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ABSTRACT
In this paper, we address the almost sure stability problem of Caputo fractional-order switched
linear systems with deterministic and stochastic switching signals (DS-CFLSs). Firstly, due to the
non-locality andmemory of fractional-order switched systems, an inequality is proposed to solve
the difficulties in the discussion of stability. Then, for DS-CFLSs, a deterministic switching strat-
egy is predesigned, and stochastic switching signals are generated by the Markov process. After
that, for the globally asymptotic stability almost surely (GAS a.s.) and exponential stability almost
surely (ES a.s.) of DS-CFLSs, some sufficient conditions are proposedby using themulti-Lyapunov
function and probability analysis methods. Finally, some numerical examples show that our
results are effective.
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1. Introduction

The switched system is a special hybrid system com-
posed of several subsystems and the rules that coor-
dinate the switching between these subsystems. The
fractional-order switched system is an extension of the
integer-order switched system. Its stability analysis and
application are a hot issue in the current research, and
are widely used in robot controls [1,2], power electronic
systems [3], fault tolerant control [4–10] and the field of
fuzzy logic systems [11–13].

At present, the research on fractional-order switched
systems mainly focuses on stability problem, such as
asymptotic stability and finite-time stability. In [14],
the asymptotic stability of a class of continuous-time
positive fractional switched systems is studied by using
the state-dependent switching and fractional-order
co-positive Lyapunov method. The problem that the
instantaneous pulse does not need to be consistent
with the switching point is solved, and the expo-
nential stability criterion of fractional-order impul-
sive switched systems is derived by the means of
mode-dependent average pulse interval method and
the induction method [15]. The sufficient condi-
tions for the asymptotic stability of fractional-order
switched systems are given by using the fractional-
order Lyapunov function and the minimum dwell-time
technique [16]. In [17], the output tracking control
problem for a class of fractional-order positive switched
system is studied. A new exponential stability criterion

is derived by using Lyapunov theory, average dwell-
time method and linear matrix inequality. Zhang and
Wang [18] discuss the relationship between the stabil-
ity of integer-order switched systems and fractional-
order switched systems, and the problem of robust
stabilization of uncertain switched fractional-order
switched systems under the common switching law.
Feng et al.[19] give the general solution of a class of
Caputo fractional differential equationswith piece-wise
definitions, and on this basis, the finite-time stabil-
ity of fractional-order switched continuous-time sys-
tems is studied. In [20–24], Lyapunov-like functions,
multi-Lyapunov functions, co-positive Lyapunov func-
tion, average dwell-time switching technique and other
methods are used to analyse the finite-time stability
and stabilization of fractional-order positive switched,
singular switched and uncertain switched systems.
According to the different switchingmechanisms, these
research papers can be divided into fractional-order
deterministic switched systems and random switched
systems, which are collectively referred to as single-
switched systems.

However, facing the increasingly complex control
object in practical engineering, in order to accurately
describe their internal drivingmechanism, some schol-
ars have proposed the dual switching system. The dual
switching system is a new type of switching dynamic
system that obeys both deterministic switching and
stochastic switching. It can be applied to wind power
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generation systems [25], various complex switching
control operations are essential for system stability and
optimization [26].

First of all, for integer-order differential equations,
the dual switched systems have achieved considerable
research results, which mainly focus on the theoreti-
cal analysis of stability. In [27], the almost sure stabil-
ity of a switched Markov jump linear system is stud-
ied. Under the conditions of deterministic switching
and Markovian switching, two sufficient conditions for
exponential almost sure stability are proposed. Then,
a condition for almost sure stability of dual switched
discrete-time systems is discussed by using the multi-
Lyapunov function method and persistent dwell time
[28]. Liu et al. [29] proposed that the sign stabil-
ity of dual switched continuous-time positive systems.
In addition, according to the transition probability of
Markovian switching, it can be divided into fixed dual
switching systems [30] and variable dual switching sys-
tems [31,32]. The transition probability of the former
is fixed; the latter changes with the switching of the
subsystem and is determined by the determination
of the switching signal. However, for fractional-order
switched systems, the dual switched fractional-order
switched system is a relatively new research problem,
and the analysis of its related stability problems is
still lacking. In addition, due to the special properties
of fractional-order switched systems: non-locality and
memory. It is controversial whether the initial value
of the lower bound of the fractional derivative will be
updated with occurrence of switching and whether the
fractional integral can be taken directly at the time
interval with inconsistent lower bound [33–37], which
needs to be further solved. We will propose an inequal-
ity in Lemma 3.1 to solve the difficulties in the process
of stability proof.

In this paper, we address the almost sure stability
problemofCaputo fractional-order switched linear sys-
tems with deterministic and stochastic switching sig-
nals (DS-CFLSs) by combining with the existing almost
sure stability results of integer-order dual switching sys-
tems and the unique properties of fractional derivatives.
Our main contributions are as follows:

(i) Combining DS-CFLSs, a fractional-order dual
switching system model is established, and an
inequality is proposed to solve the difficulty in the
stability proof process.

