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ABSTRACT

Diabetic retinopathy (DR) is a retinal disorder that may lead to blindness in people all over the
world. The major cause of DR is diabetes for a longer period and early detection is the only
solution to prevent the vision. This paper focuses on the classes of Normal eye (No DR), Mild
NPDR (Non-Proliferative Diabetic Retinopathy), Moderate NPDR, Severe NPDR, and PDR. On reti-
nal fundus images, an effective method for identifying diabetic retinopathy (DR) is proposed by
combining the U-Net architecture with the K-nearest neighbours (KNN) algorithm. The U-Net
architecture is used for segmenting exudates in retinal pictures, and the KNN algorithm is used for
final classification. The combination of U-Net and KNN enables accurate feature extraction and
efficient classification, effectively overcoming the computational challenges common to deep
learning models. The experiments are carried out utilizing a publicly available dataset of retinal
fundus images from Kaggle to assess the effectiveness of our suggested strategy. The proposed
architecture provides precise output when compared to other models GoogleNet, ResNet18, and
VGG16. The proposed model provides a training accuracy of 82.96% and detection of PDR with
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high accuracy in the short period which prevents loss of vision in early stage.

1. Introduction

Diabetes mellitus is an abnormality in blood sugar lev-
els has become a usual thing among working-aged peo-
ple nowadays and the cases increased exponentially. In
2040, it is being expected to have more than 600 million
people being diabetic [1]. Diabetes causes a lot of seri-
ous consequences like heart disease, stroke, retinopa-
thy, chronic kidney disease, and so on. One of the major
diseases was diabetic Retinopathy since it is related to
a very delicate vision problem. Approximately, about
103 million people were affected by Diabetic Retinopa-
thy in 2020, and it is being expected to reach around
160 million by 2045 [2]. Diabetic retinopathy is a reti-
nal neuro-vascular abnormality that occurs due to the
degeneration of blood vessels in the eye. The retina is
a layer that covers the back portion of the eye. It is the
most prominent part of the vision. The fovea present at
the retina is the point for the incident of reflected light
for normal vision. In the case of Diabetic Retinopa-
thy the nerves and the cells present in the retina get
affected by the occurrence of some external things such
as exudates, venous beading, microaneurysms, intra-
retinal haemorrhages, and neo-vascularization. When
the patient is affected by DR who can be prevented from
further damage of vision. But the DR cannot be treated
and cured completely. DR is a permanent disease that is
irreversible. And it is only preventable with treatment if

detected early [3]. Early detection was the greatest chal-
lenge for ophthalmologists, since they manually check
for the presence of external symptoms in the fundus
images of the eye.

Fundus image is the 2D representation of the 3-
dimensional view of the eye taken using a Fundus
camera (Figure 1), ophthalmoscopy, fundus photogra-
phy (FP), Optical Coherence Tomography (OCT), and
OCT angiography. The degree of the symptoms was
very less in the initial stage. The initial stage of DR
was similar to the normal healthy eye. The clinicians
may fail to detect the appropriate stage with accurate
results. These problems make a drastic improvement in
the technology for introducing AI methods. The deep
learning methods were used for the detection of dis-
ease such as DR. The Al models were developed to learn
the features of the healthy and affected eye. The features
from both trained and input images were compared for
classifying the DR with better accuracy [1-3].

Depending upon the severity, DR can be classi-
fied into 5 stages Normal eye, Mild NPDR, Moderate
NPDR, Severe NPDR, and Proliferative DR [1]. Deep
learning achieves higher accuracy, and higher efficiency
and reduces human needs. Also, it has a unique capac-
ity of learning the features of a large number of datasets
to train the model automatically under different levels
of representation and it’s the most important advantage
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Figure 1. Fundus imaging technologies - take pictures of the back of the eye in high resolution.

over other methods of Al The convolutional neural
network was the most basic network for image classifi-
cation under deep learning methods. CNN was mainly
used for image recognition and tasks that involve
the processing of pixel data. CNN can automatically
learn features from data (images). The major steps
for CNN are image segmentation, image classification,
and detection [1]. CNN developed various models like
VGG16, ResNet18, inception V3, AlexNet, and NasNet
mobile.

