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SUMMARY

To improve stability and performance of fuel cells, the operating temperature of proton exchange membrane
fuel cells (PEMFC) should be controlled within a specified range. However, the most existing mathematical models

of PEMFC are too complex to be applied effectively in

control process. In this paper, adaptive fuzzy identification

and control models of PEMFC are developed based on input-output sampled data and experts experience. The
parameters of identifier and controller are regulated by adaptive learning algorithm, the networks structure and
the rule database are modified by adjusting the parameters. In the end, the simulation results of on-line control

model are presented, and show the effectiveness.

Key words Proton exchange membrane fuel cell (PEMFC), Adaptive neural-networks fuzzy infer system (ANFIS),
Adaptive neural-networks learning algorithm (ANA), Adaptive neural-networks fuzzy controller.

1. INTRODUCTION

Proton exchange membrane fuel cells (PEMFC) is
a kind of clean energy with high efficiency, which will
be widely utilized soon. Without combustion, PEMFC
converts chemical energy contained in reactants to
electric energy via electro-chemical reaction. PEMFC
has a tendency to replace the traditional oil-burning
power system and to reduce pollution emission.

favorable for improving the cells’ output performance,
however, the dehydration of membrane shortens the
cells’ lifespan [2]. So controlling the operating
temperature within a specified range and reducing
temperature fluctuation are very important.

As we know, PEMFC systems are sealed, and work
in a complicated environment, they include multiple
recycling gas-flow loops and multiple phase flows in
the complex electro-chemical reactions. According to

In the last decade, many researchers focused onanalysis of PEMFC system, it is known that the

improving performance and reducing cost of fuel cells,
the research of control methods is not put in schedules.
At present, it is urgent to increase the utilization ratio
of fuel and oxidizer. This paper emphasizes on
presenting an effective control method for PEMFC [1].
Performance and stability of PEMFC are greatly

dependent on its operating temperature. The range of

operating temperature is abdiit® C~110° Cand the
normal operating temperature is abo8®° C.
Operating belowb0° C the electrical conductivity of

dynamics of PEMFC system is a nonlinear system with
multi-input and multi-output, and it is difficult to model
using the traditional methodologies [3, 4]. The most
existing models are based on mass, energy and
momentum conservation laws, and their expressions
are too complicated to be applied in control process.
It has been shown that fuzzy logic system can
uniformly approximate any continuous function to a
pre-specified accuracy [5]. In this paper, adaptive fuzzy
neural-networks technique is considered as an

the membrane degrades and the cells’ performance attractive method to establish the identification and

drops significantly. A higher operating temperature is

control models of the operating temperature of PEMFC
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based on input-output sampled data and experts’ convection heat. Slow flowing of gases leads to an
experience. In modelling process, ANFIS can use the adequate reaction, less heat lost, and less heat
data and experience obtained in experiments to infer produced, at last the steady temperature is higher. Fast
the results of model, and applies ANA to adjust the flowing results in an inadequate reaction, much more
parameters of membership functions if errors are heat taken away by the remaining gases, and much
produced between the results and data, infers andreaction heat produced, the steady temperature is
adjusts repeatedly. At last, the errors are reduced within lower. So the steady temperature of PEMFC system
the specified range. In control process, at first, varies with the flowrate of fuel, oxidant gases and
according to the analysis results and operating cooling water in a complex manner. To simplify
experience, establish an initial fuzzy logic system, then modelling and control designing, we use the difference
optimize and adjust the parameters of membership form of Eq. (2):
functions and networks structure. At last, obtain T(k +1)= o (k) T(K)) 3)
satisfying control effect.

