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SUMMARY

To improve stability and performance of fuel cells, the operating temperature of proton exchange membrane
fuel cells (PEMFC) should be controlled within a specified range. However, the most existing mathematical models
of PEMFC are too complex to be applied effectively in control process. In this paper, adaptive fuzzy identification
and control models of PEMFC are developed based on input-output sampled data and experts experience. The
parameters of identifier and controller are regulated by adaptive learning algorithm, the networks structure and
the rule database are modified by adjusting the parameters. In the end, the simulation results of on-line control
model are presented, and show the effectiveness.

Key words: Proton exchange membrane fuel cell (PEMFC), Adaptive neural-networks fuzzy infer system (ANFIS),
Adaptive neural-networks learning algorithm (ANA), Adaptive neural-networks fuzzy controller.

1. INTRODUCTION

Proton exchange membrane fuel cells (PEMFC) is
a kind of clean energy with high efficiency, which will
be widely utilized soon. Without combustion, PEMFC
converts chemical energy contained in reactants to
electric energy via electro-chemical reaction. PEMFC
has a tendency to replace the traditional oil-burning
power system and to reduce pollution emission.

In the last decade, many researchers focused on
improving performance and reducing cost of fuel cells,
the research of control methods is not put in schedules.
At present, it is urgent to increase the utilization ratio
of fuel and oxidizer. This paper emphasizes on
presenting an effective control method for PEMFC [1].

Performance and stability of PEMFC are greatly
dependent on its operating temperature. The range of
operating temperature is about 50° C~110° C, and the
normal operating temperature is about 80° C.
Operating below 50° C, the electrical conductivity of
the membrane degrades and the cells’ performance
drops significantly. A higher operating temperature is
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favorable for improving the cells’ output performance,
however, the dehydration of membrane shortens the
cells’ lifespan [2]. So controlling the operating
temperature within a specified range and reducing
temperature fluctuation are very important.

As we know, PEMFC systems are sealed, and work
in a complicated environment, they include multiple
recycling gas-flow loops and multiple phase flows in
the complex electro-chemical reactions. According to
analysis of PEMFC system, it is known that the
dynamics of PEMFC system is a nonlinear system with
multi-input and multi-output, and it is difficult to model
using the traditional methodologies [3, 4]. The most
existing models are based on mass, energy and
momentum conservation laws, and their expressions
are too complicated to be applied in control process.

It has been shown that fuzzy logic system can
uniformly approximate any continuous function to a
pre-specified accuracy [5]. In this paper, adaptive fuzzy
neural-networks technique is considered as an
attractive method to establish the identification and
control models of the operating temperature of PEMFC
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based on input-output sampled data and experts’
experience. In modelling process, ANFIS can use the
data and experience obtained in experiments to infer
the results of model, and applies ANA to adjust the
parameters of membership functions if errors are
produced between the results and data, infers and
adjusts repeatedly. At last, the errors are reduced within
the specified range. In control process, at first,
according to the analysis results and operating
experience, establish an initial fuzzy logic system, then
optimize and adjust the parameters of membership
functions and networks structure. At last, obtain
satisfying control effect.

This paper is organized as follows. Section 2
presents a brief analysis of the characters of PEMFC.
In Section 3, we give a review of ANFIS for MIMO
nonlinear system, and we apply the modelling
technique to overcome the internal complexity of the
system, and we identify the PEMFC system, finally,
we set up the nonlinear operating temperature model.
A novel adaptive fuzzy neural-networks controller for
PEMFC is developed in Section 4. In Section 5, a
numerical experiment based on the control model is
considered to show the effectiveness of the proposed
control algorithm. In the end, we present our
conclusion remarks.

2. DESCRIPTION AND ANALYSIS OF PEMFC

A single cell consists of anode, cathode, proton
exchange membrane and bipolar plate. In anode
catalyst layer, H2 in fuel gas reacts and produces H+

and electrons, electrons pass through external circuit
to cathode, and H+ passes through proton exchange
membrane to cathode. In cathode catalyst layer, O2 in
oxidant gas reacts with H+ and produces H2O.

Potential of a single cell is about 0.75 V and current
density approximates 200~600 mA/cm2. To supply a
high power, several cells are usually connected together
and separated from each other by bipolar plates [6].