(ii) The sufficient conditions of the global asymptotic
stability almost surely (GAS a.s.) and exponential
stability almost surely (ES a.s.) for the DS-CFLSs
are provided based on the multi-Lyapunov func-
tion and probability analysis methods.

This article unfolds as follows. In Section 2, we for-
mulate the model and introduce some useful lemmas
as well as definitions of system stability. In Section 3,

an inequality is proposed and proved, then we present
the main criteria that ensure the almost sure stability
of DS-CFLSs. We provide some numerical examples
to illustrate the feasibility of the established criteria
in Section 4. Finally, we close the article with some
conclusions in Section 5.

Notations: R and N, respectively, denote the sets
of real numbers and nature numbers. Rn is the set of
n-dimensional real vectors, ||x|| represents the Euclidean
norm of x. Furthermore, AC and C1 represent abso-
lutely continuous and first-order continuous differen-
tiable, respectively.

2. Model formulation and preliminaries

Consider the following DS-CFLSs:{
C
t0D

α
t x(t) = A[σ(t)]

r(t,σ(t))x(t), t ≥ t0,
x(t0) = x0,

(2.1)

where α ∈ (0, 1); x(t) ∈ Rn is the state vector; x0 ∈ Rn

is the initial state; σ(t) : [t0,∞) → M̄ = {1, 2, · · · ,M},
M < ∞ denotes the deterministic switching signal,
which is a right-continuous piece-wise constant func-
tion. Let σ(t) = j ∈ M̄, ∀t ∈ [tk, tk+1) indicates that
the j-th Markov subsystem is activated over the inter-
val [tk, tk+1), such as C

t0D
α
t x(t) = A[j]

r(t,j)x(t), where
{tk}k∈N represents the k-th deterministic switching
time instant, and it is assumed that there is no
switching at the initial time t0 = 0. The stochas-
tic switching signal r(t, σ(t)) : [t0,∞) × M̄ → N̄ =
{1, 2, · · · ,N},N < ∞ stands for a right-continuous
random piece-wise constant function which is gov-
erned by the N-mode Markov process. Let r(t, j) = i ∈
N̄ for ∀t ∈ [τv, τv+1) ⊂ [tk, tk+1) indicates that the i-th
sub-mode is activated over the interval [τv, τv+1). That
is to say, the active subsystem is Ct0D

α
t x(t) = A[j]

i x(t) for
∀t ∈ [τv, τv+1) ⊂ [tk, tk+1), where τv : [tk, tk+1) → v ∈
{0, 1, 2, · · · , l}l<+∞ is the v-th random switching time
instant, τ0 = tk, τl+1 ≤ tk+1,A

[j]
i ∈ Rn×n(j ∈ M̄, i ∈ N̄)

is the system matrix.
Let (�,	, {	t}t≥0, Pr) be a complete probability

space with filtration 	0 containing all Pr-null sets and
	t being monotonically right-continuous. We assume
that the deterministic switching signal σ(t) is well-
defined, i.e. for any h > 0, there exists a sufficient small
real number � > 0 such that the deterministic switch-
ing signal σ(t) is constant over the interval [h, h + �],
that is, σ(t) ≡ j ∈ M̄ for t ∈ [h, h + �]. Then, for any
j ∈ M̄, the transition probability of the Markov process
r(t, j) is defined by

p[j]zs (�) = Pr{r(h + �, j) = s|r(h, j) = z)}

=
{
q[j]zs � + o(�), z �= s,
1 + q[j]zz� + o(�), z = s,

(2.2)
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where z, s ∈ N̄ and lim�→0o(�)/� = 0, q[j]zs is the
transition rate from mode z at time h to mode s
at time h + �, and satisfy q[j]zs ≥ 0, z �= s and q[j]zz =
−∑N

s=1,s �=z q
[j]
zs . Then, the Markov process transition

rate matrix �[j] is given by �[j] = [q[j]zs ]N×N . In addi-
tion, assume that the Markov process r(t, σ(t)) is irre-
ducible. Thus, it is ergodic and have a unique invariant
distribution�[j] = [π [j]

1 ,π [j]
2 , · · · ,π [j]

N ], which satisfies
�[j]�[j] = 0,

∑N
i=1 π

[j]
i = 1.