This research focuses on defining five distinct cat-
egories: “Normal eye” (also known as “No DR”),
“Mild NPDR” (Non-Proliferative Diabetic Retinopa-
thy), “Moderate NPDR”, “Severe NPDR”, and “PDR”
(Proliferative Diabetic Retinopathy). A method of
notable performance for the detection of diabetic
retinopathy (DR) is introduced in the context of reti-
nal fundus images. This technique involves the seam-
less integration of the K-nearest neighbours (KNN)
algorithm and the U-Net architecture, creating a strong
framework for the identification of DR instances.

Generally, U-Net is a architecture which was mainly
used for in which a CNN model incorporated to iden-
tify best features [4]. Unlike other models, U-net does
not make use of dense layers and fully connected lay-
ers. Instead, U-Net uses convolutional and max pool-
ing layers only. It performs recognition of the object
in an image after semantic segmentation. The pro-
posed mechanism which includes U-Net is explained
in section III.

2. Related works

This section comprises most of the works related to the
detection of Diabetic Retinopathy using Machine learn-
ing methods. Artificial neural network is the building
blocks of deep learning and fundus images as the input

for identifying the presence of DR [5]. A high-level
CAD algorithm or procedure to detect exudates, haem-
orrhages, and microaneurysms [6]. The most useful
deep neural network (CNN) was used for the auto-
matic detection of retinal abnormalities using fundus
images obtained from publicly available datasets. Some
of the datasets are IDRID, ROC, and local hospital
datasets [1,2,7-10]. An ensemble CNN is used for pro-
viding accurate results [3,11,12]. A special type CNN
called U-Net which comprises both convolutional and
de-convolutional layers were used for identifying DR
[4]. Alternate architectures like VGG16, ResNet, and
the Inception family were used to build the model and
took account of the 5-class classification of DR [13,14].
K- Nearest Neighbour clustering also provided good
performance [15]. The early detection of DR was done
with the identification of RED (Retinal Exudates and
Drusen) in fundus images [16-19]. SMFC (Super pixel
Multi Featured Classification) method in which the
input image is segmented into superpixels [20]. The
training involves the segmentation of images [21-24].
The detection was made according to the presence of
three types of lesions such as red lesions, yellow lesions,
and white lesions [25]. The lesions can be classified
using Recurrent Neural Network [26,27]. The Bayesian
model was used for training the dataset [11]. DR detec-
tion was done using a choice of colour space as one of
the important factors [28].

A median filter and an adaptive histogram equaliza-
tion techniques were used for the reduction of noise
[29]. An entropy principle has been proposed for pro-
cessing the fundus image [30]. Naive Bayes and SVMS
classifiers were used for the feature selection and clas-
sification of pixels [31]. HOG and GLCM were used
for feature extraction with low complexity [32]. A
combination of Grayscale morphology, active contour
method, and region-wise classification played a major
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Figure 2. Distribution of the dataset among different classes.

role [27,33]. The use of support vector machine classi-
fiers for detecting hard exudates has been evolved [34].
HSV was used to overcome the unequal brightness and
poor contrast of fundus images and trained using CNN
architecture [35]. Multi-feature extraction and train-
ing were done on patch-based CNN provided some
additional merit [36]. GLCM feature extraction method
along with SVM K-NN and decision tree classifiers
were made of used to identify the affected eye [37].