In the sequel, we denote the operating temperature
of PEMFC by T(t); Va(t), Vc(t) and Vw(t) are the anode
and cathode gas flowrate as well as cooling water
flowrate:

( ) ( ) ( )[ ]T
wca tv,tv,tv=V (1)

The temperature model of PEMFC system can be
described as:

( ) ( )( )tV,tTdt
dT Φ= (2)

where Φ(·) denote the nonlinear relation between V and
T.

The temperature response of PEMFC is dependent
on three factors: heat emitted by electro-chemical
reaction that increases the temperature, convection heat
of exhausted gases and conduction heat taken away by
cooling water that lows temperature. The flowrate of
fuel and oxidant gases have great influence on

convection heat. Slow flowing of gases leads to an
adequate reaction, less heat lost, and less heat
produced, at last the steady temperature is higher. Fast
flowing results in an inadequate reaction, much more
heat taken away by the remaining gases, and much
reaction heat produced, the steady temperature is
lower. So the steady temperature of PEMFC system
varies with the flowrate of fuel, oxidant gases and
cooling water in a complex manner. To simplify
modelling and control designing, we use the difference
form of Eq. (2):

( ) ( ) ( )( )kT,kV1kT Φ=+ (3)

3. MODELLING OF A NONLINEAR PEMFC
SYSTEM

3.1 Adaptive neural-networks fuzzy infer
system (ANFIS)

It is known that adaptive fuzzy logic system can be
expressed as feedforward neural-networks. In the
training process, we apply adaptive neural-works
learning algorithm to adjust the parameters, and to
ensure high accuracy of identification, then, the system
trained by sampled data and experience can be taken
as an identifier of nonlinear dynamic system. In fact,
ANFIS consists of fuzzy rules, ANA and feedforward
neural-networks. Comparing with simple neural-
networks method, firstly ANFIS can use not only data
information but also linguistic information from
experts experience. Secondly, the parameters of ANFIS
can show distinct physical signification, we can select
initial parameters effectively. It is shown that ANFIS
has better global searching capacity and stronger
robustness, furthermore, people comprehend easily the
method to set up model [7, 8].

The structure of ANFIS includes five layers. The
functions of five layers are the calculation of inputs
memberships, the memberships calculation of
condition section in every rule, memberships
normalization, and calculating the outputs of every
fuzzy rule and ANFIS, respectively. The structure of
ANFIS with n inputs and M rules is given in Figure 1.

Fig. 1  ANFIS with n inputs and m rules structure

For ANFIS with n inputs and M rules, the input
membership nodes can be expressed as a vector
µ=[µ1,µ2,...,µn], and condition section membership
ω=[ω1,ω2,...,ωM], fuzzy rule nodes Y=[y1,y2,...,yM]T
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and inputs X(k)=[x1(k), x2(k),..., xn(k)]T, µi(xi(k)) is a
nonlinear function. Then the ANFIS output f(x) can be
presented as follows:

( )
∑

∑

=

==
M

1l
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xf
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ω

(4)

where:
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3.2 Identification model of PEMFC system
with ANFIS

As we know, a high-order nonlinear system can be
described as the following nonlinear autoregressive
model with exogenous inputs (NARX) [9]:

Y(k)=F(Y(k-1),...,Y(k-ny); U(k-1),...,U(k-nu)) (6)

where Y(k) denotes the output vector, U(k) is the input
vector, ny and nu are the lags of the output and input
respectively, and F(·) is a nonlinear function.

For PEMFC system, U(k)=[νa(k),νc(k),νw(k)]T,
Y(k)=T(k) is the operating temperature. The purpose
of this section is to use ANFIS to model the PEMFC
system described by Eq. (2). According to the
identification structure in Figure 2, the input vector of
ANFIS X(k) at sample k can be written as:

X(k)=[Y(k-1),...,Y(k-ny); U(k-1),...,U(k-nu)]
T (7)

where Fi
l is the fuzzy subset of input variables in

condition section of fuzzy rule, Va∈F1, Vc∈F2, Vw∈F3
and T∈F4. In the conclusion section, the output yl is
linear combination expression, c0, c1, c2, c3 and c4 are
the linear combination parameters of fuzzy rule output.
In other words, condition section is fuzzy and
conclusion section is certain in Sugeno fuzzy logic
system [10]. So the training algorithm only adjusts the
parameters of the inputs membership in identification
process.

