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ABSTRACT

WPREs (wind power ramp events) are one of the most critical factors affecting the security and
protection of the electrical system. Accurate ramp event detection may help power systems bet-
ter manage extreme events and reduce financial damage. In this study, We present an improved
piecewise linear approximation for recognizing wind ramps in Kanyakumari district. In practise,
wind power ramps can be decreased by properly managing and dispatching flexible reserve and
associated services. This necessitates the use of proper ramp detection techniques as well as pre-
cise ramp forecasts. The method’s plan to break down wind power signal into increasing with
increasing ramps, making ramp identification easier and ensuring that all conceivable ramps of
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varying lengths are identified. Using observed wind power data, the ramp detection method is
used to assess the performance of an energy wind farm. The results reveal that identifying wind
power ramps using the segmentation method is equivalent to optical ramp identification.

1. Introduction

The technology for wind power has advanced signifi-
cantly during the last few decades. Along with poten-
tial, the increasing integration of wind power into the
power grid also poses significant hurdles for the safe
functioning of the power system. These difficulties are
mostly brought on by the intermittent and variable
nature of the wind [1]. Wind power ramp events are
brand-new occurrences that are hazardous to the sta-
bility of the power system because they involve a sig-
nificant shift in wind power generation over a brief
period of time [2]. Ramp events will have an impact
on the stability, dependability, and safety of the power
systems; the key influences are as follows: When wind
power penetration increases, WPREs grow as well [3.4].
WPRESs have a significant negative impact on the power
system’s stability and pose a risk to public safety as
well as potential financial harm. Because the output
of other generators must be changed to balance the
significant power swings brought on by WPREs [5,6].
WPREs will also have an impact on power market
transactions and result in costly economic penalties.
The stable operation of power grid systems therefore
depends on the precise detection and prediction of
WPREs [7,8].

There have been more measures to decarbonize the
electric power grid by using clean, renewable sources
of energy. Because wind and solar electricity are unpre-
dictable, intermittent, and non dispatchable energy
sources, they are challenging to employ [9]. Solar elec-
tricity is the creation of electricity using photovoltaic

cells found in solar panels and transparent photovoltaic
glass, or by using the sun’s energy directly as thermal
energy (heat). As wind power penetration rises, quick
generators, in particular, will be called upon more fre-
quent to balancing demands [10,11]. Wind energy’s
economic and environmental benefits will be countered
by auxiliary service and wind power constraints. Severe
ramps should be tackled with caution because they can
significantly affect the operation of the power system
[12,13]. The demand side has historically had suffi-
cient capacity to fulfil demand peaks in the morning
and evening. Wind generation variability, on the other
hand, results in significantly steeper net load ramps.
Because the current generating mix is unable to keep
up with the changes, they could, in the worst-case sce-
nario, result in a loss of demand or energy, and hence
uneconomic generation dispatched [14,15].

Because system defects are a key problem, the sys-
tem’s ability to satisfy demands has always been crucial
in power distribution reliability studies. In a recent reli-
ability research, the authors [16] looked at the ramp
rates of production units and concluded that lesser
ramp capabilities reduce system reliability. Wind power
has an upper limit to its availability that is both unex-
pected and ambiguous at different times. Wind power’s
variability and uncertainty is a major source of concern
for system operators. Wind power forecasting is becom-
ing increasingly important in power system manage-
ment as the number of wind power absorbed as in
power system grows [17,18]. Even if today’s energy sys-
tem can handle moderate amounts of unpredictability
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and variation, ramp event and massive power outages —
could be disastrous.

First, we look at how an optimal ramp detection
technique is implemented and approximated. We show
how great our strategy is and then put it to the test in
a variety of settings. Next, we leverage publically data
available to obtain the best possible ramp identification
and provide a detailed descriptive statistic of important
ramp properties. In future dispatch formulations, such
attributes can be employed to characterize ramp events.