This paper is organized as follows. Section 2
presents a brief anaIySiS of the characters of PEMFC. 3. MODELLING OF A NONLINEAR PEMEC
In Section 3, we give a review of ANFIS for MIMO SYSTEM
nonlinear system, and we apply the modelling
technique to overcome the internal complexity of the

we set up the nonlinear operating temperature model. system (ANFIS)
A novel adaptive fuzzy neural-networks controller for
PEMFC is developed in Section 4. In Section 5, a |t is known that adaptive fuzzy logic system can be

numerical experiment based on the control model is expressed as feedforward neural-networks. In the
considered to show the effectiveness of the proposed training process, we apply adaptive neural-works
control algorithm. In the end, we present our |earning algorithm to adjust the parameters, and to
conclusion remarks. ensure high accuracy of identification, then, the system
trained by sampled data and experience can be taken
as an identifier of nonlinear dynamic system. In fact,
ANFIS consists of fuzzy rules, ANA and feedforward
neural-networks. Comparing with simple neural-
networks method, firstly ANFIS can use not only data
information but also linguistic information from
experts experience. Secondly, the parameters of ANFIS
can show distinct physical signification, we can select
initial parameters effectively. It is shown that ANFIS
has better global searching capacity and stronger
robustness, furthermore, people comprehend easily the
method to set up model [7, 8].

The structure of ANFIS includes five layers. The
functions of five layers are the calculation of inputs
memberships, the memberships calculation of
condition section in every rule, memberships
normalization, and calculating the outputs of every
fuzzy rule and ANFIS, respectively. The structure of
ANFIS with n inputs andM rules is given in Figure 1.

2. DESCRIPTION AND ANALYSIS OF PEMFC

A single cell consists of anode, cathode, proton
exchange membrane and bipolar plate. In anode
catalyst layerH, in fuel gas reacts and produdds
and electrons, electrons pass through external circuit
to cathode, andH* passes through proton exchange
membrane to cathode. In cathode catalyst l&gin
oxidant gas reacts witH* and producebi,O.

Potential of a single cell is abdw75 Vand current
density approximate200~600 mA/c/h To supply a
high power, several cells are usually connected together
and separated from each other by bipolar plates [6].

In the sequel, we denote the operating temperature
of PEMFC byT(t); V4(1), V((t) andV,,(t) are the anode
and cathode gas flowrate as well as cooling water
flowrate:

V = [va () ve () v )] (1)
The temperature model of PEMFC system can be

described as:
T =)V () 2)

where@(-) denote the nonlinear relation betwéaéand
T.

The temperature response of PEMFC is dependent Fig. 1 ANFIS with n inputs and m rules structure
on three factors: heat emitted by electro-chemical
reaction that increases the temperature, convection heat For ANFIS withn inputs andM rules, the input
of exhausted gases and conduction heat taken away bymembership nodes can be expressed as a vector
cooling water that lows temperature. The flowrate of H=[H1.Hl2.-.-Hpl, @and condition section membership
fuel and oxidant gases have great influence on @W=[wy,wy,...m], fuzzy rule nodes'=[y1y,...yml
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and inputsX(k)=[x1(K), Xo(K),..., X;(K1T, pi(x(K)) is a
nonlinear function. Then the ANFIS outg(x) can be
presented as follows:

M

Zwl yI

3

E () ()

f =
) 4

where:

4

H
1=1

3.2 Identification model of PEMFC system
with ANFIS

As we know, a high-order nonlinear system can be
described as the following nonlinear autoregressive
model with exogenous inputs (NARX) [9]:

Y(=F(Y(k-1),...Y(kn); U(k-1),...U(k-n) (6)

whereY(K) denotes the output vectbf(k) is the input
vector,n, andn, are the lags of the output and input
respectively, and(-) is a nonlinear function.

For PEMFC systemU(k)=[v,(K),Vc(K), vy (K)1T,
Y(K)=T(K) is the operating temperature. The purpose
of this section is to use ANFIS to model the PEMFC
system described by Eq. (2). According to the
identification structure in Figure 2, the input vector of
ANFIS X(k) at samplé& can be written as:

X(k)=[Y(k-1),...,Y(k-rg,); U(k-l),...,U(k-nu)]T @
U(k) Y(K)
>» PEMFC >
TDL ¢
YS +
Tz > ANFIS | o —
1 »{7 > |dentifi-
- cation
1 z" Model
: zz,ny >
X(K)

Fig. 2 ldentification structure of PEMFC system with ANFIS

3.3 Training algorithm of ANFIS

In Figure 2, the predictive error is
E(k)=Y(k)-Y(k), where Y(k) is the predictive
output of ANFIS, andr(k) is the observation data in
experiments. In this paper, we apply the Sugeno fuzzy _
logic system to identify and model PEMFC system, and
M rules defined in ANFIS are expressed below:

RO: 1f x,'isF, andx, isF,' and %' is 4 andx,' isF,!