Let T[j]
i (t0, t) and N

[j]
i (t0, t) be the accumulated time

sojourns and the occurrence number for the subsys-
tem C

t0D
α
t x(t) = A[j]

i x(t) over the interval [t0, t], respec-
tively. Then according to the Ergodic theorem ([38],
Theorem 3.81) and the strong law of large number in
[39], the following statements are obvious:

For arbitrary t ≥ t0, i ∈ N̄, j ∈ M̄, the random sequ-
ence of state dwell-time of Markov process r(t, σ(t))
satisfies the independent exponential distribution with

parameter e[j]i . Then, we can get Pr
{
limt→∞

T[j]i (t0,t)
t−t0

= π
[j]
i

}
= 1 and Pr

{
limt→∞

N[j]
i (t0,t)
t−t0 = π

[j]
i e[j]i

}
= 1,

where we define e[j]i = |q[j]ii |. In addition, for ∀ε′ > 0 is
small enough, exist T(ε′) > 0, when t ≥ T(ε′), we have
T[j]
i (t0, t) ≤ (π

[j]
i + ε′)(t − t0) and N[j]

i (t0, t) ≤ (π
[j]
i

|q[j]ii | + ε′)(t − t0).
Based on the above DS-CFLSs (2.1). In this paper,

the globally asymptotically stability almost surely (GAS
a.s.) and exponentially stable almost surely (ES a.s.) will
be studied. The stability is defined in [40], as follows:

1) globally asymptotically stable almost surely (GAS
a.s.), if the following two properties are verified
simultaneously:
(a) (SP1) for ∀ε > 0, ∃δ(ε) > 0, such that when

||x0|| < δ(ε), Pr(supt≥t0 ||x(t)|| < ε) = 1;
(b) (SP2) for ∀r, ε̂ > 0, ∃T(r, ε̂) ≥ 0, such that

when ||x0|| < r, Pr{supt≥T(r,̂ε)||x(t)|| < ε̂} =
1;

2) exponentially stable almost surely (ES a.s.), if for
any t ≥ t0 and initial condition x0 ∈ Rn, we have
Pr

{
limt→∞ sup 1

t−t0 ln ||x(t, x0)|| < 0
}

= 1.

Lemma 2.1: Assume that there exist the continuously
differentiable function x(t) : [t0,∞) → Rn and posi-
tive definite matrices P[j]i ∈ Rn, then satisfy C

t0D
α
t x(t) ∈

C1[t0,∞] and the quadratic function C
t0D

α
t [xT(t)P[j]i x(t)]

∈ C1[t0,∞], which further satisfy the following inequal-
ity in [33]:

C
t0D

α
t [x

T(t)P[j]i x(t)] ≤ [Ct0D
α
t x

T(t)]P[j]i x(t)

+ xT(t)P[j]i [Ct0D
α
t x(t)]. (2.3)

Lemma 2.2 ([41]): For ∀α ∈ (0, 1) , f (t) ∈ AC[0,∞],
it holds that

C
t0D

α
t
C
t0D

α
t (t0I

α
t f (t)) = f (t), t0I

α
t (Ct0D

α
t f (t))

= f (t) − f (t0). (2.4)

Lemma 2.3 (Gronwall-Bellman Inequality [42]): For
any two functions g(t), h(t) ∈ C1[a, b] . we have g(t) ≤
k + ∫ t

a g(s)h(s)ds implies g(t) ≤ k exp(
∫ t
a h(s)ds), where

k is a positive real number.

Lemma 2.4 (Cp Inequality): For 0 < a < 1 and arbi-
trarily k positive real numbers x1, x2, . . . , xk, we have
n∑

k=1
xak ≤ n1−a(

n∑
k=1

xk)
a .

Lemma 2.5 (Young’s Inequality): For any two non-
negative real numbers a and b, we have ab ≤ ap/p +
bq/q, where p−1 + q−1 = 1 and p, q > 0 .

3. Main results

Firstly, aiming at these controversial problems [33–37],
this paper proposes an inequality to solve them. Then,
the multi-Lyapunov function method and probability
analysis method are used to analyse its stability, and the
sufficient conditions for the DS-CFLSs (2.1) to be GAS
a.s. and ES a.s. is given.

Lemma 3.1: For any α ∈ (0, 1) and positive function
f (t) ∈ AC[t0,∞], if there exists a constant λ ∈ R such
that C

t0D
α
t f (t) ≤ λf (t), ∀t ≥ t0, then for any two real

numbers a and b satisfying a > b ≥ t0, we have

f (a) − f (b) ≤ λ
1

(α)

∫ a

b
(a − τ)α−1f (τ )dτ . (3.1)

Proof: For any t ≥ t0, it follows from C
t0D

α
t f (t) ≤ λf (t)

and Lemma 2.2, we can get

t0
Iαt [

C
t0D

α
t f (t)] = f (t) − f (t0)

= 1
(α)

∫ t

t0
(t − τ)α−1[Ct0D

α
t f (τ )]dτ

≤ λ

(α)

∫ t

t0
(t − τ)α−1f (τ )dτ , (3.2)

Then, for arbitrary two real numbers a and b satisfying
a > b ≥ t0, we obtain

f (b) − f (t0) ≤ λ

(α)

∫ b

t0
(b − τ)α−1f (τ )dτ [t0, b),

f (a) − f (t0) ≤ λ

(α)

∫ a

t0
(a − τ)α−1f (τ )dτ [t0, a),

(3.3)
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Because 0 < α < 1, there are α − 1 < 0, and a − τ >

b − τ > 0 such that (a − τ)α−1 < (b − τ)α−1. Hence,
for any τ ∈ [t0, b), we can infer that