The segmentation of the optic disc and blood ves-
sels was done in the preprocessing step using two dif-
ferent U-Nets. The preprocessed, enhanced image is
sent into the CNN models, which use transfer learn-
ing as their foundation [38]. Deep learning image pro-
cessing technology is now crucial to computer-aided
systems for detecting anomalies in diabetic retinopa-
thy [39]. The segmentation and abnormality presence
were improved during preprocessing, only relevant fea-
tures were acquired during extraction [40]. A new
approach with two main steps for automatically classi-
fying diabetic retinopathy (DR). In the first step, two
different U-Net models to identify the optic disc (OD)
and blood vessels (BV) by breaking down the image
into parts during the initial processing [41]. The pro-
posed method contrasts with GA, GWO and numerous
other current cutting-edge diabetic retinopathy classi-
fication approaches [42]. To address issues with unbal-
anced datasets, the Gaussian space theory and generic
data structures increase the dataset’s accuracy and
quantity [43].

Most of the works concentrated on the detection of
exudates which is the prominent symptom of diabetic
retinopathy. The segmentation provides a better patch
of exudates which leads to identify DR is easy. The
segmentation plays a vital role for forming patches of
exudates which leads to easily identifying the presence
of DR with good accuracy. Hence the proposed method,
segmentation is implemented with the combination of

Moderate NPDR

Severe NPDR PDR

U-Netand KNN for getting better accuracy for the early
detection of DR.

3. Materials and methods
3.1. Dataset

The dataset of fundus images which is required for
this paper is taken from a publicly available large
dataset from Kaggle Diabetic Retinopathy Detection.
There is possibility of occurring additional white spaces
around the eye image. So it is necessary to preprocess
the given image into the dimension of 256 X256 to
obtain better results. The dataset consisted of more than
35,000 images under five basic classifications of diabetic
retinopathy which are No DR, Mild NPDR, Moder-
ate NPDR, Severe NPDR, and PDR. This classification
was made under Early Treatment Diabetic Retinopa-
thy Study (ETDRS). According to the available datasets,
the proportion of Normal eye images is always greater
than the affected eye. Both the training and testing were
done with the Kaggle dataset under the categories train
dataset and test dataset.

The performance of the model developed depends
on the dataset used for training. The proportion range
obtained for the training of the dataset using U-Net is
given as following Figure 2.

3.2. Proposed work

The flow of the process is depicted into following block
diagram given in Figure 3.

The input image is pre-processed first. The pre-
processed image is given as the input for extracting
the features. The featured output is given to the U-
Net architecture. The encoder and decoder part of the
U-Net model provides the segmentation of the image
for better and more effective results shown in Figure
6. The classifier algorithm used after segmentation is
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Figure 3. The workflow diagram of the diabetic retinopathy detection.

Skip
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Connection

Figure 4. The Functional
architecture.

overview diagram of U-Net

KNN, SVM, RE DT, NB, and so on. But among these
KNN plays a better role and provides high accuracy.
The output layer is comparing the features and trains
the dataset which makes the output as the appropriate
detection of DR.

Adam optimizer is the most popular optimizer
which is used for stochastic gradient descent of the
training of the dataset for this particular model. It
replaces the optimization techniques and Adam pro-
vides a faster computation. It is used for the estimation
of first and second-order moments [44].

The model used for the segmentation process is U-
Net architecture. The most important phase in digital
image processing is image segmentation [12,36,37,44].
The U-Net architecture has gained widespread recog-
nition in the CNN model is extensively deployed for
image segmentation [4]. The algorithm for classifica-
tion is done with KNN architecture. Unlike the CNN
model, U-Net has more convolutional layers, relu acti-
vation layers, and max pooling layers only [44].

The U-Net was separated into 3 parts shown in
Figure 4.

The encoder path follows a typical CNN struc-
ture incorporating multiple convolutional and pool-
ing layers. These layers progressively reduce the spatial
dimensions of the input image while capturing high
level features. The encoder path effectively captures
contextual information and extracts hierarchical fea-
tures from the input image. Encoder is used to down-
sample the image.

The U-Net architecture incorporates skip connec-
tions establishing connections between corresponding
layers of the encoder and decoder paths. These con-
nections enable the decoder path to access and reuse
high resolution features from the encoder path, thereby
preserving fine-grained details during upsampling and
enhancing segmentation accuracy.

