
149-163

149 

Rudarsko-geološko-naftni zbornik
(The Mining-Geology-Petroleum Engineering Bulletin)
UDC: 091
DOI: 10.17794/rgn.2024.2.12

Preliminary communication

Corresponding author: Ahmed Hamdoon
e-mail address: ahmed_22006009@utp.edu.my

A Review of Chan Plot Application  
and Recent Advanced Models  
for Diagnosing Excessive Water Production

Ahmed Hamdoon1; Mohammed Mohammed2; Khaled Elraies3

1Universiti Teknologi PETRONAS, Petroleum Engineering Department, UTP, 32610 Bandar Seri Iskandar, Perak, Malaysia,  
0009-0007-3122-8031
2 United Arab Emirates University, 0000-0002-5007-779X
3 Universiti Teknologi PETRONAS, Petroleum Engineering Department, UTP, 32610 Bandar Seri Iskandar, Perak, Malaysia

Abstract
Water is one of the major fluids associated with the operational cycle of the oil industry that must be carefully considered 
due to its environmental, treatment facility, and economic impacts. Over the years, various methods have been devel-
oped to identify excessive water production. These methods range from reliable and expensive ones, such as well-logging 
records, to less accurate methods that utilize available production and water-oil ratio data, such as the Chan plot. The 
Chan plot emphasizes that well production can exhibit various patterns of excessive water production, including con-
stant water-oil ratios, normal displacement, channeling, and coning. However, manual interpretation of these plots is 
often confusing due to the noise present in the actual data. Machine learning models have improved interpretation ac-
curacy, but limitations remain in detecting evolving water production patterns. This paper reviews the application of 
Chan plots and their integration with existing diagnostic tools for diagnosing excessive water production. It then focuses 
on a recent advanced model that leverages machine learning specifically designed to improve the interpretation of Chan 
plots. The review highlights the limitations of traditional interpretation techniques and explores how the recent ad-
vanced model can address these limitations. Additionally, the paper briefly discusses the potential of an interactive 
model for the continuous monitoring of water production patterns. Finally, the paper offers recommendations for future 
research directions.
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1. Introduction

Throughout the history of oil production, an increase 
in water is typically expected over the life of a reservoir 
as it is one of the favorable driving mechanisms. Al-
though the production of water is essential for simulta-
neous oil production, water breakthroughs in the reser-
voir can occur in various ways, due to unfavorable im-
pacts on mobility and subsequent bypassing of oil, 
resulting in a reduced recovery factor. The major con-
tributors to excessive water are:
•	 A	natural	water	drive	or	flood,
•	 External causes, such as casing leaks or cementing 

failure,
•	 Mess-completion (Poor perforation).
Historically, economic assessments deemed high wa-

ter or gas ratios and elevated production rates as accept-
able. However, contemporary realities dictate that water 
associated with hydrocarbons must adhere to stringent 
environmental regulations dictating its disposal methods 

and locations. With daily production reaching 250 mil-
lion barrels there is an urgent need to address excessive 
water problems (Haneef et al., 2020). The management 
of	disposed-produced	water	now	poses	a	substantial	fi-
nancial challenge for numerous companies. This chal-
lenge manifests in reduced income, diminished produc-
tion levels, and escalating costs associated with upgrad-
ing water treatment facilities and disposal systems 
(Rabiei et al., 2009). The expenses incurred in this pro-
cess vary from 5 to more than 50 cents per water barrel 
(Dahl et al., 1992), and they soar even higher, reaching 
$4 for every barrel of oil, when dealing with wells pro-
ducing an 80% water cut (Bailey et al., 2000). Moreover, 
recent studies estimated produced water treatment and 
disposal costs ranging from $5 to $100 per cubic meter 
depending on the process and region (Zolfaghari et al., 
2022).	Clearly,	significant	investment	in	innovative	wa-
ter management technologies is necessary.

