N+m ◦

f )(a1) = N+m(f (a1)) = N+m(f (b1)) = (N+m ◦ f )
(b1) which implies that (N+m ◦ f )(a1) = (N+m ◦ f )
(b1).

Also (N−m ◦ f )(a1) = N−m(f (a1)) = N−m(f (b1))
= (N−m ◦ f )(b1) which implies that (N−m ◦ f )(a1) =
(N−m ◦ f )(b1).
Hence A ◦ f is a generalized characteristic bipolar

valued fuzzy sub-bigroup of G1.
(ii) is clear. �

3. The proposed encryptionmethod

The extracted shared secret data is extracted once the
encryption and decryption processes have been com-
pleted in the proposed system. With the help of the
encryption technique known as homomorphic encryp-
tion, you can add and multiply ciphertexts in order
to get this output which match an outcome of sim-
ilar one. Without disclosing private information for
each action, homomorphic encryption enables you to
carry out a variety of tasks in an untrusted environ-
ment [14]. Encoding messages or information so that
only authorized parties can read it is known as encryp-
tion in cryptography. Although encryption does not by
itself stop interceptions, it does prevent the interceptor
from seeing the message’s contents. A message or piece
of information, known as plaintext in an encryption
scheme, is encrypted using an encryption algorithm to

create cipher text that can only be decoded and read.
An encryption technique typically employs a pseudo-
random encryption key produced by an algorithm for
technical reasons.

In general, a cryptosystem provides a mechanism
to use a secret key to convert one message, known as
the plaintext, into another, known as the ciphertext. If
the cryptosystem is trustworthy, the plaintext cannot be
deciphered by anybody without the secret key, and the
ciphertext can be safely made public.

Definition 3.1: A cryptosystem is a five-tuple (B,R,
H, E ,M), that meets the requirements listed below:

• B -finite set of possible plaintexts;
• R - finite set of ciphertexts;
• H - finite set of key combinations;
• Encryption rule is defined as ek1 ∈ E & a corre-

sponding decryption rule dk1 ∈ M for every K ∈
H. There are functions for each ek : B → R and dk :
R → B such that dk(ek(x)) = x for each plaintext
x ∈ B.

The Paillier Cryptosystem was found as a result of
further investigation into trapdoor discrete logarithm-
based cryptosystems that was prompted by the
Okamoto-Uchiyama system. The Paillier cryptosystem
uses a logarithm function L to decrypt ciphertext and
is analogous to the Okamoto-Uchiyama cryptosystem,
but it is implemented significantly differently. The Pail-
lier cryptosystem enhances the Benaloh cryptosystem
by taking advantage of the difficulty of selecting higher
order residues modulo a composite n2 where n = pq.

Lemma 3.1: The class function is a homomorphism
from Z

∗
n2 to Zn

Proof: Letw1,w2, g ∈ Z
∗
n2 . Then [w1]g = x1 and [w2]g

= x2 and there exists y1 and y2 with w1 = gx1yn1 and
w2 = gx2yn2 . Set y = y1y2, then [w1w2]g1 = [wi1]g1 +
[wi2]g1 = xi1 + xi2 follows from that fact that (gx1yn1)
(gx2yn2) = gx1+x2yn.

When the order of g is a multiple of n, the
function εg(x, y) = gxyn is a bijection from Zn × Z

∗
n

to Z
∗
n2 , and when the order of g is α n for α ∈

{1, ..., λ = lcm(p − 1, q − 1)}, g decides x for a given
gxyn. So, using y as a randomizer, εg can accept a mes-
sage x and determine w such that [w]g = x. The class
function serves as the Paillier cryptosystem’s decryp-
tion function, whereas εg serves as its encryption
function. �

3.1. Encryption step

When the original data, D1, . . . ..Dl, and secret data
Dx are encrypted will produce l + 1 encrypted data,
C1, . . . ,Cl, andCx respectively. A new encrypted data is
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Figure 1. Communication Overhead.

Figure 2. Energy consumption.

created by incrementally multiplying one encrypted
data by another encrypted data. Once the secret
encrypted data Dx is added, this new encrypted data
is put into the homomorphic multiplication procedure
to create the final encrypted data Cy. All of the indi-
vidually encrypted data must be used in order to safe-
guard the secret data [15–19]. The final encrypted data
may have two different sized blocks because two dis-
tinct encryption techniques are possible. The Paillier
cryptosystem is used with the suggested strategy. It is
given by

Cy(i) =
( L∏
a=1

Cl(a) × Cx(a)

)
|n2| (1)

The Paillier cryptosystem uses the n2 basis for themod-
ulo operation. The blocks Cy(i) are used to create the
encrypted image Cy, and the decrypted data Dx is the
information we want to transport or exchange across
an unsecure channel.

3.2. Decryption part

Our goal is to extract Dx from the D1, . . . . . .Dl and
Dy present at the receiving end. According to Paillier’s

additive homomorphic characteristic,

Dy(i) =
( L∑

l=1

Dl(i) + Dx(i)

)
|n| (2)

Dx1(i) =
(
Dy1(i) −

L∑
l=1

Dl(i)

)
|n1| (3)

The process is entirely reversible using the Paillier
cryptosystem; we can obtain the shared secret data
without suffering any loss.

4. Results and discussion

These strategies are put into practice in a simulator
designed specifically forWSNs. Because of the message
overhead associated with cryptography, the network
lifetime is decreased. Each cryptographic primitive has
a unique CPU cycle time requirement, which affects
how much energy is used during execution.

We contrast the communication costs between our
plan and the other two plans. The outcomes are dis-
played in Figure 1. As a result, we can see that even
in the absence of an attack, existing systems incur a
very large overhead in transmission and calculation
compared to our approach.
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Figure 2 shows the energy used by our strategy as
well as the energy used by each networked sensor node.

Conclusion

WSNs connect the processing and storage of the data
provided by an application process on the appropri-
ate servers. In this work, we looked at how to share a
secret data by key-data with exploiting an extra prop-
erty of homomorphic Pailier crypto system on a bipo-
larvaluedfuzzy sub-bigroup and the bipolarvaluedfuzzy
normal sub-bi-group. The impact of homomorphism
and isomorphism over various fuzzy algebraic struc-
tures has its own scope for the research work in this
area. Still there are so many aspects of homomorphism
and isomorphism which can be applied on Bipolar
valued fuzzy structures. Here, we will be beneficial
for the researchers for their future work in this area.
Future work will include investigating and putting var-
ious Secured Data Transmission into use, as well as
the impact of applying stream cyphers, and making a
thorough comparison of the outcomes over WSNs.
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