The decoder path is responsible for upsampling the
low resolution features maps obtained from the encoder
path, thus restoring the original image’s spatial resolu-
tion. It consists of upsampling layers followed by con-
volutional layers that concatenate feature maps from
the corresponding encoder path layer. This combina-
tion of local and global information facilitates precise
segmentation outcomes.

The U-Net architecture is illustrated in Figure 5.

As the name indicates, U-Net is a U shaped architec-
ture with 2 portions namely contraction and expansion
path [4]. The contraction path comprises the encoder
and the expansion comprises the decoder. The bot-
tleneck at the centre contains the skip connection. A
sigmoid function confines the pixel value in the range
of 0and 1 [6].

The U-Net architecture concludes with a final layer
typically composed of a 1 X 1 convolutional layer
followed by an activation function either sigmoid
or softmax. This final layer generates a pixel-wise
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Figure 5. The architecture of the U-Net model.

segmentation mask, where each pixel represents the
predicted class or label for the corresponding input
image pixel [45]. Classification is done with KNN,
CNN, SVM, RE, DT, and NB algorithms. KNN is
selected since it provides better accuracy than other
methods shown in Figure 8 [33].

An efficient and simple supervised learning tech-
nique for classification and regression tasks is the k-
Nearest Neighbours (k-NN) algorithm. A new, unla-
belled data point is compared to the “k” instances from
the training dataset that are closest to it in the k-NN
model. It labels the new instance with the class that has
the most support among its k-nearest neighbours. The
weighted average of the target values of the neighbours
is computed for regression.

The choice of “k” is a crucial parameter, influenc-
ing the balance between noise reduction and decision
boundary complexity. k-NN’s simplicity allows it to
handle multiclass classification and adapt to various
data distributions. However, it has drawbacks: compu-
tational intensity, sensitivity to noise and outliers, and
struggles with high-dimensional data.

4, Results and discussion

Deep learning evaluation metrics are utilized to
evaluate and ascertain the performance and effi-
ciency of deep learning models. These metrics furnish

128 64 64 2

output
segmentation
map

= conv 3x3, RelLU
copy and crop

¥ max pool 2x2
4 up-conv 2x2
= conv 1x1

quantitative measures that facilitate a comprehensive
understanding of the model’s performance in a given
task. Here, we present a compilation of commonly
employed evaluation metrics in the field of deep learn-
ing.

In general, the result obtained may be true positive,
true negative, false positive, and false negative. Here
true positive and false negative are the two most com-
plicated things since it indicates the presence of DR.
The accuracy, precision, and loss are calculated using
these predictions. The confusion matrix for this case
was given in Figure 7.

4.1. Accuracy

The accuracy defined as the ratio of the total number of
correct predictions to the total number of predictions,
including true negatives (TN), true positives (TP), false
negatives (FN), and false positives (FP).

TP + TN
TP + TN + FP + FN

Accuracy =

4.2. Precision

Precision can be applied to address multiclass classifica-
tion problems effectively. Precision serves as a valuable
metric for evaluating the accuracy of positive predic-
tions generated by a model. It involves computing the
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Figure 6. Examples of Results of the U-Net model for Exudates segmentation. Left: Original image. Right: Segmented image

(exudates have been marked in white).

ratio of true positives to the total number of predicted
positives. In the context of multiclass classification, pre-
cision can be determined for each class separately by
designating it as the positive class and treating the
remaining classes as negatives. This approach enables
an independent assessment of the model’s precision for
each class.

TP

Precision = ———
TP + FP

4.3. Recall

Recall, also known as sensitivity or true positive rate,
is an evaluation metric used in classification tasks. It
measures the ability of a model to identify all relevant
instances of a positive class from the total actual positive
instances. In other words, recall quantifies the propor-
tion of true positive predictions out of all actual positive
instances.
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Table 1. Results obtained from the various classifier with U-Net
architecture.

