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SUMMARY

In this paper, a variable stiffness parameters method (VSPM), is applied to a quasi-steady, hot strip rolling
problem. A slightly compressible, rigid-viscoplastic and isotropic hardening material model is assumed for the
workpiece. For the roll-workpiece interface a nonlinear friction law is supposed to hold. The problem is stated in
the form of a variational inequality, containing nonlinear and nondifferentiable terms. Under certain restrictions
on the material characteristics, the convergence of the VSPM is shown. Combining the VSPM with the FEM, an
algorithm is proposed and applied to solve numerically a rolling problem, and the obtained results are illustrated
and discussed.
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1. INTRODUCTION

The flow theory of plasticity [1-2], has been
successfully applied in the last few decades, for
material modelling in the analyses of the rolling
processes. Computer simulations of steady-state and
non-steady rolling processes, [3-10], for rigid-plastic
(viscoplastic), with or without hardening,
incompressible or slightly compressible materials, at
different friction conditions, have been performed. The
computer analyses have been usually based on the
discretization by finite elements, the virtual power
variational principle, or Markov’s functional [1]. The
strain hardening phenomena have been taken into
account either by using a mixed Lagrangian-Eulerian
formulation, or some flow line iterative technique. The
obtained systems of nonlinear equations have been
usually solved by the Newton-Raphson or a successive
iterations method. Recently, a variational formulation
for an isothermal, steady-state hot-rolling problem of
rigid-plastic, strain-rate sensitive and slightly
compressible materials, with a velocity dependent
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Coulomb friction law, has been derived and studied in
Ref. [7]. The case of incompressible materials and
constant friction law have been considered in Ref. [8].
The existence and uniqueness results have been
obtained and the convergence of the successive
iteration (secant-modulus, Kachanov) methods have
been proved. Numerical results, for the case of
incompressible materials, obtained by a finite element
- secant-modulus method, and compared with other
methods of aproach have been discussed in Ref. [9].

In this paper, a hot strip rolling problem for slightly
compressible, rigid-viscoplastic and isotropic
hardening materials, with velocity dependent friction
conditions is considered. Due to the strain hardening,
the problem is quasi-steady i.e. time dependent until
steady-state is reached. The corresponding variational
formulation is given and with the help of a proposed
variable stiffness parameters method (VSPM) [10-11],
under certain restrictions on the material
characteristics, the existence and uniqueness results are
briefly shown. Combining the VSPM with the FEM,
an algorithm is proposed and applied to solve
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numerically a rolling problem. The influence of the
friction conditions on the contact velocities, stresses,
equivalent strain-rates and strains is illustrated and
discussed.

2. STATEMENT OF THE PROBLEM

We consider an isothermal, quasi-steady hot-

strip rolling process in a fixed domain, until steady-

state is reached at a time T∈[0,∞). We suppose that

the workpiece is an isotropic, rigid-plastic, strain

and strain-rate sensitive, slightly compressible

metallic body occupying for all t∈[0,Τ] the domain

Ω⊂Rk, k=2,3, (Figure 1). The boundary of the

domain is constituted of four open disjoint subsets

Γ = Γ1∪Γ2∪Γ3∪Γ4, as Γ1∪Γ2 is assumed tractions

free, Γ3 is the boundary of symmetry and Γ4 is the

contact boundary. Here after any point of

ΓΩΩ ∪=  we identify by its Cartesian coordinates

x={ xi}, (1 ≤ i ≤ k), and use the standard indicial

notations. Let u(x,t)={ ui(x,t)}, σσσσσ(x,t)={ σij  (x,t)},

( ) ( ){ }t,t, ij xx εε && = , (1 ≤ i, j ≤ k), denote the velocity

vector, stress tensor and strain rate tensor respectively.