1
(α)

∫ b

t0
(b − τ)α−1f (τ )dτ

>
1

(α)

∫ b

t0
(a − τ)α−1f (τ )dτ , (3.4)

Case 1: Suppose λ > 0, then it follows from (3.4) that

λ

(α)

∫ b

t0
(a − τ)α−1f (τ )dτ

<
λ

(α)

∫ b

t0
(b − τ)α−1f (τ )dτ , (3.5)

Then,

f (a) − f (t0) ≤ λ
1

(α)

∫ a

t0
(a − τ)α−1f (τ )dτ

= λ
1

(α)

∫ b

t0
(a − τ)α−1f (τ )dτ

+ λ
1

(α)

∫ a

b
(a − τ)α−1f (τ )dτ

≤ λ
1

(α)

∫ b

t0
(b − τ)α−1f (τ )dτ

+ λ
1

(α)

∫ a

b
(a − τ)α−1f (τ )dτ

= f (b) − f (t0)

+ λ
1

(α)

∫ a

b
(a − τ)α−1f (τ )dτ ,

(3.6)

Therefore,

f (a) − f (b) ≤ λ
1

(α)

∫ a

b
(a − τ)α−1f (τ )dτ . (3.7)

Case 2: Assume λ ≤ 0, then follow the same process in
Case 1 gives (3.7).

Based on the discussion in both Case 1 and Case 2,
we have

f (a) − f (b) ≤ λ
1

(α)

∫ a

b
(a − τ)α−1f (τ )dτ , (a > b).

(3.8)
This completes the proof. �

Remark 3.1: Due to the lower bound is inconsistent, it
is not sure to take directly the fractional integral tk I

α
t

on both sides of the activated subsystem C
t0D

α
t x(t) =

fr(tk)(x(t)) at the dwell-time interval [tk, tk+1). This
inequality is provided to solve the above problems.

Now, by using the probability analysis method and
the multi-Lyapunov function method, the sufficient
conditions for the GAS a. s. and the ES a. s. of the

DS-CFLSs (2.1) is given by Theorem 3.2 and Remark
3.3, respectively.

Theorem 3.1: For any j ∈ M̄, i ∈ N̄, suppose that there
exist symmetrically positive definite matrices P[j]i ∈
Rn×n and the constant λ

[j]
i ∈ R and μ

[j]
i > 0, such that

the following inequality holds:
(H1) (A[j]

i )TP[j]i + P[j]i A[j]
i ≤ λ

[j]
i P[j]i , ∀i ∈ N̄,

∀j ∈ M̄,
(H2) P[j]i ≤ μ

[j]
i P[j]u , ∀i, u ∈ N̄, i �= u,∀j ∈ M̄,

(H3) η[j] =
(∑N

i=1 π
[j]
i |q[j]ii | lnμ

[j]
i + λ′

(α+1)(
(1 − α)

(∑N
i=1 π

[j]
i |q[j]ii |

)
+ α

))
< 0,∀i ∈ N̄,

∀j ∈ M̄,
whereλ′ = ∑N

i=1 λ
[j]
i π

[j]
i |q[j]ii |/∑N

i=1 π
[j]
i |q[j]ii | . Then the

DS-CFLSs (2.1) is GAS a.s. under the following switching
strategy:

(H4)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0 = 0
σ(t0) = argminj∈M̄{E[xT(t0)P

[j]
r(t0,j)x(t0)]}

t1 = inf{t > t0|E[xT(t)P[σ(t0)]
r(t,σ(t0))x(t)]

> E[xT(t0)P
[σ(t0)]
r(t0,σ(t0))x(t0)

× exp{η[σ(t0)] × (t − t0)}]}
σ(t1) = argminj∈M̄{E[xT(t1)P

[j]
r(t1,j)x(t1)]}

...
tk = inf{t > tk−1|E[xT(t)P[σ(tk−1)]

r(t,σ(tk−1))
x(t)]

> E[xT(tk−1)P
[σ(tk−1)]
r(tk−1,σ(tk−1))

x(tk−1)

× exp{η[σ(tk−1)] × (t − tk−1)}]}
σ(tk) = argminj∈M̄{E[xT(tk)P

[j]
r(tk,j)x(tk)]}

...

where 0 = t0 < t1 < · · · < tk < · · · and {σ(tk) ∈ M̄
|k ∈ N ∪ {0}} are the switching time sequence and
switching index sequence of the deterministic switching
signal σ(t) over the interval [t0,∞), respectively.