2. Literature review

A cutting-edge method was suggested by Tinghui
Ouyang et al. (2019) [1] with the main goal of enhanc-
ing the effectiveness of wind power ramp prediction.
In order to create a primary model that can represent
the trend of wind power variation, this method makes
use of the wind power curve. Then, an MSAR (Markov-
Switching- Auto-Regression) model that combines the
benefits of AR models with Markov chains corrects
the primary model’s prediction residual. To advance
the state-of-the-art in WPRE:s identification, Yang Cui
et al. (2021) [2] suggested a brand-new, enhanced
dynamic swinging door method (ImDSDA). In the
beginning, ramp segments are extracted using the
swinging door algorithm (SDA). Second, segment com-
bination and ramp trend identification are done using
the dynamic programming approach. Finally, to evalu-
ate the effectiveness of the suggested InNDSDA, raw data
from three actual wind farms in Hubei, China, were
utilized.

Dorado-Moreno et al. (2017) [3], By analysing the
outcomes of multiple Reservoir Computing (RC) archi-
tectures targeted to different classifiers, they can antic-
ipate Wind Power Ramp Events (WPREs) in wind tur-
bines. The suggested RC designs beat typical WPRE
predictive mode Is based on persistent, auto-regressive
regression models, as well as classic RC variants, when
tested using actual information from three wind tur-
bines in Spanish. Ouyang, Tinghui et al. (2019) [4], A
mixed prediction model was utilized at first. The wind
power curves, which depicts the physics of wind gener-
ators, is shown below might be utilized to offer lengthy
trend prediction using information from a weather
forecasting system. After that, the multivariate model
is built using an information method to rectify system
deficiencies in the basic predictions, which are resolved
in attempt to optimize long-term predictive accuracy.
To detect ramps in the second step, a reduced swinging
door method is utilized.

Liu et al. (2018) [5], The performance of the model
is validated using WT fault diagnosis tests. We deter-
mined that, in terms of both features and statistics,
the produced fault data are similar to actual fault data
derived from data analysis result. We found that the
recommended technique may still detect WT problems
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when true fault data samples are restricted, based on
fault identification findings. Lyners et al. (2020) [6], To
help ramp recognition, a multi-parameter method is
implemented to divide a continuous wind power sig-
nal into uphill and downward components. The system
may be used to detect solar power ramp occurrences,
national levels, and residual load (national load minus
renewable component). Mehta et al. (2018) [7], For
managing system frequency changes following load dis-
ruptions, a hybrid energy system with synchronous
machine and average speed generator is described. A
state space model for this coordinated system is built
by integrating the engine’s rapid acting voltage con-
trol loop with the slower frequencies control loop.
The suggested coordinate system performance has been
confirmed for a variety of exciting and reactive load
fluctuations, both step and random.

Zhang, Dongying et al. (2019) [8], Turbine moni-
tor, wind energy potential estimates, and wind turbine
choosing are all part of the wind energy prediction. This
research covers raw wind data uncertainty, raw wind
data preprocessing approaches, energy curve modelling
methods, and parameters approaches for the building
of an accurate energy curve model. Furthermore, the
performance of a number of well-known energy curve
models is investigated in various season and winds
farm. Zhang et al. (2020) [9], AGC parameter fitting
provides the foundation for assessing AGC system sta-
bility. This method could be used to evaluate the influ-
ence of wind power ramping on tie line control, which
can help prevent tie line restrictions and develop new
control strategies.

Zhou et al. (2021) [10], Wind energy and energy
storage systems are being examined as part of the mul-
tistage power system operation process. Actual mul-
tistage procedures are doable thanks to the layered
all-scenario-viable technique. Furthermore, the sug-
gested IPHS technique improves the computing per-
formance of long-term hourly robust TCUC problems,
ensuring that this capacity planning problem may be
solved. Ebadi, Ramin et al. (2021) [11], On IGDT-based
robust NCUC problems in wind turbines, the influ-
ence of TBES technologies and the DR programme
was assessed. The hourly course of the TBES train, the
rechargeable patterns of the TBES system, the gener-
ator schedule, the optimal robust value of parameter,
and the updated profile were all incorporated in the
suggested solution approach. According to a sensitiv-
ity study, when the complete system pressure increases,
the advantage of TBES technology in terms of total cost
reduction increased.