We assume that workpiece material satisfies the

following yield criterion and flow rule:
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Here d > 0 is a constant associated with the material
compressibility, such that when d→0 the classical von
Mises yield criterion and flow rule for incompressible
materials are approached. The equivalent stress, strain-
rate and strain are given by the expressions:
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where iiH 3

1σσ = , iiεευ && =  are the hydrostatic

pressure and the volume dilatation strain rate,

ijHijijs δσσ −= , ijijij e
3

1
e δε υ&&& −= , are the

components of deviatoric stress and strain-rate tensors,

1≤i, j≤k. We assume that the strain and strain-rate

dependent uniaxial yield limit ( )εεσ &,p , is a

Fig. 1  Illustration of the rolling process

We state the following boundary value problem:

Problem 1: Find the velocity u, stress σσσσσ, and
equivalent strain ε fields, satisfying the following
equations and relations:

− equation of equilibrium
σij,j=0   in   Ω × (0,T) (4)

− equivalent strain evolution equation
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− constitutive equations
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− strain-rate velocity relations

( )i,jj,iij uu
2

1 +=ε& (7)

− boundary conditions

σijnj=0   on   Γ1∪Γ2×(0,T) (8)

σσσσσT=0, uN=0   on   Γ3×(0,T) (9)
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if   ( ) ( )uuó ,ρετ fT < ,   then   uT−uTR=0,

if   ( ) ( )uuó ,ρετ fT = ,   then ∃ const. λ≥0,

such that uT−uTR=−λσσσσσT(u) on Γ4×(0,T)

− initial conditions

( ) 00, =xε (11)

Here δij  is Kronecker symbol; n= { ni} is the unit
normal vector outward to Γ; uN, uT and σσσσσN, σσσσσT are the
normal and tangential components of the velocity and
the stress vector; uN

+= max (0,uN); dN > 0 is a penalty

monotonically increasing, almost everywhere

differentiable function on both variables, such that:
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where c1, c2, c3 and c4 are positive constants.
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constant; uTR is the tangential component of the roll
velocity; ( )u,ρετ f  is the shear strength limit for the

roll-workpiece interface according to the accepted

Coulomb-Siebel friction law [4, 9]:

( ) ( ) ( ) ( ) ( )( )( )uxuxu ρρρ εετσµετ &,m,min, pfNff −= (12)

where µf(x) is the coefficient of friction and mf(x) ∈(0,1]
is the friction factor. ( )ρρ εετ &,f  is the strain and strain-
rate dependent shear yield limit for the material of the
roll-workpiece interface, where the subindex ρ denotes
that the strains and strain-rates are appropriately
modified [9, 12], in order to be well defined on Γ4. The
Coulomb-Siebel friction law combines the stick-slipping
and stick-shearing friction mechanisms and expresses
the fact that the shear stresses can not exceed the shear
yield limit. The normal compliance and interface friction
models, proposed in Ref. [12], could also be used;
however, a good approximation of the normal compliance
behaviour at high loading during rolling, is the penalty
normal stress - normal velocity relation, used here.

3. VARIATIONAL FORMULATION

We denote by:

V={v: v∈(H1(Ω))k, υN=0 on Γ3} (13)

the space of kinematically admissible velocities. Then
the variational formulation of Problem 1 is the
following one:

Problem 2: Find u(t)∈V and ε (t)∈H0(Ω),

satisfying for all t∈[0, T]:

a(ε , u; u,v−u)+〈kN(u),v−u〉+j(ε , u; v)−j(ε , u; u)≥0
∀ v∈V (14)

( ) ( )Ωγγεγε
ΩΩ 0H,dxtdx

t
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and the initial conditions ε (0)=0.
Here above we have used the notations:
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where dT>0 is a constant. Then Problem 2 obtains the

following equality form:

Problem 3: Find u(t)∈V and ε (t)∈H0(Ω),

satisfying for all t∈[0,T]:

a(ε , u; u,v)+〈kN(u),v〉+〈j'dT
(ε , u; u), v〉=0

∀ v∈V (20)

( ) ( )Ωγγεγε
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and the initial conditions ε (0)=0.
Here we have used the notation:
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Actually, the solution u of Problem 3 depends on
the regularization parameter, but for the sake of
simplicity, we use the same notation as in Problem 2.

We further assume:
µf(x), mf(x)∈L∞(Γ4) (23)

Theorem: Let the friction coefficient or factor be
sufficiently small and the assumptions (3) hold. Then
there exists a unique solution of Problem 2, such that:

u∈L∞(0,T; V),   ε ∈L∞(0,T; H0(Ω)) (24)

Proof: Since the proof is too length and technical
and follows in general details the proofs in Refs. [7]
and [11], we shall present herein only a sketch of it.