Proof: Definemulti-Lyapunov functions asV[j]
i (x(t), t)

= xT(t)P[j]i x(t), ∀i ∈ N̄, j ∈ M̄.When any t ∈ [tk, tk+1),
set σ(t) = σ(tk) ∈ M̄. It should be noted that for
t ∈ [tk, tk+1), the switching is not deterministic, but
random. Let tk = τ0 < τ1 < · · · < τl < tk+1 be the
switching time sequence of the Markov process switch-
ing signal r(t, σ(tk)) over the interval [tk, tk+1). Then,
for t ∈ [τv, τv+1) ⊂ [tk, tk+1), reset r(t, σ(tk)) = r(τv,
σ(tk)) ∈ N̄. Finally, for∀t ∈ [τl, tk+1), it can be obtained
from the condition (H1) and Lemma 2.1:

C
t0D

α
t [x

T(t)P[σ(tk)]
r(τl ,σ(tk))x(t)]

≤ λ
[σ(tk)]
r(τl ,σ(tk))x

T(t)P[σ(tk)]
r(τl ,σ(tk))x(t), (3.9)

Then, according to the inequality of Lemma 3.1, we
have

xT(t)P[σ(tk)]
r(τl ,σ(tk))x(t) − xT(τl)P

[σ(tk)]
r(τl ,σ(tk))x(τl)



1300 Q. WANG ET AL.

≤ λ
[σ(tk)]
r(τl ,σ(tk))

1
(α)

×
∫ t

τl

(t − τ)α−1xT(τ )P[σ(tk)]
r(τl ,σ(tk))x(τ )dτ , (3.10)

By Lemma 2.3 (Gronwall-Bellman Inequality), we
obtain

xT(t)P[σ(tk)]
r(τl ,σ(tk))x(t)

≤ xT(τl)P
[σ(tk)]
r(τl ,σ(tk))x(τl)

× exp
{
λ
[σ(tk)]
r(τl ,σ(tk))

1
(α)

∫ t

τl

(t − τ)α−1dτ
}

≤ xT(τl)P
[σ(tk)]
r(τl ,σ(tk))x(τl)

× exp
{
λ
[σ(tk)]
r(τl ,σ(tk))

1
(α + 1)

(t − τl)
α

}
, (3.11)

Note [tk, tk+1) = [tk = τ0, τ1) ∪ [τ1, τ2) ∪ · · · ∪ [τl,
τl+1 = tk+1). After that, separating the time interval,
and obtaining the result through the condition (H2):

xT(t)P[σ(tk)]
r(τl ,σ(tk))x(t)

≤ xT(τl)P
[σ(tk)]
r(τl ,σ(tk))x(τl)

× exp

⎧⎨⎩λ
[σ(tk)]
r(τl ,σ(tk))

(α + 1)
(t − τl)

α

⎫⎬⎭
≤ μ

[σ(tk)]
r(τl ,σ(tk))x

T(τ−
l )P[σ(tk)]

r(τl−1,σ(tk))x(τ
−
l )

× exp

⎧⎨⎩λ
[σ(tk)]
r(τl ,σ(tk))

(α + 1)
(t − τl)

α

⎫⎬⎭
≤ μ

[σ(tk)]
r(τl ,σ(tk))x

T(τl−1)P
[σ(tk)]
r(τl−1,σ(tk))x(τl−1)

× exp

⎧⎨⎩λ
[σ(tk)]
r(τl ,σ(tk))

(α + 1)
(t − τl)

α

×
λ
[σ(tk)]
r(τl−1,σ(tk))

(α + 1)
(τl − τl−1)

α

⎫⎬⎭
...

≤ μ
[σ(tk)]
r(τl ,σ(tk)) · · · μ[σ(tk)]

r(τ1,σ(tk))x
T(τ0)P

[σ(tk)]
r(τ0,σ(tk))x(τ0)

× exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
[σ(tk)]
r(τl ,σ(tk))

(α + 1)
(t − τl)

α

+
λ
[σ(tk)]
r(τl−1,σ(tk))

(α + 1)
(τl − τl−1)

α+

· · · +
λ
[σ(tk)]
r(τ0,σ(tk))

(α + 1)
(τ1 − τ0)

α

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
≤

l∏
n=1

μ
[σ(tk)]
r(τn,σ(tk))x

T(tk)P
[σ(tk)]
r((tk,σ(tk))x(tk)

× exp

⎧⎨⎩λ
[σ(tk)]
r(τl ,σ(tk))

(α + 1)
(t − τl)

α

×
∑l−1

v=0

λ
[σ(tk)]
r(τv,σ(tk))

(α + 1)
(τv+1 − τv)

α

⎫⎬⎭ , (3.12)

Here, takingλ′ =
N∑

r(τv,σ(tk))=1
λ
[σ(tk)]
r(τv,σ(tk))N

[σ(tk)]
r(τv,σ(tk))(tk, t)

/
N∑

r(τv,σ(tk))=1
N[σ(tk)]
r(τv,σ(tk))(tk, t). According to Lemmas 2.4

2.5 (Cp and Young’s Inequality), then for any t ∈
[tk, tk+1), we can get

xT(t)P[σ(tk)]
r(t,σ(tk))x(t)

≤ xT(tk)P
[σ(tk)]
r(tk,σ(tk))x(tk)

×
N∏

r(τv,σ(tk))=1

[μ[σ(tk)]
r(τv,σ(tk))]