Lyners et al. (2021) [12], The auxiliary ramp rule
is utilized to construct a diverse supply ramp detec-
tion technique that is ground breaking. The programme
divides the energy signal into two parts: upward and
downwards ramp segment using a rule-based seg-
mentation technique, then analyses horizontal sub
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segments with minor power changes using a post-
processing algorithm. The Wind Forecast Improved
Project (WFIP) will be utilized in place of the existing
Electric Reliability Council of Texas (ERCOT) short-
term wind power prediction (STWPF). The WFIP’s
overall gain in quick wind power prediction perfor-
mance was assessed using a set of statistical metrics
spanning multiple forecasting timeframes. The experi-
mental WFIP outperformed the present STWPF for all
forecasting horizons in most seasons/months, accord-
ing to statistical analysis. A hybrid predictor compris-
ing a multi-step self-tuning technique and a somewhat
GAN utilizing generating and discriminatory model is
constructed for the WPF and REF challenges. Using
wind power time - series data from actual wind farm
as a starting point, the suggested technique was thor-
oughly studied and compared to statistical techniques,
traditional artificial neural, and deep learning algo-
rithms.

The remainder of the paper is organized in the fol-
lowing manner. Section 3 proposes a piecewise lin-
ear approximation. The performance and utility of
the suggested method are demonstrated and assessed
in Section 4 using wind power generation. Section 5
brings the paper to a close.

3. Proposed method

Following that, significant wind power ramp occur-
rences are recognized from the generated segment
using a user-defined concept of a major ramp. In this
paper, we use a piecewise linear approximation to
present an improved optimal ramp detection algorithm
for identifying wind ramp to segregate wind power
data. When wind power abruptly increases or falls over
a short period of time, this is known as a ramp event. As
a result, the proposed method will divide a temporally
wind power sequence into increasing or decreasing
ramp. There are three parts to this section. To begin, the
severe ramp events are defined, as well as their detec-
tion. The actual simulation algorithm is shown in the
second section, while the performance measurements
of importance are presented in the third part.

3.1. Optimal ramp detection algorithm

The following elements can now be used to formu-
late the detection issue. Every interval E = (4,) the
indices were presented (i,j) : 1 <i < j < N and a pos-
sible ramp in the time series beginning with i and
ending with j. R: E x X — {0, 1} is a ramp rule that
converts X intervals into a choice as to whether or not
interval is a ramp. In accordance with the Ramp Func-
tion (R), the signal will begin at time zero and quickly
assume a slant shape. Depending on the supplied time
characteristics (i.e. positive or negative, here positive),
the signal will then continue a straight slant route either

towards the right or left. The ramp function (R) is a
form of elementary function as a result. The best solu-
tion to the ramp detection algorithm is really to devise
a method that recover the interval sequences Ej, ...Ej,
every belonging to a ramp.

3.1.1. Wind ramp rules

In order to put an optimal ramp detection approach
into practise, the rule sets R must be specified. We'll
refer to R(E) or R (i, j) as a rule given to X in the sig-
nal interval E = (i, j) in the rest of the document (i, j).
The unit ramp function is defined as follows:

1

R=1"

{0’

A ramp event is an interval in the wind power time
series:

t>0

t<0 (1)

Ro(i,j) = Lipj—p;i>P,y} POWer swing threshold (2)

where, p; and p; denotes the power power at the corre-
sponding instants in time, i and j, respectively.

Rl (la]) = 1{max(pi ........... Pj)—min(p,- ........ D j)>Ol} (3)

Ra(iof) = 1, (4)
{ i >“}

The power swing thresholds testing (Eq. 2) deter-
mines if wind power had increased over time by just
a specific amount. The p,, parameter specifies the
time range and threshold for detecting similar swings.
Equation (4) is utilized if the min and max detected
power for a given interval exceed a threshold value.
This rule differs from the one in Equation by two major
factors (1). For starters, Equation (4) is much more sen-
sitive to wind power signal changes and detects ramps
with a higher false positive rate. Secondly, a signal that
fulfils Equation (2) is certain to fulfil Equations (3) and
(4). Equation (4) is valid if the rate of rise for a given
interval reaches a specific value. The power ramp rate
threshold that was employed was this. The preceding
requirements do not apply to intervals with significant
variations or fast power drops. Such oscillations may
cause a ramp to halt or start too soon. We employ an
extra rule to solve this problem, which can be easily
determined by keeping track of the current interval
maximum:

j
Rc(iaj) = l_[ l{pm>ﬁmax(pi ........ D m)}’:B <1 (5)
m=i

Itis possible to create additional rules. Any definition
can be considered using the generalized rule in
Equation (6).