Uniqueness: Let {u1(t), 1ε (t)} and {u2(t), 2ε (t)} be
two solutions of Problem 2. Then replacing with them
in Eqs. (14) and (15) and taking correspondingly
v=u2(t), v=u1(t) and γ= 2ε (t)− 1ε (t), after taking into
account Eq. (3), with the help of Gronwall lemma [11],
we obtain that:

( ) ( ) ( ) ( ) 0tt,0tt
012112 =−=− εεuu (25)

Existence: Let us consider the following auxiliary
problem. Assume that for t∈[0,T], un(t)∈V,

nε (t)∈H0(Ω), n=0,1,..., be known. Then:

- Find un+1(t)∈V, 1n+ε (t)∈H0(Ω), satisfying:

a( nε , un; un+1,v−un+1)+〈kN(un+1), v−un+1〉+

+j ( nε , un; v)−j( nε , un; un+1)≥0

∀ v∈V (26)
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and the initial conditions 1n+ε (0)=0.
Following Refs. [7] and [11], it can be shown that

for any n, this problem has a unique solution. It can be
further shown, again with the help of Gronwall lemma,
that:
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These relations express correspondingly the virtual
power of actual stresses, contact pressure and friction
forces. Since the functional j( ε , u; v) is nondiffe-
rentiable, we introduce the following regularized one:
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and therefore the obtained sequence {un(t), nε (t)}
converges, at n→∞, to a solution {u(t), ε (t)} of
Problem 2, which is unique.

The above auxiliary problem is a method of
successive linearizations, which we call a variable
stiffness parameters method, by an analogy with the
method proposed in Ref. [11] for solving small strains
plastic flow theory problems with hardening. This
method also gives the time T, at which the process
becomes steady-state, as well as the steady-state
solution of Problem 2.

The existence and uniqueness of the solution of
Problem 3 can be obtained analogously to Problem 2.
One could also show that when the regularization
parameter tends to zero, the solution of Problem 3
tends to the solution of Problem 2.

4. NUMERICAL SOLUTION AND RESULTS

Here we use the finite element method for a spatial
discretization and the scheme tk=k∆t, k=0,1,..., with a
time step ∆t, for time discretization of Problem 3. After
applying the VSPM we obtain in Vh⊂V, h∈(0,1) is a
mesh parameter, the following finite-dimensional
problem, which gives the time T, at which the process
becomes steady-state, as well as the steady-state
solution of Problem 3.

Problem 3h: Find h
k,1n+u ∈Vh, h

k,1n+ε ∈H0(Ω),

n=0,1,2,..., satisfying for arbitrary initial state
h

0,0u ∈Vh and every vh∈Vh the equation:
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Here 0
⋅  is a vector norm and δ is the tolerance.

Using further isoparametric finite elements with the

correponding Gauss integration rule: bilinear, four-

noded quadrilaterals for discretization of Ω and linear,

two-noded elements for discretization of Γ4, we obtain

from Eq. (29) the following system of non-linear

equations:

( ) ( )( ){ } ( )h
k,nc

h
k,1n

h
k,nc

h
k,n uFuuKuK =+ + (31)

where K, Kc and Fc are the velocity dependent stiffness

matrix, the contact stiffness matrix and the contact load

vector. The vector of nodal velocities is denoted

by{ }h
k,1nu + . The matrix K contains the first term on the

left-hand side of Eq. (29). The matrix Kc, contains the

second term and a part of the third term in Eq. (29).

The vector Fc, is formed by the remaining part of the

third term in Eq. (29), containing the roll velocity.

Further we assume that the following empirical

relations for the yield limit hold:

( ) ( ) b
p c, εεεεσ && =   for  [ ] [ ]221 ,0,, εεεεε &&&& ∈∈ (32)

( ) ( ) 2,1qc, 1b
qp == − εεεεεσ &&&    for

[ ]221 ,0and εεεεεε ∈≥≤ &&&&

( ) ( ) [ ]210 ,0for1c 2 εεεααε α ∈+=    and

( ) ( ) 2210 for1c 2 εεεααε α ≥+=

where αl>0, 0≤l≤2, b>0, 1ε& , 2ε&  and 2ε  are material

constants, depending on the process conditions. It can

be easily checked that the requirenments (3) are

satisfied.