N
[σ(tk)]
r(τv ,σ(tk))

(tk,t)

× exp
{

λ′

(α + 1)
[
(t − τl)

α

+
∑l−1

v=0
(τv+1 − τv)

α

]}
≤ xT(tk)P

[σ(tk)]
r(tk,σ(tk))x(tk)

× exp
{∑N

r(τv,σ(tk))=1
N[σ(tk)]
r(τv,σ(tk))(tk, t)

× lnμ
[σ(tk)]
r(τv,σ(tk))

}
× exp

{
λ′

(α + 1)

(∑N

r(τv,σ(tk))=1

× N[σ(tk)]
r(τv,σ(tk))(tk, t) + 1

)1−α

(t − tk)α
}

≤ xT(tk)P
[σ(tk)]
r(tk,σ(tk))x(tk)

× exp
{∑N

r(τv,σ(tk))=1
N[σ(tk)]
r(τv,σ(tk))(tk, t)

× lnμ
[σ(tk)]
r(τv,σ(tk))

}
× exp

{
λ′

(α + 1)

[
(1 − α)

(∑N

r(τv,σ(tk))=1

× N[σ(tk)]
r(τv,σ(tk))(tk, t) + 1

)
+ α(t − tk)

]}
, (3.13)

Then by N[σ(tk)]
r(τv,σ(tk))(tk, t) ≤ (π

[σ(tk)]
r(τv,σ(tk))

|q[σ(tk)]
r(τv,σ(tk)),r(τv,σ(tk))| + ε′)(t − tk) a.s., we can obtain

xT(t)P[σ(tk)]
r(t,σ(tk))x(t) ≤ xT(tk)P

[σ(tk)]
r(tk,σ(tk))x(tk)m

× exp{η[σ(tk)] × (t − tk)} a.s. ,
(3.14)



AUTOMATIKA 1301

wherem = exp{λ′(1 − α)/(α + 1)},

λ′ =
N∑

r(τv,σ(tk))=1

[λ[σ(tk)]
r(τv,σ(tk))(π

[σ(tk)]
r(τv,σ(tk))|q

[σ(tk)]
r(τv,σ(tk)),r(τv,σ(tk))| + ε′)]

/

N∑
r(τv,σ(tk))=1

(π
[σ(tk)]
r(τv,σ(tk))|q

[σ(tk)]
r(τv,σ(tk)),r(τv,σ(tk))| + ε′),

η[σ(tk)] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
r(τv,σ(tk))=1

(π
[σ(tk)]
r(τv,σ(tk))

|q[σ(tk)]
r(τv,σ(tk)),r(τv,σ(tk))| + ε)

lnμ
[σ(tk)]
r(τv,σ(tk)) + λ′

(α + 1)⎛⎝(1 − α)

⎛⎝ N∑
r(τv,σ(tk))=1

(π
[σ(tk)]
r(τv,σ(tk))

|q[σ(tk)]
r(τv,σ(tk)),r(τv,σ(tk))| + ε′)

⎞⎠ + α

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, for any t ∈ [t0,∞), designing a switching
sequence {(t0, σ(t0)), (t1, σ(t1)), · · · , (tk, σ(tk)), · · ·} to
deterministic the switching signal σ(t), which has been
given in the condition (H4). Then, according to the
switching strategy, it can be obtained from Equation
(3.14):

E[xT(t)P[σ(tk)]
r(t,σ(tk))x(t)]

≤ E[xT(tk)P
[σ(tk)]
r(tk,σ(tk))x(tk)]

× m exp{η[σ(tk)] × (t − tk)}
≤ E[xT(t−k )P[σ(tk−1)]

r(tk−1,σ(tk−1))
x(t−k )]

× m exp{η[σ(tk)] × (t − tk)}
≤ E[xT(tk−1)P

[σ(tk−1)]
r(tk−1,σ(tk−1))

x(tk−1)]

× m exp{η[σ(tk)] × (t − tk) + η[σ(tk−1)]

× (tk − tk−1)}
...

≤ E[xT(t0)P
[σ(t0)]
r(t0,σ(t0))x(t0)]

× m exp

⎧⎨⎩
η[σ(tk)] × (t − tk) + η[σ(tk−1)]

×(tk − tk−1)

+ · · · + η[σ(t0)] × (t1 − t0)

⎫⎬⎭ ,

(3.15)

Hence, set η′ = maxj∈M̄{η[j]},

E[xT(t)P[σ(tk)]
r(t,σ(tk))x(t)] ≤ E[xT(t0)P

[σ(t0)]
r(t0,σ(t0))x(t0)]

× m exp{η′ × (t − t0)},
(3.16)

Then, we can know η′ < 0 from the condition (H3),
so

∫∞
t0 E[xT(t)P[σ(t)]

r(t,σ(t))x(t)]dt < ∞. Through Tonelli’s
theorem, we get∫ ∞

t0
E[xT(t)P[σ(t)]

r(t,σ(t))x(t)]dt

= E
[∫ ∞

t0
xT(t)P[σ(t)]

r(t,σ(t))x(t)dt
]