M
R(G,j) = Re(ij) [ [ R j) (6)

r=1

R.(i,j) is defined by Equation (5), while R,(i,j) is
defined by any wind ramp specification. Assume that



some scoring function is used to score periods of the
data series W : E x X — R™. The score function eval-
uates the precision of probabilistic forecasts. Using the
nonlinear programming formulation below, the objec-
tive function ] is maximized, and the optimum ramp
start and finish times are reconstructed.

JG,j) = max w(i, k) + J(K + 1,j) (7)
1<Kk<j

3.1.2. Ramp score function

A sampling measure of the gradient of the expected
return of a parametric strategy with regard to its param-
eters is calculated using the score function. A real unary
function is the ramp function. Because the resolution
of a digital readout is inversely related to the frequency
of a local oscillator, it has a superior resolution and is
adjustable. The scoring function must satisfy the fol-
lowing super additivity property in order to ensure
optimal ramp detection.

Vi < k(j: RG,j) = 1, WG, ) w(i, k) + WK + 1,))
(8)
We adopt Equation (9) as an information cost func-
tion interval since this constraint generates a complete
family of weighted systems.

Wi, ) = (G — D)*1{ngij=1) 9)

3.1.3. Trendfitting

A piecewise linear fitting pre-processing step is used.
The following convex software can be used to gener-
ate piecewise linear fits to data in a straightforward and
tractable manner.

1 .
m}nillx—lel—i-kHDle (10)
X

If x ={p1,.....pn} and t; = i are assumed, and sec-
ond derivative operation is the transformations D. The
Dx; imposes piecewise linearity in the approximation
X, as well as sparsity in the second derivative. Chang-
ing the parameter X allows you to sift through multiple
time scales. The choice of A can have an impact on
the observed ramp events. The collection of piecewise
lines is retrieved from X after the optimization by setting
a threshold for the second derivative. Because this is
an approximation approach, picking a threshold value
should be done with caution. The piecewise signal is
then threshold as follows:

Xpw = {(t,Pt1),...... (tr,Ptp)} (1)
where (t1, 131‘1), ...... , (tr, IStT) are positions that meet

[IDx||; > y. Both trend filtration (Equation 9) and
identifying wind power decreases (Equation 5) are con-
cerned with power fluctuation on different time scales.
Short-term oscillations are eliminated by trend filter-
ing, while power losses over longer periods are penal-
ized by Equation (5).
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Algorithm 1 Optimal Ramp Detection Algorithm

L« length(p) { Initialize scores of zero length segment.}
fori = 1<-Ldo
Jli, i< 0
end for
forn = 2 — Ldo
fori=1—L-n+1do
j<—i+n-—1
fork = i—j-1do
q < WG,k + J(k,j)
Ifqg > Jijlthen
Jli 1< q
Kli, 1<k
End if
End for
End for
End for

3.2. Wind production scenarios generation

To examine the ramps, a realistic approach for creat-
ing power generating scenario is required. The read-
ers must be aware that method employed is only one
option, but it is an excellent thing to use Monte Carlo
simulation to construct aggregate wind power time
series that meet the requirements (Figure 1).

The approach combines a valid modified autore-
gressive (AR) models using Cholesky decomposition
(ARC) and a turbines idea to convert wind speed time -
series data into wind power data set data to create wind
speed time series. This method could be used to imi-
tate data from many wind farm located close together.
Using the Cholesky decomposing of the correlation
analysis, the series were turned into multivariable cross-
correlated time - series data. As shown in Figure 2, the

Monte Carlo simulations with
univariate AR Models

v

Cholesky decomposition

|

Addition of monthly diurnal
variations

v

Transformation to weibull

distribution

v

Turbine models for

each location

\

Aggregated wind

power time series

Figure 1. Flowchart of wind generation modelling.
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simulations of a wind-generating situation are divided ~ method that was utilized to construct the power gener-
into six parts. [21,22] describe a method that is com-  ating timeseries is detailed in [22]. The wind farms are
parable to this one. The entire estimate and simulation  all in close proximity to one another.



Table 1. Parameter values for wind power generation.

Parameter Value Unit
The Weibull shape parameter k 83 -
The Weibull scale parameter is A 24 -
Cut-off speed for turbines 27 m/s
Annual turbine availability 8322 h
Turbine hub height 140 m
Turbine nominal speed 12 m/s

Annual availability, nominal power, and cut-out
speeds are some of the turbine’s particular properties.
In all the wind farms, Gamesa 5 MW turbines are uti-
lized. Table 1 shows the Parameter values for wind
power generation.