The adaptive neural-networks learning algorithm is
used to train the ANFIS, we define the membership
functions as Gaussian functions:
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where 
l
ix  is the center and l

iσ  is width of Gaussain

membership function, ai
l=1. The criterion of training

ANFIS is to minimize the mean square error (MES) as

follows:
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where P is the number of training samples. The
expression of ANFIS output is given:
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The parameters 
l
ix  and σi

l are regulated by:
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formula of adjusting parameters:
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Fig. 2  Identification structure of PEMFC system with ANFIS

3.3 Training algorithm of ANFIS

In Figure 2, the predictive error is

( ) ( ) ( )kŶkYkE −= , where ( )kŶ  is the predictive

output of ANFIS, and Y(k) is the observation data in

experiments. In this paper, we apply the Sugeno fuzzy

logic system to identify and model PEMFC system, and

M rules defined in ANFIS are expressed below:
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Fig. 3  Identification results of PEMFC system with ANFIS

4. ADAPTIVE FUZZY CONTROL SYSTEM
OF PEMFC

4.1 Description and analysis of PEMFC
system

The PEMFC system with multi-input and multi-
output possesses stronger nonlinear and coupling
characters. In control process, a fast flowrates of gases
leads to a lower steady temperature, and the cells
performance drops greatly. A slow flowrate results in a
higher steady temperature, and dehydration of
membrane shortens the cells lifespan.

The variation of operating temperature is relative
to the regulation of νa, νc and νw, so we need to resolve
the coupling question of them. In the electro-chemical
reactions, the stoichiometric coefficient of hydrogen
is twice than oxygen, it exists a ratio relation between
hydrogen flowrate and oxygen flowrate. In fact, air is
used to be oxidant gas in our system, in order to ensure
hydrogen to be utilized completely, air is excessive.
From operating experience, air flowrate is five to ten
times than hydrogen. In the same way, the operating
temperature varies with the variation of νa and νw. In
the paper, according to the different influence on T and
the demand of control accuracy, we design a control
method called divided-area control to resolve the
coupling question between νa and νw. In general, we
use different control variable to regulate the
temperature within the different range of temperature
errors.

For the PEMFC system, the experimental data
indicates that cells performance is the best when
operating temperature T is 80° C and operating
pressure is 0.3 MPa. In the process of designing control
system, the variable range of T is chosen between
[50, 110° C], and the variation of T is [-1.5, 1.5]. The
regulating range of νa and νc are [0.28, 0.6 m/s] and
[1.4, 3.0 m/s] respectively, and the regulating range of
cooling water νw is [0, 0.032 m/s], the sample period
is 2 s. We will use νa, νc and νw as the manipulated
variables to control T to the steady temperature value
Td, and minimize the temperature fluctuation as much
as possible. The designing principles of the adaptive
fuzzy control system of PEMFC are given as follows:

1 The principles for establishing fuzzy rules

The expected operating temperature Td=80° C, the
flowrates of νa, νc and νw are reduced if T is below
80° C, and they are increased if T is beyond 80° C.

2 Start-up control

In operating process, we use lead acid storage
battery to heat fuel cells stack to 50° C, then, start up
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where η is step, k=0,1,2,...; i=1,2,3,4; l=1,2,...,M.
In fact, Eqs. (13) and (14) represent the error back

propagation algorithm. The parameters are regulated
based on the input-output data of the previous step,
and the normal error is back propagated to relative
parameter processing unit with delay of one step [7].

3.4 Model training and simulation test

We used the MATLAB fuzzy logic toolbox to
perform the training and simulation. The 240 groups
data are used to identify the operating temperature
model of PEMFC system, and they are stored in a
training data file, and will be supplied for the ANFIS
during the training process. The discrete values of
operating temperature calculated by ANFIS are
compared with the actual temperature response values
of PEMFC system, the identification results are shown
in Figure 3. The parameter of membership function of
Va is adjusted in training process, and the max error is
about 1.1° C between the identification result and
temperature response. We can increase the
identification accuracy by selecting suitable
membership function and modifying ANFIS structure.
Figure 3 shows the ANFIS based on model can be used
to predict the temperature response on-line, which
makes it possible to design online controller of PEMFC
system.
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the PEMFC control system. For making T reach rapidly
the expected temperature, we do not cool down the
stack during the periods of time (the time is determined
by the stack scale). At the beginning of operation, the
cooling water flowrate is zero, at the same time, the
flowrates of reactant gases are reduced.