To mitigate the risk of water-related issues, the sources 
of unwanted water should be accurately diagnosed. Tra-
ditional diagnostic techniques, such as well logs, produc-
tion logging, and pressure transient analysis (PTA), have 
been used (Bhagavatula et al., 2015; Wang et al., 2023; 
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Yaakob et al., 2017). However, these techniques have 
limitations, including high costs, time-consuming manu-
al	analysis,	and	limited	sensitivity	to	specific	water	pro-
duction patterns. For instance, while well logs provide 
static formation properties, they lack reservoir dynamic 
information about water production patterns (Lai et al., 
2024). Similarly, while production logging captures 
downhole data, it is often expensive and limited in tem-
poral resolution. Additionally, PTA, while useful for res-
ervoir	characterization,	may	not	be	specifically	sensitive	
to water production alone.

One commonly used analytical tool, Chan plots, visu-
ally represents water-oil ratio (WOR) changes over time, 
offering	valuable	insight	into	excessive	water	production	
patterns. However, Chan plots application have limita-
tions such as subjective manual interpretation and human 
error (Egbe & Appah, 2005; Garcia et al., 2019; 
Mukhanov et al., 2018; Rabiei et al., 2009).	To	confirm	
a diagnosis, Chan plot is often used in conjunction with 
other diagnostic tools such as well logging and simula-
tion.	However,	the	recent	involvement	of	artificial	intel-
ligence	in	the	oil	and	gas	industry	offers	a	promising	so-
lution to overcome the challenge of mislabeling, such as 
machine learning approaches which improved diagnos-
ing accuracy (Foster et al., 2021; Garcia et al., 2019; 
Mukhanov et al., 2018). While the well can exhibit more 
than one pattern in the production cycle, the model devel-
oped by Garcia in 2019 was able to detect only one pat-
tern, either constant WOR, normal displacement, or 
channeling. This limitation is addressed by developing a 
computer vision application based on a Convolutional 
Neural Network (CNN) to distinguish all possible Chan 
patterns a well might exhibit (Abdelaziem et al., 2022). 
However, the model requires the entire plot as an image 
input, meaning it can only identify the pattern after it 
fully develops.

This review highlights a new approach to improve 
Chan plot interpretation through an interactive model, 
that incorporates time series functions. This model en-
hances	diagnostic	accuracy	and	efficiency,	enabling	early	
detection of water production problems. The model can 
integrate with current production surveillance tools, al-
lowing for real-time tracking of water production pat-
terns, minimizes economic losses and environmental 
damage associated with excessive water production.

The subsequent sections of this paper are structured 
as follows: the next section explores the causes and re-
percussions of excessive water production, thoroughly 
investigating these aspects. The examination extends to 
traditional diagnostic tools, with a focused analysis on 
Chan	plot	applications	and	their	standalone	efficacy,	as	
well as their integration with other tools explored in the 
following sections. Subsequently, the paper scrutinizes 
recent	advancements	aimed	at	refining	Chan	pattern	de-
tection. Moreover, a novel methodology is discussed, 
incorporating time series functions. In conclusion, a 
summary of the key points is provided, and potential av-

enues	for	future	research	directions	in	the	field	of	Chan	
plot interpretation are outlined.

2. Causes of Excessive Water Production

Water is typically found at the bottom or edges of an 
oil	zone,	existing	in	equilibrium	as	part	of	a	unified	sys-
tem. When the pressure decreases during oil production, 
water	moves	to	replace	it	by	filling	the	pore	volume,	thus	
maintaining the pressure system. This process can occur 
naturally through an active aquifer source or be induced 
artificially	 by	 injecting	 water	 into	 the	 reservoir	 for	
 pressure maintenance and secondary recovery (Alexis, 
2010). Consequently, water production is essential for 
oil extraction, unavoidable, and ceasing it would lead to 
reserve losses (Egba et al., 2018; Kabir et al., 1999).

