
V. �ajn, F. Kosel, B. �tok: Numerical simulation of wind flow around an elastic inflated membrane

ENGINEERING MODELLING 16 (2003) 3-4, 83-88 83

SUMMARY

The aim of this paper is to present a simulation of a turbulent wind flow around an elastic inflated cylindrical
membrane. The aeroelastic model consists of a flexible, large-displacement membrane and the Reynolds-averaged
Navier-Stokes equation of a stationary flow with the k-ε turbulence model. The wind flow around the membrane
was simulated as a two-dimensional turbulent flow around a deformable curve fixed at the ends. For simulating the
problem, the Finite Element Method (FEM) was used. In the iterative calculation process, the shape of the fluid
mesh is adapted to the shape of the solid. This adaptation is made so that in the calculation process of the solid the
fluid mesh is taken as a weak, quasi solid. The simulations were performed for wind velocities of 10, 15 and
17.5 m/s and the Reynolds numbers in terms of membrane diameters 6.7·106, 10·106 and 11.8·106 with an inflating
pressure 100 Pa. The results of the simulation show that the membrane is stable and has an acceptable shape when
the ratio between the dynamic pressure of the wind and the inner pressure rp is less than 1 and it collapses when this
ratio exceeds 2.
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1. INTRODUCTION

Inflatable constructions are popular because they
can be set up quickly and it is easy to transfer them to
another place. They are especially used for covering
and heating outdoor sport facilities in winter time. The
stabilization of the structure is provided by the inner
pressure which carries the membrane of the
construction. The building is sealed, the inflated air is
a substitute for the lost air. The wind force is the main
external force which acts on the inflated membrane.
By increasing the inner pressure, the construction
becomes more stable and resistant to the wind force
but because of a higher stress in the membrane it has
to be thicker, and the foundations and attaching points
have to be stronger. The main objective of this paper is
to present the influence of the wind flow on the
deformation of the membrane taking into consideration
the inner pressure.

In literature, the study of wind flow influence on
the deformable membrane has been mainly focused on

the analysis of membrane airfoils and yacht sails. Cyr
and Newman [1] simulated the two-dimensional flow
over the membrane airfoil with a potential theory. The
separation was simulated by additional vortices whose
position was calculated by boundary layer integral
equations. This method is still limited with a wind
angle of attack being tangential to the leading edge of
the sail; hence, the viscous effect from the ground
cannot be included. A three-dimensional simulation of
a turbulent flow around a downwind sail with
separation was made by Hedges, Richards and
Mallison [2]. The sail was fixed with no deformation
or displacement. A simulation of the flow around a
flexible membrane airfoil was carried out by Smith and
Shyy [3]. For the turbulence model, SST k−ω was used.
The reported results present a small rate of membrane
displacement. Argyris [4] have performed a numerical
simulation of solid-fluid interaction. The coupling was
done for moving boundaries and the Euler-Lagrangian
formulation of the fluid was used. The low Reynold
number simulations were carried out.
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2. GOVERNING EQUATIONS

The fluid and deformable solid are described with
constitutive equations. The description of the coupled
solid-fluid system consists of constitutive equations for
the fluid and solid with additional equations on the
common boundary between the fluid and the solid. For
a turbulent flow of the fluid, the Reynolds averaged
Navier-Stokes equations written in the Euler form are:
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where ρ is fluid density, vi fluid velocity, p pressure
and µ dynamic viscosity of the fluid. For the k-ε
turbulence model, eddy turbulent viscosity µt is defined
with:
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where k is kinetic energy of the turbulence which is
defined:
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The kinetic energy dissipation rate ε is:
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with closure coefficients.
For the formulation of an isotropic static solid

written in the Lagrangian form, the conservation of the
moments and rheology equations are considered:
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where fi are external forces, σij  is stress tensor, εij  is
strain tensor, and v is Poisson number. The strain
tensor is calculated from the displacement vector:
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where ui is displacement vector. In the present
application, large displacements are considered because
of a high ratio between the membrane length and
thickness. Large displacements exert an influence on
the solid geometry. This makes the system non-linear
and the successive iterative scheme on the deformed
geometry has to be used. The strain tensor is still small
and the linear Hook's model of deformations, Eq. (8),
can be used.