—cliely ] Iy |
theny'=cy+c,'x,'+...+¢ /%,

whereF;! is the fuzzy subset of input variables in
condition section of fuzzy rul® 0F4, V.OF,, V, OF3
and TOF,. In the conclusion section, the outpliiis
linear combination expressiot,, ¢;, Cy, Cz andc, are
the linear combination parameters of fuzzy rule output.
In other words, condition section is fuzzy and
conclusion section is certain in Sugeno fuzzy logic
system [10]. So the training algorithm only adjusts the
parameters of the inputs membership in identification
process.

The adaptive neural-networks learning algorithm is
used to train the ANFIS, we define the membership
functions as Gaussian functions:

e 0 T
Fi =al exqj—ﬁiEE

where i! is the center andri' is width of Gaussain
membership functiorg;!=1. The criterion of training
ANFIS is to minimize the mean square error (MES) as
follows:

(8)

D f

P(k)O )

Eves =

PO
AL
=16
whereP is the number of training samples. The
expression of ANFIS output is given:

n
r]u
=1 1=1

H

=
The parameters; andg; are regulated by:

N =

W' (k)
(xi ()

y(K)= f (x)=

(10)

xi(k+1)=x ()-n % (11)
OXi ||

ol (k+1)=0] ()-n 2= (12)
6Ui K

M
Let f :%, b= Z 7', then we can obtain the

formula of adjusting parameters:

a I _
(k +1)=x (k)+’7E€k( ek—l)y b 20
|
2 (- (0
b— (13)
o' k)f O
ENGINEERING MODELLING 16 (2003) 1-2, 13-21 15



W. Dong, G.-Y. Cao, X.-J. Zhu: Nonlinear modelling and adaptive fiizzy control of PEMFC

4. ADAPTIVE FUZZY CONTROL SYSTEM
y - f OF PEMFC

b
. 0 4.1 Description and analysis of PEMFC
| Zﬁq (k) - xi (k)@2 E system
O
0
0

The PEMFC system with multi-input and multi-
output possesses stronger nonlinear and coupling
characters. In control process, a fast flowrates of gases
wheren is stepk=0,1,2,.,; i=1,2,3,4 1=1,2,...,M. leads to a lower steady temperature, and the cells

In fact, Egs. (13) and (14) represent the error back performance drops greatly. A slow flowrate results in a
propagation algorithm. The parameters are regulated higher steady temperature, and dehydration of
based on the input-output data of the previous step, membrane shortens the cells lifespan.
and the normal error is back propagated to relative  The variation of operating temperature is relative
parameter processing unit with delay of one step [7]. to the regulation o#,, v, andv,, so we need to resolve
the coupling question of them. In the electro-chemical
reactions, the stoichiometric coefficient of hydrogen
is twice than oxygen, it exists a ratio relation between
hydrogen flowrate and oxygen flowrate. In fact, air is

\fNe ushed th_e_MATLéA‘B_ fusz Iogi(r:] tOZOIgOX 10 ysed to be oxidant gas in our system, in order to ensure
perform the training and simulation. The 240 groups v qraqen to be utilized completely, air is excessive.

data are used to identify the operating temperature o, operating experience, air flowrate is five to ten
mo_d_el of PEMFC system, and th.ey are stored in a gmes than hydrogen. In the same way, the operating
training data f|!e3 and will be supplle_d for the ANFIS temperature varies with the variationwgfandv,,. In
during the training process. The discrete values of the paper, according to the different influencd @md

operating temperature calculated by ANFIS are w0 jomand of control accuracy, we design a control
compared with the actual temperature response valuesmethool called divided-area control to resolve the

pf P'EMFC syitem, the |dent|ff|cat|0nbre31rjll.tsfre s.howr]: coupling question betwean, and v, In general, we
in Figure 3. The parameter of membership function of s gitterent control variable to regulate the

Va s adjusted in training process, and the max error is o heratyre within the different range of temperature
aboutl1.1° C between the identification result and errors
temperature response. We can increase the g yhe PEMFC system, the experimental data

|dentt|)f|ca;|.or]1c ac_curac()j/ bﬁ_ ;electlngs suitable jjicates that cells performance is the best when
membership function and modifying ANFIS structure. oo = inotemperatur@ is 80° C and operating