In the initial stages, water saturation exceeds the criti-
cal saturation, sweeping oil from the reservoir at a nearly 
constant water-oil ratio. This leads to stable displace-
ment, consistent production performance with a plateau 
time, and minimal observable water. Subsequently, in-
teractions between the formation matrix, water, and oil 
occur through macro and micro displacement in the sys-
tem. Gradually, water increases and recovers oil from 
the	 reservoir.	 In	 this	scenario,	water	 is	deemed	benefi-
cial.	The	 flow	 of	water	 is	mainly	 influenced	 by	water	
properties, saturation, rock wettability, mobility ratio, 
and production strategy.

However, as the process progresses, oil displacement 
becomes	unstable	due	 to	 inefficient	micro	movements,	
resulting in oil being trapped in pore spaces. This insta-
bility leads to earlier, excessive, and faster-than-antici-
pated water breakthroughs, classifying the water as det-
rimental or “bad water”. (Ayeni et al., 2018; Kabir et 
al., 1999; Saleh et al., 2019) have noted that excessive 
water recirculation, as discussed in their studies, does 
not contribute to pressure support in the area and results 
in either minimal or no oil production. Over time, wells 
experiencing such conditions will inevitably exhibit wa-
ter-related challenges. The serious impact of excessive 
water production on the oil production cycle has adverse 
effects	on	surface	equipment	integrity	(Al-Shahrani et 
al., 2007). This includes escalated costs in oil production 
due to higher expenses related to lifting, separation, and 
disposal, as well as scaling issues in the wellbore, tub-
ing,	flow	lines,	and	processing	facilities.	Additionally,	it	
contributes to the corrosion and deterioration of comple-
tion	and	flow	lines.

Moreover, excessive water weight increases hydro-
static pressure on the formation, which reduces the pres-
sure needed to transport oil to the surface. Frequently, 
wells become inactive as a result of the excessive water 
output from the deposit. Water-related problems can be 
broadly categorized as either reservoir-related or well-
related issues, stemming from various wellbore condi-
tions	such	as	leakage,	flow	behind	casing,	gravity	segre-
gation, moving oil-water contact (OWC), channels, and 
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coning. A single well may experience one or more of 
these issues.

Various criteria have been used in the literature to 
classify water production problems, depending on the 
authors’	 interests	 and	 the	 specific	 focus	 of	 their	work.	
They have been categorized based on their complexity 
and	the	ease	of	implementing	shut-off	treatments,	rang-
ing from simple to complex solutions (Bailey et al., 
2000; Seright et al., 2003).
Based	on	the	well	production	profile,	water	problems	

classified	into	three	categories,	with	notable	main	prob-
lems being water coning, multilayer channeling, and 
near-wellbore issues (Chan, 1995). This chapter will 
separately	discuss	the	first	two	problems.	It’s	important	
to note that these categories do not contradict the previ-
ously mentioned conditions, as each problem can arise 
for various reasons. Figure 1 summarizes the main wa-
ter problems and their condition.

2.1 Channeling

The phenomenon of channeling commonly occurs as 
a result of reservoir heterogeneity and the presence of 
high permeability layers. Due to variations in mobility 
ratio and wettability, water has a tendency to migrate to-
wards zones of high permeability and large pores, by-
passing the oil and leaving less permeable areas un-
swept. Consequently, the water’s permeability increases 
during	 subsequent	flow,	 resulting	 in	elevated	water-oil	
ratios throughout the lifespan of the well or project 
(Reynolds, 2003).
Channeling	can	occur	in	three	diffrent	forms.	Firstly,	

when there is a shale layer present between, above, or 
below	these	multilayer	systems,	without	any	crossflow	
within the reservoir. Secondly, when highly permeable 
layers communicate without any shale in between to im-