Classifier performance
with U-Net architecture

Training Validation
Classifier accuracy accuracy
K- Nearest Neighbours (KNN) 82.96% 80.78%
Support Vector Machine (SVM) 80.24% 78.73%
Decision Tree (DT) 70.36 67.53%

Mathematically, recall is calculated as the ratio of
true positives (TP) to the sum of true positives and false
negatives (FN):

TP

Recall = ———
TP 4+ FN

4.4. F1score

The F1 score is a widely used evaluation metric in clas-
sification tasks that combines both precision and recall
into a single value. It provides a balanced measure of
a model’s performance by considering both the abil-
ity to correctly identify positive instances (precision)
and the ability to capture all actual positive instances
(recall).

Mathematically, the F1 score is calculated as follows:

(Precision # Recall)

F1 Score = 2 % —
(Precision + Recall)

4.5. Specificity

The proportion of actual negative instances that were
correctly predicted as negative by the model.

TN

Speciﬁcity = T]_\]——{—FP

Actual processing time to emphasize proposed
model is approximately 12-13 h for 10 Epochs in 8GB
RAM, Intel core-i5 12th generation processor CPU.
Simulation and experimentation in this study were
conducted using MATLAB version 2023a, a versa-
tile numerical computing platform widely used for
scientific and engineering applications.

The experimental results of models like Google Net,
ResNet50, and VGG16 were obtained with around 79%
accuracy (Table 2). By comparing these results with the
proposed U-Net, it is more accurate and faster shown

Table 2. Results obtained from the deep learning architecture.

AUTOMATIKA 1155

in Figure 9. The U-Net architecture is inspired by other
architecture.

Due to using KNN as classifier along with U-Net
provides validation accuracy of 80.78% which is higher
than other classifiers that is represented in Table 1.
The detection and classification of Diabetic retinopathy
is done with U-Net semantic segmentation and KNN
algorithm in the proposed work. The paper provides
the high accuracy and also prevents the damage of eye
while predicting DR at the early stage.

The integration of U-Net and K-Nearest Neigh-
bours (KNN) for diabetic retinopathy classification
provides promising result but comes with certain
limitations. The high-dimensional feature maps gen-
erated by U-Net may lead to increased computa-
tional complexity when utilized in conjunction with
KNN. U-Net’s local feature extraction design may not
effectively capture the global context necessary for
KNN’s classification approach. The “curse of dimen-
sionality” could affect KNN’s performance negatively
when applied to the extensive feature space pro-
duced by U-Net. Moreover, handling data imbalance,
hyperparameter tuning, adaptability across datasets,
and training data quality are crucial considerations
for achieving optimal results with this integrated
approach.

5. Conclusion

The U-Net - KNN model has demonstrated remarkable
performance in diverse image segmentation challenges,
establishing its position as a widely accepted model
in the fields of computer vision and medical imag-
ing. U-Net - KNN model provides the training accu-
racy of 82.96% and validation accuracy of 80.78%. The
effectiveness of the U-Net - KNN extends to various
image segmentation tasks, particularly in bio-medical
image analysis such as cell segmentation, organ seg-
mentation, and lesion segmentation. Its ability to cap-
ture both local and global information, along with
the utilization of different convolutional techniques,
and the incorporation of additional regularization
methods.

Researchers and practitioners often customize and
adapt the U-Net architecture to meet specific segmen-
tation requirements. This adaptation may include vari-
ations in network depth or width, utilization of different
convolutional techniques, and the incorporation of
additional regularization methods.

No of Conv2d
Various architecture Accuracy Precision Recall F1 score Specificity Layers/Complexity
U-Net with KNN 82.96% 0.82 0.755 0.788 0.812 22 / Medium
Google net 79.12% 0.79 0.722 0.754 0.782 23/ Medium
ResNet50 77.35% 0.77 0.714 0.741 0.7633 48/ High
VGG16 80.99% 0.8 0.742 0.770 0.7983 13/ High
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Acronym table

Non-Proliferative Diabetic Retinopathy
Proliferative Diabetic Retinopathy
Diabetic Retinopathy

K- Nearest Neighbours

Convolutional Neural Network
Support Vector Machine

Random Forest

Decision Tree

Naive Bayes
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