4. Results and discussion

The wind power ramp event are studied using the BPA
data collecting. Using the identified ramp, a simple sta-
tistical survey of many metrics characterizing the ramp
event process is conducted. The ramp rate and length,
and also the power swing, are the first features. Sec-
ond, we look at the joint distribution of ramp length,
slope, ramp length, and swing and provide them. The
arrival data is presented in the third part, while the
ramp parameter conditional on the wind power quin-
tile is discussed in the fourth. This paper proposed
the Ramp detection in the wind farm of Kanyakumari
District (Table 2).

4.1. Data description

A year’s worth of data from the Bonneville Electric
Company is used to test the best ramp detection sys-
tem and following statistical modelling. The first set
of data includes 15,768,000 samples of wind turbines
output collected every two minites. During January 1,
2005, until December 31, 2006, the Klondike I reac-
tor produced electricity. The plant has a capacity of 24
megawatts. The data is first normalized to the system’s
capacity factor. A wind turbine’s capacity factor is cal-
culated by dividing its average power production by its
maximum power potential. In the United States, the
capacity factor of land-based wind varies from 24% to
56% and averages 36%.

To reduce oscillations in time - consuming and
requires from outside acceptable range of the wind
power ramp and reduce the number of points required
in the condition, The power time series is fitted with

Table 2. Wind speed data of Kanyakumari district.

Wind power Wind power Wind speed
S.No Rating class density (W/m?) (m/s)
1 Poor 1 0 44
2 Fair 2 200 53
3 Good 3 250 6.3
4 Excellent 4 300 7.1
5 Outstanding 5 400 8.7

AUTOMATIKA 1311

a linear trend fitting approach. Based on visual assess-
ment, a value of 0.5 was determined. The trend fitting
algorithm generates a set of temporal power pairs that
can be employed in the sliding window dynamic pro-
gramme. The approximate signal |Xpw| = 13217 in
total size.

4.1.1. Ramp rate, duration, and swing distribution
Calculate the real probability distribution function
(pdf) for ramp length, ramp rate, and swing for up and
down ramp. The data histograms are smoothed using a
smoothing spline in the pdf. Both ramp versions had
a 2:5h mean ramp duration and a 30 min minimum
ramp duration. In both cases, 95% of the ramps were
completed in less than 5:6 h. All ramping rates have an
interquartile range of 0:7 to 1:5 MW/hour, with 95%
of rate being less than 2:4 MW/hour. A fat tail appears
to be present in the distribution. With a minimum of
six MW, the average ramp swing was about 12:2 MW.
Multiplying the energy output by the least swing thresh-
old P, yields the smallest observed swing. The ramp
detection method’s expected result is this.

The average ramp swing was approximately 12:2
MW, with a minimum of 6 MW. The smallest observ-
able swing is calculated by multiplying the greatest
power output by the minimal swing threshold P,,;. This
is the projected output of the ramp detection method.

4.1.2. Joint experiments on ramp start time, ramp
duration, and ramp swing distribution

Predicted information can be used to calculate the
degree of correlation between ramp event character-
istics. Down-ramps characteristics have a lower joint
distribution than these traits. It’s because the up-ramps’
joint distribution are dispersed, but the down-ramps’
joint distributions are concentrated. The maximum
ramp duration per day is 600 min, notwithstanding the
fact that ramp event can occur at any time (10 h). Fur-
thermore, whenever a ramp event occur, the chances
of a subsequent ramp event increasing. This is some-
thing that PSOs should pay more attention to. Up and
down ramp event begin at various times, with ramp
swing in between. This information could be used by
grid operators to develop efficient ramping mitigations,
like dynamic reserve levels (Table 3).

Up and down ramp event begin at various times,
with ramp swings in between. The system operator
might utilize this data to develop more effective ramp
mitigation strategies, including such dynamic reserve
levels. Second order moment features are even more
crucial because every character of ramp occurrences is
tightly related to the timing of real wind power data.

4.1.3. A comparison to the best method for
detecting wind power ramp events

[19,20] recently developed the “L1-Ramp Detect with
Sliding Window” (L1-SW) detection method for
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Table 3. Three ramp characteristics’ statistical results.