3 Divided-area control

The experimental data shows that both reactant
gases and cooling water are able to regulate T, but the
effects are different. The method is considered that the
reactant gases flowrates are used to regulate T if the
temperature error is less than 4° C, and the cooling
water flowrate is regulated if the error is bigger than
4° C. The principles of the divided-area control are
given in Table 1.

4.2 Structure of adaptive fuzzy control system
of PEMFC

The structure of adaptive fuzzy control system of
PEMFC is shown in Figure 4. In the figure, Vk=V(k) is
the manipulated input vector, V(k)=[νa(k),νc(k),νw(k)]T.
The Tk=T(k) is the output of PEMFC control system, and
Td is the expected output.

In the section, the neural-networks model trained
by ANFIS identifier is considered as the reference
model of PEMFC control system. The errors e and
errors variation ∆e between the expected output and
the output of reference model are taken as the inputs
of neural-works fuzzy controller, according to the
outputs of controller Vk, e and ∆e, we use ANA to
regulate fuzzy rules and parameters of membership
functions. Finally, the PEMFC control system is able
to obtain satisfying control effect and control accuracy
by regulating the parameters again and again.

Fig. 5  Structure of the neural-networks fuzzy controller

Td-T > 4°C 0°C < Td-T ≤ 4°C 0°C < T-Td ≤ 2°C T-Td > 4°C 

νw ↓ ;  νa: no change νw: no change ; νa ↓ νw: no change ; νa ↑ νw ↑ ; νa: no change 

 

Fig. 4  Structure of adaptive fuzzy control system of PEMFC

Table 1 The divided-area control method
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4.3 Parameters regulation using adaptive
neural-networks learning algorithm

The structure of the neural-networks fuzzy
controller is given in Figure 5. In the figure, the
controller is combined with the Mamdani fuzzy logic
system [11] and the five layers feedforward neural
networks. In control process, we use ANA to regulate
the parameters of membership functions of inputs and
outputs [12]. The input variables are e and ∆e, and the
output variables are νa, νc and νw. The membership
functions of inputs and outputs are adopted Gauss
membership functions, and defuzzification is the center
of gravity method. According to the analysis data and
operating experience, 96 rules are deduced to establish
a fuzzy rules base. For de-coupling the manipulated
variables, the expression of fuzzy rule is shown as
follows:

l
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where Fi
l is the fuzzy subset of input variables, and Gj

l

is the fuzzy subset of output variables. This system is
compared with Sugeno fuzzy logic system, the fuzzy
rule output of Mamdani fuzzy logic system is a fuzzy
variable. The value fields of input and output variables
are given in the Section 4.1. The value fields of e and
∆e are defined as 13 and 7 fuzzy subsets, and the value
fields of νa, νc and νw are divided by 9, 9 and 11 fuzzy
subsets respectively. The nodes signification of every
layer and the inference process of ANA are described
below:
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The third layer nodes: the nodes of fuzzy rules,
match the condition section with memberships:
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The fourth layer nodes: the membership nodes of
outputs, the output of conclusion section in fuzzy rules:
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The fifth layer nodes: the output nodes of neural
networks, the defuzzification of fuzzy variables:
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where superscript presents the jth layer nodes, subscript
presents the ith fraction. For example, u1

3 shows the
first input of the third layer nodes, mi

5 is Gauss
membership function center of the ith  input of the fifth
layer nodes.

The criterion of regulating parameters is a
minimized error function, y(t) is expected output and

( )tŷ  is the output of neural networks. The formula is
given below:
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We use BP algorithm to obtain the parameter
regulation formulas of membership function, the
parameters regulated are mi

5, σi
5, mi

2 and σi
2, the

formulas and inference process are shown as follows:
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4.4 The simulation results of the neural-
networks fuzzy control system

The Figure 6 shows the simulation results of the
neural-networks fuzzy control system. Figure 6a is the
control surface of cooling water flowrate, in this figure,
we can see a gap between 76° C and 84° C on the surface,
and νw is zero near 50° C. During start-up control
period, in order to increase rapidly the temperature,
cooling water is turned off. For divided-area control
mode, the errors are less than 4° C, regulate reactant
gases flowrate to control operating temperature, at the
same time, cooling water flowrate is not changed, the
cooling water flowrate under steady state is 0.016 m/s.
Figure 6b is the control surface of hydrogen flowrate
from 50° C to 84° C. It is shown that the initial
hydrogen flowrate is very big, and it decreases rapidly
with the temperature increase. The lowest flowrate is
0.28 m/s in order to ensure the reactions to go on.