< ∞, (3.17)

For any x(t) ∈ Rn, i ∈ N̄, j ∈ M̄, we have

ζ
[j]
i ||x(t)||2 ≤ xT(t)P[j]i x(t) ≤ β

[j]
i ||x(t)||2, (3.18)

where ζ
[j]
i = λmin(P

[j]
i ) ∈ κ∞, β[j]

i = λmax(P
[j]
i ) ∈ κ∞,

λmin(·) and λmax(·) represent the minimum eigen-
value and the maximum eigenvalue, respectively. By
(3.17),

∫∞
t0 mini∈N̄,j∈M̄{ζ [j]

i }||x(t)||2dt < ∞, then from
Lemma 7 in [40], we can get limt→∞||x(t)|| =
0 a.s.. So, for two arbitrary positive numbers r, ε̂ >

0, there exists T(r, ε̂) ≥ 0, when ||x0|| < r, so that
supt≥T(r,ε̂)||x(t)|| < ε̂ a.s.. The property SP2) in the
definition of stability is proved. In addition, it is obvious
that any t ≥ t0,

min
i∈N̄,j∈M̄

{ζ [j]
i }||x(t)||2 ≤ E[xT(t)P[σ(t)]

r(t,σ(t))x(t)]

≤ E[xT(t0)P
[σ(t0)]
r(t0,σ(t0))x(t0)]

× m exp{η′ × (t − t0)}
≤ max

i∈N̄,j∈M̄
{β[j]

i }||x(t0)||2

× m exp{η′ × (t − t0)},
(3.19)

Through η′ < 0, we know that

supt≥t0

(
γ ||x0||

√
m exp

{
1
2
η′ × (t − t0)

})
< ∞ a.s.,

(3.20)
where γ =

√
maxi∈N̄,j∈M̄{β[j]

i }/mini∈N̄,j∈M̄{ζ [j]
i }.

Therefore, for an arbitrary positive number ε > 0,
there is an arbitrary δ(ε) > 0 and small enough, when
||x0|| < δ(ε), so that supt≥t0 ||x(t)|| < ε a.s.. The prop-
erty SP1) in the definition of stability is also proved.
So, the DS-CFLSs (2.1) is GAS a.s. under the condi-
tions (H1)–(H3) and the switching rule of (H4), and the
proof is completed. �

Remark 3.2: According to (3.19), arbitrary t ≥ t0, we
obtain ||x(t)|| ≤ γ ||x0||

√
m exp

{ 1
2η

′ × (t − t0)
}
a.s.,

It is not difficult to figure out by calculation limt→∞ 1
t−t0

ln ||x(t)|| ≤ 1
2η

′ < 0 a.s. Hence, the DS-CFLSs (2.1) is
ES a.s. under the conditions (H1)–(H3) and the switch-
ing rule of (H4).
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4. Numerical example

In this section, two examples are given to reveal the
effectiveness of the main results in Section 3.

Example 1: Consider the DS-CFLSs (2.1), with N =
M = 2 and

A[1]
1 =

[−2 0
1 −1

]
,A[1]

2 =
[−3 1
2 −3

]
,

A[2]
1 =

[−1 0
0 −1

]
, A[2]

2 =
[−2 1
1 −2

]
,

x0 = [
1 −1

]T . (4.1)

Selecting, α = 0.7, ε′ = 1, λ[1]1 = −2, λ[1]2 = 2, λ[2]1
= 1, λ[2]2 = −3,μ[1]

1 = 2,μ[1]
2 = 1.2,μ[2]

1 = 0.8,μ[2]
2 =

1.5. The transition rate matrices of the Markov pro-
cess switching signals r(t, 1) and r(t, 2) are �[1] =[−2 2
1 −1

]
and �[2] =

[−1 1
3 −3

]
, respectively.

In addition, its stationary distribution is �[1] =
[2/3 1/3] and �[2] = [1/4 3/4]. Therefore, it can
be verified:

η[1] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
i=1

(π
[1]
i |q[1]ii | + ε′) lnμ

[1]
i

+ λ′

(α + 1)(
(1 − α)

( N∑
i=1

(π
[1]
i |q[1]ii | + ε′)

)
+ α

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −0.7798 < 0,

η[2] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
i=1

(π
[2]
i |q[2]ii | + ε′) lnμ

[2]
i

+ λ′

(α + 1)(
(1 − α)

( N∑
i=1

(π
[2]
i |q[2]ii | + ε′)

)
+ α

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −3.2229 < 0, (4.2)

Then, by (H1) and (H2), we can solve the matrices
P[j]i (i = 1, 2; j = 1, 2),

P[1]1 =
[
5.5505 2.2324
2.2324 2.2324

]
,

P[1]2 =
[
0.2667 −0.2549

−0.2549 0.2469

]
,

P[2]1 =
[
0.4680 0

0 0.4680

]
, P[2]2 =

[
3.9065 0

0 3.9065

]
.