The constitutive equations of the fluid are written
in the Euler form and those of the solid in the
Lagrangian form. This brings the problem of two
different forms of equations to the interface between
the fluid and solid. From this it follows that the
conservation of momentum in the interface between
the fluid and solid [5] can be written as:

pf=−ps (10)
For the solid the pressure is ps=σijnjni. For the fluid

flow the solid defines the viscous wall:
vi

f=0 (11)

3. NUMERICAL CALCULATIONS

In the numerical modeling of the wind-structure
interaction, ABAQUS® and Fidap® numerical
software packages were used. ABAQUS® [6] is based
on the finite element method and is capable of
simulating a large displacement with a small strain.
The program successively calculates the equilibrium
on the deformed geometry by successively increasing
the part of the boundary forces to the full value. For
each iteration the stiffness matrix is calculated. Fidap®

[7] simulates the turbulent fluid flow based on the k-ε
turbulent model. The fluid flow was considered as
stationary and only the diffusion matrices had to be
calculated in each iteration step. The interaction
between the two programs and the interchange of the
coupling boundary conditions were provided with an
additional code. For the calculation of the final static
equilibrium shape of the solid the iteration process
operates with both solvers. In the process of calculating
the solid deformation, the fluid domain mesh was
represented as a weak, quasi-solid connected to the
calculated solid. In this way we ensure a permanent
contact between the fluid and solid meshes. The
algorithm is presented in Figure 1.

Fig. 1  Numerical algorithm of the fluid-solid interaction

An analysis was made of a stationary, two-
dimensional turbulent flow around the deformable
solid, particularly of the changes of shapes, fluid forces
on the solid and the fluid streamlines around the
coupled fluid-solid system. In the calculation of the
fluid flow, an interface between the fluid and solid
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Fig. 2  Definition of the wind flow around the membrane and
discretisation area

The finite element mesh of the fluid consists of  1600
quadrilateral plane elements (Figure 3) whose thickness
is reduced in the vicinity of the membrane for a proper
description of viscous effects. The turbulent boundary
layer function is implemented on the fluid elements
attached to the membrane and ground. The finite
element mesh of the membrane consists of 40 beam
elements. An additional mesh of quadrilateral plane
elements, geometrically identical to the finite elements
of the fluid, is connected to the membrane mesh. The
stiffness of the additional mesh is 10−6 compared to the
membrane so it has a neglecting influence on the
deformation of the membrane elements. The
displacements of the attached mesh nodes were used for
defining the new position of the fluid nodes to ensure
permanent contact between the fluid and solid domains.
The number of the finite elements and the size of the
problem were limited by the computer power and
velocity of the network data transfer.

The velocity and pressure were fixed on the open
side of the interface of the fluid domain. The viscous
wall boundary condition was defined on the ground
and on the membrane. The membrane had a fixed
displacement of last nodes. The computing procedure
consisted of calculating the fluid flow with a defined
area. For the first calculation the boundary values were
taken as initial on the nodes. A code developed by the
research team recalculated the node forces from the
fluid pressure and applied them to the solid as a
boundary condition. With another code, the calculated
node displacements of the attached mesh were used
for generating a new fluid mesh. In the next iteration,
the initial nodes values were taken from the previous
iteration cycle. For the convergence condition, the
change of the resulting force from the fluid to the
membrane was observed.

4. RESULTS OF THE SIMULATION

Separate workstations were used for the fluid and
solid calculations. The developed code ensured
communication between workstations and solvers. The
time required for one complete calculation was
approximately 5 hours, considering that the solvers were
working in sequences. In the process there was no
problem of convergence with the fluid flow simulation.
On the other hand, a big difference between the
stiffnesses of the areas in the solid led to a poor pivot of
the stiffness matrix. The starting time step of the force
had to be lowered to 10−6 regarding the complete force
because the solid had a displacement which was too
large on the first increment and the convergence could
not be obtained. Figure 4 presents the resulting force
from the fluid to the membrane with iteration cycles.
The membrane equilibrium and the stationary fluid flow
are achieved in less than 10 iteration cycles with the
convergence criteria difference between sequence
iteration less than 10−3.

represents a viscous wall boundary condition. In the
calculation of the solid deformation, fluid surface
forces on the interface between the fluid and solid
represent the loading force acting on the solid.

Specifications of testing conditions are presented
in Figure 2. Calculations were performed for a two-
dimensional flow around a deformable sail membrane,
with a radius R=6 m, and inner stabilizing pressure
pn=100 Pa. The stiffness of the membrane was
k=12·106 N/m2. The air density was ρ=1.25 kg/m3 and
dynamic viscosity η=22.22·10−6 Pas. The calculation
was performed for three velocities of the wind v=10
m/s, v=15 m/s and v=17.5 m/s. The viscous effect of
the ground was included by a viscous wall in front of
and behind the membrane.