Figure 6c is the control surface of hydrogen flowrate
between 76° C and 84° C, it is presented that we can
control the operating temperature smoothly, the
hydrogen flowrate under steady state is 0.38 m/s.

5. THE APPLICATION OF THE ADAPTIVE
NEURAL-NETWORKS FUZZY
CONTROL SYSTEM FOR PEMFC

The experimental parameters of PEMFC control
system are given in Table 2. The variable curves
obtained in experiments are shown in Figure 7.

Table 2 The experimental parameters of PEMFC control
system
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The experimental parameters of control system 

T 353 K Pc 0.3 MPa Vw 0  m/s 

P 0.3 MPa Va 0.5 m/s Tinit 323 K 

Pa 0.3 MPa Vc 2.5 m/s Thumi 60° C 
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(a) The operating temperature variable curves
(b) The temperature errors variable curve
(c) The hydrogen flowrate variable curve
(d) The cooling water flowrate variable curve

Fig. 7  Experimental results of the neural-networks fuzzy
control technique of PEMFC

(a) The control surface within [50-110o C] (b) The control surface within [50-84o C] (c) The control surface within [76-84o C]

Fig. 6  Simulation results of the neural-networks fuzzy control system of PEMFC

In Figure 7a, the original curve is the operating
temperature variable curve, which is not controlled by
the manipulated variables. The steady temperature is
about 100° C, the dehydration of exchange membrane is
very serious, and cells performance drops significantly
(current density approximate 1000 mA/cm2, the potential
of cells drops rapidly). The neural-networks identification
model is taken as the reference model, we use the
controller to control the operating temperature, and we
obtain the simulated curve in simulation process. In
experiments, we apply adaptive neural fuzzy technique
to control the PEMFC system and obtain the controlled
curve. In the figure, the simulated curve makes the
PEMFC system go into steady state faster than controlled
curve, it is the reason that disturbances, lags and other
uncertain factors are produced in the control process. In
general, the adaptive neural-networks fuzzy controller can
regulate and control the operating temperature to the
destination more quickly, and maintain it with smaller
fluctuation, the experimental results prove the
effectiveness of the control system.

6. CONCLUSION

The operating temperature of PEMFC system must
be controlled within a specific range. It is difficult to
model with the traditional methodologies. The existing
models are analytical, which can not be applied to
system synthesis. In the paper, the ANFIS identification
model of PEMFC system is developed, then, an online
adaptive neural-networks fuzzy controller is presented.
Comparing with simple neural-networks method and
other control methods, ANFIS and adaptive neural-
networks fuzzy control can use not only data information
but also a linguistic information from the experts
experience, and the parameters can show a distinct
physical signification, we can select initial parameters
effectively. The validity of ANFIS identification model
of PEMFC system and the good performance of the
adaptive neural-networks fuzzy controller are
demonstrated by simulations and experiments.

It is concluded that it is feasible to establish the
model of the complex nonlinear system based on
ANFIS and it can be used to predict the temperature
responses online. The adaptive neural-networks fuzzy
controller designed is efficient, it can control the
operating temperature to change smoothly to ideal
stabilization value and it performs much better than the
traditional control method.
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NELINEARNO MODELIRANJE I PRIMJENA FUZZY KONTROLA PEMFC

SA�ETAK

Da bi se pobolj�ala stabilnost kao i rad æelija goriva, potrebno je kontrolirati radnu temperaturu protonski
izmjenjive membrane æelija goriva (PEMFC) unutar odreðenih granica. Postojeæi matematièki modeli PEMFC
previ�e su slo�eni da bi se efikasno primijenili u kontrolnom procesu. U ovom radu primijenjeni su fuzzy
identifikacijski i kontrolni modeli PEMFC koji se baziraju na isku�anim input-output podacima te iskustvu
struènjaka. Parametri indikatora i kontrolora odreðeni su primjenjivim nauèenim algoritmom, strukture mre�a i
baza podataka pravila preinaèeni su pode�avanjem parametara. Na kraju, prikazani su rezultati simulacije on-line
kontrolnog modela koji pokazuju efikasnost.

Kljuène rijeèi: protonski izmjenjiva membrana æelije goriva (PEMFC), fuzzy kontrola, neuralna mre • a .