Figure 3 shows the ANFIS based on model can be used o5 e j9.3 MPa In the process of designing control

to predict the temperature response on-line, which system,the variable range of is chosen between
makes it possible to design online controller of PEMFC [50, 110° g, and the variation of is [-1.5, 1.5. The
system. ’ ’ N

3.4 Model training and simulation test

regulating range of, andv; are P.28 0.6 m/$ and
[1.4, 3.0 m/$respectively, and the regulating range of
cooling watery,, is [0, 0.032 mg], the sample period
ﬁ1‘on(1)e operating temperature variable curve  The n11embership functions of Va before training iS 2 s We W|” use Va: VC and VW as the manipulated
% variables to contrdl to the steady temperature value
80 Tg, and minimize the temperature fluctuation as much
as possible. The designing principles of the adaptive
fuzzy control system of PEMFC are given as follows:

o
©

o
o

70

I
~

60

o
D

membershpi function

operating temperature (?

o
=)
oo

0 g e O e torte. 1 The principles for establishing fuzzy rules

embership functions of Va after training The errors in training process

Bl
)
-3

i

The expected operating temperatlige80° C, the
flowrates ofv,, v; andv,, are reduced iT is below
80° C and they are increasedTifis beyond30° C

®

1.2

o

membershpi function
o o o o
B
temperature error

o

2 Start-up control

08 O e ot 0 con 100 In operating process, we use lead acid storage

battery to heat fuel cells stack30° C then, start up
Fig. 3 ldentification results of PEMFC system with ANFIS
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the PEMFC control system. For makifigeach rapidly 4.2 Structure of adaptive fuzzy control system
the expected temperature, we do not cool down the of PEMFC

stack during the periods of time (the time is determined

by the stack scale). At the beginning of operation, the ~ The structure of adaptive fuzzy control system of
cooling water flowrate is zero, at the same time, the PEMFC is shown in Figure 4. In the figuk=V(K) is

flowrates of reactant gases are reduced. the manipulated input vectovV(K)=[v,(K),V(K), (K] -
TheT,=T(K) is the output of PEMFC control system, and
3 Divided-area control Ty is the expected output.

In the section, the neural-networks model trained
by ANFIS identifier is considered as the reference
model of PEMFC control system. The errerend
errors variationde between the expected output and
the output of reference model are taken as the inputs
of neural-works fuzzy controller, according to the
outputs of controlleV,, e and Ae, we use ANA to
regulate fuzzy rules and parameters of membership
functions. Finally, the PEMFC control system is able
to obtain satisfying control effect and control accuracy
by regulating the parameters again and again.

The experimental data shows that both reactant
gases and cooling water are able to regulataut the
effects are different. The method is considered that the
reactant gases flowrates are used to regUlateéhe
temperature error is less thdh C, and the cooling
waterflowrate is regulated if the error is bigger than
4° C. The principles of the divided-area control are
given in Table 1.

Table 1 The divided-area control method

T+T>4°C 0°C<TyTs4°C 0°C<T-Ty;s2°C T-T,> 4°C

Vy L § Vu: no change V. no change ; V, | V. no change ; V, 1 Wy 1, Voo no change

V(k+1
Fuzzy |"“" [ANFIS model| Tee1)

Controller | of PEMEC

[ T

ANA Vo —
algorithm

A\ 4

Fig. 4 Structure of adaptive fuzzy control system of PEMFC

the membership nodes of inputs

the input nodes

Fig. 5 Structure of the neural-networks fuzzy controller
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4.3 Parameters regulation using adaptive The fourth layer nodes: the membership nodes of
neural-networks learning algorithm outputs, the output of conclusion section in fuzzy rules:
P
The str_uctl_Jre qf th_e neural-netwolrks fuzzy £4 = min ’Zui‘lH (18)
controller is given in Figure 5. In the figure, the . E
1=

controller is combined with the Mamdani fuzzy logic
system [11] and the five layers feedforward neural ~ The fifth layer nodes: the output nodes of neural
networks. In control process, we use ANA to regulate networks, the defuzzification of fuzzy variables:

the parameters of membership functions of inputs and b

outputs [12]. The input variables aende, and the Z (m|5 B )ui5
output variables are,, v, andv,,. The membership .