(4.3)

Figures 1 and 2 show the deterministic switching signal
and the state trajectory of x(t) for the switching system
(2.1), respectively.

Figure 1. Deterministic switching signal σ(t).

Figure 2. The state trajectory of x(t): (a) the trajectory of
||x(t)|| and (b) the trajectory of ln ||x(t)||.

From Figure 2(a and b), we can see that the DS-
CFLSs (2.1) is GAS a.s. and ES a.s. under the sufficient
conditions (H1)–(H3) and the switching strategy of
(H4) (the deterministic switching signal of Figure 1),
respectively.

Example 2: Next, we will illustrate the application
of fractional-order dual switching system through the
scheduling problem of a multi-loop network con-
trol system (NCS) with packet loss in [43]. Suppose
that M linear plants must be controlled by a sin-
gle regulator, and the input–output data are switched
through a shared network, as shown in Figure 3. The
scheduling signal σ(t) determines that the regulator is
allowed to control only one plant at a time. The trans-
mission of sensor/actuator data over the network is
affected by random faults generated by Markov pro-
cesses r(t, σ(t)). For simplicity, it is assumed that each
sensor can transmit complete state information with-
out failure, so the regulator has full access to state
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Figure 3. The multi-loop NCS.

information from all plants. In addition, the effect of
interference is ignored here. For the regulator-actuator
channel, let r(t, σ(t)) = 1 represents the fail-free mode
when all packets are transmitted correctly. If no packet
is sent, set r(t, σ(t)) = 2 to exit the packet mode.
Assume that the stability and performance require-
ments can then bemet by designing a scheduling signal
σ(t) (a deterministic switching strategy).

Consider a fractional-order dual switching NCS
withM = 2, described as

C
t0D

α
t xj(t) = Fjxj(t) + Gjuj(t), j = 1, 2. (4.4)

Let the state feedback control law be

ûj(t) =
{
Kjxj(t), if σ(t) = j
0, if σ(t) �= j (4.5)

The real actuator signal affected by random packet
loss is

uj(t) =
{
ûj(t), if r(t, σ(t)) = i = 1
0, if r(t, σ(t)) = i = 2 (4.6)

Let x(t) = [x1(t) x2(t)]T . Then, by means of (4.5) and
(4.6), the expression (4.4) can be rewritten as

C
t0D

α
t x(t) = A[j]

i x(t), i = j = 1, 2. (4.7)

where A1
1 =

[
F1 + G1K1 0

0 F2

]
, A2

1

=
[
F1 0
0 F2 + G2K2

]
, A1

2 = A2
2 =

[
F1 0
0 F2

]
.

Assuming F1 = −0.1, F2 = −0.2, G1 = G2 = 1 and
the controller gains are K1 = K2 = −1. Then, selecting
α = 0.7, ε′ = 1, λ

[1]
1 = −2, λ[1]2 = 1, λ[2]1 = 2, λ[2]2 =

−4, μ
[1]
1 = 1,. μ

[1]
2 = 2,μ[2]

1 = 2,μ[2]
2 = 3 and x0 =[

1 −1
]T . The transition rate matrices of theMarkov

process switching signals r(t, 1) and r(t, 2) are �[1] =
[−5, 5; 10,−10] and�[2] = [−8, 8; 4,−4], respectively.
In addition, its stationary distribution is �[1] =
[2/3 1/3] and �[2] = [1/2 1/2]. Therefore, it can
be verified:

η[1] == −0.5339 < 0, η[2] == −0.7506 < 0, (4.8)

Then, by (H1) and (H2), we can solve the matrices
P[j]i (i = 1, 2; j = 1, 2),

P[1]1 =
[
2.1532 0

0 −0.000

]
,

Figure 4. Deterministic switching signal σ(t).

Figure 5. The state trajectory of x(t): (a) the trajectory of
||x(t)|| and (b) the trajectory of ln ||x(t)||.

P[1]2 =
[
0.3886 0

0 −0.1749

]
,

P[2]1 =
[
1.5287 0

0 1.5287

]
, P[2]2 =

[
9.7862 0

0 9.7862

]
.

(4.9)

Figures 4 and 5 show the deterministic switching signal
and the state trajectory of x(t) for the switching system
(4.4), respectively.

In the same way, from Figure 5(a and b), it can be
seen that the state of the fractional-order dual switching
NCS gradually converges, then the system is GAS a.s
and ES a.s.

5. Conclusions

This paper mainly studies the almost sure stability
problem of the DS-CFLSs. The sufficient conditions of
the global asymptotic stability almost surely (GAS a.s.)
and exponential stability almost surely (ES a.s.) for the
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DS-CFLSs are given by using themulti-Lyapunov func-
tion and probability analysis methods. Finally, some
numerical examples are provided to demonstrate the
validity of the results. Furthermore, we will further dis-
cuss the stability of DS-CFLSs with control, disturbance
and variable-order.
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