Ramp ups Ramp downs
Statistical results Ramp1 Ramp2 Ramp3 Ramp4
Ramp start time (min)  Actual 177 296 62 240
Multi 179 299 63 250
CDF 166 292 74 261
Sec Mo 187 304 56 253
Ramp duration (min)  Actual 45 93 40 40
Multi 48 97 42 37
CDF 52 102 35 46
Sec Mo 56 86 47 38
Ramp swing (p.u) Actual 02524 0.6231 0.3254 0.3377
Multi 0.2634 0.6435 0.3456  0.2584
CDF 0.2745 0.6683 0.3572  0.3657
SecMo 0.2847 0.6835 03722 0.2786

WPREs to specify ramp start times, duration, rate, and
other critical objectives were to identify in the function-
ing of a power system. The L1-SW method employs
a punishment parameter in the L1 trend fit and a
threshold in the gradient in its segmentation process,

2.5

unlike the optimal RDA and the ideal SDA. The L1-
SW approach can smooth wind power noise before
segmenting it into piecewise data. In this section, a
large ramp is associated with changes in wind power
which is greater than 10% of the total capacity addi-
tions. It should be mentioned that this threshold (10%)
was established in order to obtain sufficient ramp
for comparing the OpRDA to the optimized SDA.
Compared the segment estimated by the OpRDA to
the upgraded SDA techniques using various param-
eter values. The parameter in the OpRDA is set to
0.009 while the variable in the Optimal SDA is set to
0.5.

Figure 3 In the comparison of L1-SW to the opti-
mized SDA and segments of OpRDA, the outcomes of
segments and significant ramps are shown.

Categorical statistics are useful for recognizing
observable ramp occurrences because they are precise
and skilled. The performance of ramp detection can be
evaluated using a set of metrics. The following are the

lrf\\ —#—Segments of OpRDA
1 A

Wind power

== Segments of OpSDA
== Segments of L1-SW

1 3 5 7 9
Time[h]

11 13 15 17

(@)
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© o
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Time[h]

Figure 3. (a, b) Wind power vs time comparison.
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Table 4. WPRE observation and detection contingency.

Observed WPRE
Detected WPRE Ramp Non-Ramp Total
Ramp TP FP TP+FP
Non-Ramp FN N FN+TN
Total TP+FP FP4+TN N = TP+FP+FN+TN

Table 5. Detection results of different methods.

Methods Up-ramps Down-ramps Computation time
OpSDA 106 134 8.0
L1-SW 296 304 16.4
OpRDA 312 357 14.9

definitions of the four evaluation metrics:

TP

A= ——— (12)
TP+ FEN

The percentage of accurately recognized WPREs is
indicated by DA.

TP

Re= —— (13)
TP + FP

The fraction of detected WPREs that actually hap-
pened is indicated by RC.

TP

CSl= ——
TP + FN + FP

(14)

The CSI statistic is used to assess the proportion
of successfully recognized ramp events. Its value falls
between 0 and 1, with 0 indicating faulty detection and
1 indicating correct detection.

B TP + TN
~ TP+ FN + FP+ TN

ACC (15)

The percentage of points accurately identified as
ramp or non-ramp occurrences is indicated by Acc.

We were able to forecast the min and max ramp
amplitude of the dataset based on the scale of the wind
turbine and the ramp duration that were established in
before (Table 4).

As indicated in Table 5, In the confusion matrix, TP
stands for true positive event, FN for false negativity,
FP for false positive story, and TN for true negative
event. These denotations have been used to define a set
of metrics.

Overall, both L1-SW and OPSDA are capable
of identifying essential ramp properties occurrences
based on WPRE detection and analysis. Furthermore,
the OpRDA performs better.

5. Conclusion

This research created an enhanced ramp detection tech-
nique for detecting wind power. The optimized SDA
and L1-SW approaches were compared to the devel-
oped OpRDA. According to the data, the OPRDA was
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successful in identifying wind power ramps and outper-
formed the optimized SDA significantly. The OpRDA
method outperformed the L1-SW technique while tak-
ing much less time to process. The resulting OpRDA
was also used to identify the best adjustable parameter
value in the offline optimized SDA. After that, you can
use the best value you choose to detect ramps.
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