5 _1=1
functions of inputs and outputs are adopted Gauss f>=1 (19)
membership functions, and defuzzification is the center Z ai5 Ui5

of gravity method. According to the analysis data and =

operating experience, 96 rules are deduced to establish i i
a fuzzy rules base. For de-coupling the manipulated Where superscript presents fidayer nodes, subscript

variables, the expression of fuzzy rule is shown as Presents théh fraction. For exampleu;® shows the

follows: first input of the third layer nodesy® is Gauss
R -1t »isE andx is LE! th s G membership function center of th& input of the fifth
tIf xpis Fy and x; is LF; theny;j is Gj layer nodes.
whereF! is the fuzzy subset of input variables, & The criterion of regulating parameters is a

is the fuzzy subset of output variables. This system is Minimized error functiony(t) is expected output and
compared with Sugeno fuzzy logic system, the fuzzy y(t) is the output of neural networks. The formula is
rule output of Mamdani fuzzy logic system is a fuzzy 9iven below:
variable. The value fields of input and output variables

o
are given in the Section 4.1. The value fields ahd -1 Ey(t)_ y(t)o (20)

Ae are defined as 13 and 7 fuzzy subsets, and the value 2

fields ofv,, v andy,, are divided by 9, 9 and 11 fuzzy We use BP algorithm to obtain the parameter

subsets respectively. The nodes signification of every regulation formulas of membership function, the
layer and the inference process of ANA are described parameters regulated ang5, ¢;°, m2 and g2, the

below: formulas and inference process are shown as follows:
The first layer nodes: the input nodes, transmit the
inputs to the next layer nodes: m (t +1)=m (t)+n%~ oE E (21)
om,
flayt (15) '
The second layer nodes: the membership nodes of o, (t + 1)= o, (t)+n%~ oE E (22)
inputs, the fuzzification of input variables: 00;
0g.2_.2f0 5 5,5
S-m 0 d\0 oy
f2 =exp% MBZD (16) aE5 = aES T =-pl)- v (29)
: H ¢ H 5 am® of> am® [

- ZUiS u?
The third layer nodes: the nodes of fuzzy rules, =1
match the condition section with memberships:
3 3,3 ,3 5 =m° 0 ATy
f :min(ul,uz,..ui ) 17) mP(t +1)=m (t)+’7%y(t)‘Y(t)DBP7 (24)

X
=1

=0 oy 25
do® of° 9o O 0 P BZ (25)
EZG-SUF
=1
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ma? Eiaf’us S (m o u )
0 | - | | z

ot +1)=0P(t)+nl y(t)- yt) O S (26)
EZUF u,5’Bz
ST
0E _ 0E Daf5 ou’ af* aut oafd a2 _
om2  of5 oud of* ou of® oaud om?
_OE EL o2 O O DDaf5 ) 2(ui2—mi2) (27)
0— = - of 2 O
o5 ouS om? Ey(t) y(t)g au? Uiz)2
0E _ OE Epf5 E@u, Epf“ Epu, Epf3 Daf2
ac? T o5 ou? of* out of au® ao?
:"ig"fig"‘;:_?y(t)_g(t)gffs DfZEZ(UiZ‘ f 0
#5 au® ac? O 0 ou? (Uiz)3
5 5 5H 5
af5:m, O',EZO’, uIH ;(m a,u,)cr "
ou? Hz
Eza.s o8
:
0 _pf °
et B30y o A ) o)
D ou? (0| )
0 5 5 2_ 2P
ollt+1)=0 ()+’7D/ O 2 b A ) (31)
D ou? (Ui )3
4.4 The simulation results of the neural- Figure 6¢ is the control surface of hydrogen flowrate
networks fuzzy control system between76° Cand84° C, it is presented that we can

control the operating temperature smoothly, the

The Figure 6 shows the simulation results of the NYdrogen flowrate under steady stat®.38 m/s

neural-networks fuzzy control system. Figure 6a is the

control surface of cooling water flowrate, in this figure,
o 5. THE APPLICATION OF THE ADAPTIVE
we can see a gap betwé@i Cand84° Con the surface, NEURAL-NETWORKS EUZZY

andv,, is zero neab0° C During start-up control

period, in order to increase rapidly the temperature, CONTROL SYSTEM FOR PEMFC
cooling water is turned off. For divided-area control
mode, the errors are less théhC, regulate reactant
gases flowrate to control operating temperature, at the
same time, cooling water flowrate is not changed, the