Fig. 3  Finite element mesh of the discretisation domain
Fig. 4  Convergence of the resulting forces components on the

membrane supports
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Fig. 5  Contour lines of constant velocity for free stream
velocity v=10 m/s

Case 2
For a wind speed 15 m/s, Figure 6, the top of the

membrane in statical equilibrium is moved by 1.78 m
horizontally downstream and by 0.54 m upward. The
pressure ratio is 1.407 and the maximal velocity of the
air is 22.7 m/s. Separation of the flow occurs in the
same area with a higher velocity gradient.

Case 3
Figure 7 presents the velocity flow field for velocity

of 17.5 m/s. The pressure ratio is 1.914. The membrane
highest point is lowered compared to the second case
by 2.54 m downstream horizontally and by 0.48 m
upward vertically regarding the no wind case. It was
found that the membrane collapses for the wind speed
of 20 m/s around the deformable membrane which
means a pressure ratio of 2.5.

The simulations were provided for velocities of 10,
15 and 17.5 m/s. For the evaluation of the results we
defined the pressure ratio between dynamical forces
and inside pressure:

n

2

p
p2

v
r

ρ= (12)

where the velocities were considered far away from
the membrane.

Case 1
Figure 5 represents a velocity field of

incompressible viscous flow around the deformable
membrane in statical equilibrium. The fluid velocity far
away from the membrane is 10 m/s and the pressure
ratio is 0.625. The maximal velocity is 15.37 m/s and
the highest point of the membrane is moved by 0.47 m
downstream horizontally and by 0.91 m upward
regarding the no wind equilibrium state. On the back
side of the membrane there is an area of high velocity
drop near the membrane from 10 m/s to 3 m/s.
Separation occurs in this area.

Discussion
Figure 8 presents the components of the reactions

to the foundations from the inner pressure and wind
pressure for the deformed and rigid membrane. For
the nowind case, only the vertical component exists
because of the cylindrical test shape of the membrane.
For the deformed membrane the vertical force for case
3 is smaller than that for case 2 which has the same
trend as observed from the movement of the highest
point of the deformable membrane. This is opposite to
the resulting force for a rigid membrane where both
horizontal and vertical forces increase with the wind
velocity. The vertical resulting force on the deformable
membrane is 8.8 % smaller for case 1, 29.7 % for case
2 and 46.1 % for case 3 compared to the rigid
membrane vertical forces for the same case. The
horizontal force for the deformable membrane is
greater compared to the rigid membrane force and is
42.7 %, 68.6 % and 75.1 % greater for the each of
cases, respectively. The reason for increasing the
horizontal force is in the shape of the deformed
membrane which has a conspicuous back part in
which a strong whirl is produced.

Figure 9 presents the curves of the statical
equilibrium shape membrane and the resulting forces
in the support. For case 1 the curvature of the upwind
part of the membrane is from the same side as for no
wind case. For cases 2 and 3 the front part of the
membrane has an opposite curvature compared to the
initial one. For the same cases, the difference between
the first and second resulting force in the support is a
result of the numerical error and it can be estimated as
less than 1 %. The wind force and the inner pressure
forces act normally to the membrane curve and do not
accumulate axial force along the curve. The absolute

Fig. 6  Contour lines of constant velocity for free stream
velocity v=15 m/s

Fig. 7  Contour lines of constant velocity for free stream
velocity v=17.5 m/s
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Fig. 8  Horizontal and vertical components of the resulting
force on the membrane supports

Fig. 10  Pressure distribution along the membrane surface

5. CONCLUSION

This paper deals with numerical modeling of a fluid-
solid interaction problem. Some basic theoretical
equations were presented in the first part while the
second part deals with the modelling the wind force on
the inflated membrane. In order to solve this problem
the finite element method was used. Numerical analysis
was performed in iteration cycles which consisted of
calculating the flow field and calculating the
deformation of the solid. The calculations were
repeated until the static equilibrium of the solid was
achieved. For the calculation of the solid deformation,
nodal forces were defined which were not changed
during the iteration. This led to an increased number of
the global fluid-solid iterations which are still acceptably
under 10.

The deformation of the membrane is tolerable for
the pressure ratio less than 1.0. The membrane
collapses for the pressure ratio exceeding 2.0. The
wind flow horizontal force on the deformable
membrane increases with the wind speed but the
vertical forces attain a maximum between the wind
velocities of 15 m/s and 17.5 m/s. Also the deformable
membrane  attains a maximum height between the wind
velocities of 15 m/s and 17.5 m/s.