The initial state is a solution of the system (31) at
6

1 10−=ε& and zero equivalent strain. We also further

use 6
2 10=ε& and 102 =ε . The strain-rates and strains

for the points of the contact boundary are defined as

mean values of the strain-rates and strains for the

neighbouring finite elements in the domain.

Computational experiments show that the following

values of the compressibility, penalty and

regularization constants should be chosen: d=10-3,

dN=10-3, dT=10-6. These values ensure first the

volumetric strain-rate and normal contact velocities to

be as small as possible and second the solution to be

obtained for a few iterations with a high accuracy.

Futher δ=10-4 is used.

Example 1 ([6, 9]): A two-dimensional hot-rolling

problem of low-carbon steel at temperature T=1200°C

is considered. The workpiece is 15 mm long; the initial

and:
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thickness is 2 mm, which is reduced 40 % during

rolling. The roll diameter is 400 mm; rolling velocity

is uTR=1256.64 mm/s. The yield limit law

( ) 218.010.0
p 25173.51 εεσ &+=  and friction factor

mf=1.00 are used. The time step is chosen to be

∆t=0.0005 sec.

For discretization of Ω and Γc 90 four-noded
bilinear, quadrilateral elements and 20 two-noded
linear elements are used correspondingly. Thus, the
finite element mesh with 124 nodes and 248 total
number of freedom degrees is obtained. Computational
experiments on a rough and refined mesh show that
this mesh is optimal since further refinement does not
change the results.

The effect of the friction, on the contact velocities,
stresses, effective strain-rates and strains of the
analysed workpiece is illustrated in Figures 2 to 6.

The presented results correspond to the steady-
state solution, obtained at the time T=0.0025 -
0.0035 sec, depending on the friction coefficients

Fig. 2  Tangential velocities along the contact arc

Fig. 3  Contact pressure along the contact arc

Fig. 4  Friction stresses along the contact arc

Fig. 5  Distribution of ε& at µ f = 0.2, µ f = 0.4, µ f = 0.6

Fig. 6  Distribution of ε at µ f = 0.2, µ f = 0.4, µ f = 0.6

used, µf=0.1, µf=0.2, ..., µf=0.6. In comparison
with the results presented in Ref. [6], the results
obtained here show some differences, which may
be due to the different algorithms used. In
comparison with the results presented in Ref. [9],
where only a steady-state problem is considered,
the differences are much smaller and could be
explained with the inclusion of the strain hardening
in the material law.
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VARIJACIJSKI I NUMERIÈKI PRISTUP PROBLEMU KVAZI-STACIONARNOG VALJANJA

SA�ETAK

U ovom radu primjenjuje se metoda parametara varijabilne krutosti (VSPM) na kvazi-stacionarni problem
valjanja vruæe lamele. Predla�e se neznatno sti�ljiv, krut-visko plastièni i izotropni model stvrdnjavanja za element.
Pretpostavlja se da vrijedi nelinearni zakon trenja za interakciju valjanje-element. Problem se postavlja u obliku
varijacijske nejednakosti koja sadr�i nelinearne i nediferencijalne izraze. Uz odreðene restrikcije za svojstva
materijala prikazuje se konvergencija VSPM. Kombinirajuæi VSPM s metodom konaènih elemenata predla�e se
algoritam i primjenjuje se za numerièko rje�avanje jednog sluèaja problema valjanja, a  postignuti rezultati su
prikazani i obraðeni u radu.

Kljuène rijeèi: kvazi-stacionarno valjanje, trenje, metoda parametara varijabilne krutosti (VSPM), MKE.

5. CONCLUDING REMARKS

In this paper, a VSPM is applied to a quasi-steady,
hot strip rolling problem with a nonlinear friction, for
slightly compressible, rigid-viscoplastic and isotropic
hardening materials. The problem is formulated as a
variational inequality, containing strongly nonlinear
and nondifferentiable terms. Under certain restrictions
on the material characteristics, the convergence of the
VSPM is shown. An efficient algorithm, combining the
VSPM with the FEM, is proposed and used to solve
an example rolling problem. The computed results are
graphically illustrated and compared with the results
obtained for the steady-state problem, as well as with
the results obtained by other methods of approach. The
computational experiments show that the proposed
method could serve for obtaining precise results in the
computational analysis of rolling problems.
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