The experimental parameters of PEMFC control
system are given in Table 2. The variable curves
obtained in experiments are shown in Figure 7.

cooling water flowrate under steady stat@.&16 m/s Table 2 The experimental parameters of PEMFC control
Figure 6b is the control surface of hydrogen flowrate system

from 50° Cto 84° C It is shown that the initial The experimental parameters of control system
hydrogen flowrate is very big, and it decreases rapidly r 33K |P. 03MPa V. 0 mss

P 0.3 MPa |V, 0.5m/s | Tini 323K

with the temperature increase. The lowest flowrate is
P, 03MPa |V. 2.5m/s | Thumi 60°C

0.28 m/sin order to ensure the reactions to go on.
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(a) The control surface within [50-14C] (b) The control surface within [50-8€] (c) The control surface within [76-84]

Fig. 6 Simulation results of the neural-networks fuzzy control system of PEMFC

In Figure 7a, the original curve is the operating 6. CONCLUSION
temperature variable curve, which is not controlled by
the manipulated variables. The steady temperature is  The operating temperature of PEMFC system must
about100° G the dehydration of exchange membrane is be controlled within a specific range. It is difficult to
very serious, and cells performance drops significantly model with the traditional methodologies. The existing
(current density approximat®00 mA/cr? the potential models are analytical, which can not be applied to
of cells drops rapidly). The neural-networks identification system synthesis. In the paper, the ANFIS identification
model is taken as the reference model, we use the model of PEMFC system is developed, then, an online
controller to control the operating temperature, and we adaptive neural-networks fuzzy controller is presented.
obtain the simulated curve in simulation process. In Comparing with simple neural-networks method and
experiments, we apply adaptive neural fuzzy technique other control methods, ANFIS and adaptive neural-
to control the PEMFC system and obtain the controlled networks fuzzy control can use not only data information
curve. In the figure, the simulated curve makes the but also a linguistic information from the experts
PEMFC system go into steady state faster than controlled experience, and the parameters can show a distinct
curve, it is the reason that disturbances, lags and otherphysical signification, we can select initial parameters
uncertain factors are produced in the control process. In effectively. The validity of ANFIS identification model
general, the adaptive neural-networks fuzzy controller can of PEMFC system and the good performance of the
regulate and control the operating temperature to the adaptive neural-networks fuzzy controller are
destination more quickly, and maintain it with smaller demonstrated by simulations and experiments.
fluctuation, the experimental results prove the It is concluded that it is feasible to establish the
effectiveness of the control system. model of the complex nonlinear system based on
ANFIS and it can be used to predict the temperature
responses online. The adaptive neural-networks fuzzy
controller designed is efficient, it can control the
operating temperature to change smoothly to ideal
stabilization value and it performs much better than the
i traditional control method.
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NELINEARNO MODELIRANJE I PRIMJENA FUZZY KONTROLA PEMFC

SAZETAK

Da bi se poboljsala stabilnost kao i rad ¢elija goriva, potrebno je kontrolirati radnu temperaturu protonski

izmjenjive membrane celija goriva (PEMFC) unutar odredenih granica. Postojeci matematicki modeli PEMFC
previse su slozeni da bi se efikasno primijenili u kontrolnom procesu. U ovom radu primijenjeni su fuzzy
identifikacijski i kontrolni modeli PEMFC koji se baziraju na iskusanim input-output podacima te iskustvu
strucnjaka. Parametri indikatora i kontrolora odredeni su primjenjivim naucenim algoritmom, strukture mreza i
baza podataka pravila preinaceni su podesavanjem parametara. Na kraju, prikazani su rezultati simulacije on-line
kontrolnog modela koji pokazuju efikasnost.

Kljuéne rijeéi: protonski izmjenjiva membran@lije goriva (PEMFC), fuzzy kontrola, neuralna ewa.
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