For calculating a dynamic solid-fluid interaction the
fluid equations have to include non-stationarity and the
solid equation mass acceleration. Also, the mass volume
inside the membrane has to be considered. For the fluid
description, the Euler-Lagrange formulation has to be
used to fulfill the boundary condition in the interface
between the fluid and solid.

values of the reaction forces on both supports have to
be equal. The direction of the reaction force vector of
the rear support changes slightly which differs from
the front support reaction force where the horizontal
component is increasing with the wind velocity. The
increase of the support reaction forces with excluded
reaction force to the inner pressure is not linear with
the pressure ratio. If we compare the reaction forces
which are a consequence of the wind for the rigid shape
and the deformable membrane we find that reactions
of the supports are by 13.8 % smaller for the case 1
compared to the rigid membrane. For case 2, they are
by 33.3 % and for case 3 even by 45.9 % smaller that
those of the rigid membrane for the same test
conditions. This proves that the deformable membrane
adapts its shape to decrease the reacting forces.
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Fig. 9  Reaction forces to the supports and shape of the
deformed membrane with respect to free stream velocity

Figure 10 presents the pressure distributions along
the membrane. The position of the minimum pressure
moves downstream with increasing velocity. Although
the shape of the deformed membrane is far from
cylindrical the difference between minimum pressures
for flow around the deformable membrane and the ideal
flow around the cylinder is −2.3 % for case 1, 1.5 %
for case 2 and 2 % for case 3. On the back side of the

deformable membrane, the pressure distributions do
not agree with the pressure distributions of the ideal
flow around the cylinder. The result is the flow
separation and a viscous loss in the whirlwind behind
the membrane.
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NUMERIÈKA SIMULACIJA KRETANJA VJETRA OKO ELASTIÈNE
NAPUHANE MEMBRANE

SA�ETAK

Cilj ovog rada je prikazati simulaciju turbulentnog kretanja vjetra oko elastiène, napuhane cilindriène membrane.
Aeroelastièni model sastoji se od fleksibilne membrane s velikim pomacima i Navier-Stokes jednad�be s Reynolds
prosjekom nekog stacionarnog toka s k-ε modelom turbulencije. Kretanje vjetra oko membrane simulirano je kao
dvo-dimenzionalni turbulentni tok oko krivulje koja se mo�e deformirati i koja je prièvr�æena na dva kraja. Za
simulaciju ovog problema  koristi se metoda konaènih elemenata. U iterativnom postupku proraèuna oblik mre�e
fluida prilagoðen je obliku krutog tijela. Ova prilagodba vr�i se tako da se u procesu proraèuna krutog tijela mre�a
fluida uzima kao slabo, skoro kruto tijelo. Simulacije su izvr�ene za brzine vjetra od 10, 15 i 17.5 m/s, a Reynolds
brojevi u odnosu na promjer membrane od 6.7·106, 10·106 i 11.8·106 s pritiskom napuhivanja od 100 Pa. Iz
rezultata simulacije je vidljivo da je membrana stabilna i da ima prihvatljiv oblik kad je odnos izmeðu dinamièkog
pritiska vjetra i untra�njeg pritiska rp manji od 1, dok se membrana ru�i kad ovaj odnos preðe 2.

Kljuène rijeèi: membrane, aeroelastiènost, interakcija fluid-kruto tijelo, k-ε model turbulencije.

6. REFERENCES

[1] S. Cyr and B.G. Newman, Flow past two-
dimensional membrane aerofoils with rear
separation, Journal of Wind Engineering and
Industrial Aerodynamics, Vol. 63, pp. 1-16, 1996.

[2] K.L. Hedges, P.J. Richards and G.D. Mallison,
Computer modelling of downwind sails, Journal
of Wind Engineering and Industrial
Aerodynamics, Vol. 63, pp. 95-105, 1996.

[3] R. Smith and W. Shyy, Computation of
aerodynamic coefficients for a flexible membrane
airfoil in turbulent flow: A comparison with

classical theory, Physical Fluids, Vol. 8, pp. 3346-
3353, 1996.

[4] J.H. Argyris, Ta Panta Rei, Elsevier Science
Publisher B.V., 1985.

[5] V. Šajn, Numerical modelling of a mechanical
problem of solid-fluid interaction, M.Sc. Thesis,
Faculty of Mechanical Engineering, University of
Ljubljana, Ljubljana, 1996. (in Slovenian)

[6] ABAQUS Version 6.2, Theory Manual, Hibbit
Karlsson & Sorensen, Inc., 2002.

[7] Fluid Dynamics Analysis Package - revision 8.6,
Theory Manual, Fluid Dynamics International
Inc., 2002.