pede	 crossflow.	 In	 this	 case,	 high	 crossflow	 leads	 to	 a	
pressure balance between the layers, reducing the chanc-
es of oil resaturation in the depleted high permeability 
zone	and	causing	increased	water	crossflow	(Jahanbani 
Ghahfarokhi et al., 2016). Thirdly, fractures or deposits 
subjected to high pressure from external injection water-
flood	designs	can	quickly	break	through	into	producing	
wells. Even with natural barriers, such as thick shale lay-
ers,	dividing	the	fluid	zones	and	a	reliable	cement	job,	
the shales may experience cracking and fracturing near 
the	wellbore	due	to	production.	The	pressure	difference	
between	these	shales	facilitates	the	movement	of	fluids	
down the wellbore. This breakthrough form is often as-
sociated with stimulation attempts (Reynolds, 2003).
Viscous	fingering,	which	is	considered	to	be	induced	

fractures	during	heavy	oil	flooding	projects,	 is	another	
contributing factor, that can lead to varying water-oil ra-
tio values (He et al., 2023).

Figure 1: General summary of Water problem types

Figure 2: Comingled Channels (Bailey et al., 2000)

2.2 Coning

Coning refers to the upward movement of water into 
the well perforation, driven by its least resistance path 
(Ahmed, 2001). This phenomenon occurs when the 
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pressure in the wellbore exceeds the gravitational forces 
due	to	the	density	difference	between	oil	and	water.	As	a	
result of the disruption in equilibrium between viscous 
and	gravitational	forces,	oil	flows	towards	the	perforated	
gap. This imbalance favors the viscous force, resulting 
in	a	 significant	 increase	 in	flow	rate	and,	eventually,	a	
fromation of cone-like shape (Bournazel & Jeanson, 
1971; Chaperon, 1986; Moawad et al., 2013). Al-
though the perforations are located above the original 
water-oil contact, their proximity allows the undesired 
fluid	 to	 be	 produced	more	 easily	 and	 quickly	 through	
coning or cresting (Reynolds, 2003). However, the con-
ing	phenomenon	causes	less	increase	in	water	flow	than	
the channeling. This is owing to the cone’s radial expan-
sion compared to its vertical expansion; when the hori-
zontal permeability exceeds the vertical permeability, 
the cone extends radial.
Conversely,	 the	speed	of	water	flow	 in	channels	 in-

creases	due	to	permeability	parameters	and	fluid	satura-
tion distribution (Shabibi & Sahraei, 2021). The water 
cone reaches its maximum when the circular expansion 
of the cone base (oil-water contact) reaches the drainage 
radius.
The	 coning	 phenomenon	 is	 directly	 influenced	 by	

production methods and strategies. Employing Electric 
Submersible	Pumps	(ESP)	as	an	artificial	lift	method	to	
reduce sub-hydrostatic reservoir pressure often leads to 
excessive drawdown pressure and water coning, espe-
cially at high well rates (Al-Azmi et al., 2022). A com-
mon approach to mitigate coning in the early stages in-
volves controlling the critical coning rate. This rate rep-
resents the maximum amount of oil that can be produced 
without forming a cone and is often economically chal-
lenging to achieve (Bailey et al., 2000).

ditions. For example, increases in chloride or Total Dis-
solved Solids (TDS) can serve as indicators, enabling us 
to identify potential issues and determine whether the 
produced water originates from the reservoir or an exter-
nal	source.	This	method	is	considered	a	quick	and	effec-
tive diagnostic approach (Weschenfelder et al., 2015).

Additionally, well logs are capable of recognizing 
downhole issues that may contribute to undesirable wa-
ter	production	and	quantify	the	fluid	production	within	
the wellbore. Cement leaks, cement channels, coning 
and watered-out reservoirs represent common sources of 
undesired	water,	that	can	be	identified	through	well	logs	
such as the Production Logging Tool (PLT), Pulsed Neu-
tron, and casing/Cement Bond Log assessment (CBL). 
These tools provide insight into cement integrity, zone 
production	sharing,	and	help	identify	cross-flow	behind	
the casing (Wyatt, 2000). However, it’s important to 
note	that	well	logs	are	confined	to	evaluating	conditions	
exclusively within the wellbore and do not extend to the 
assessment of reservoir-related issues.

Well log interpretation has recently been enhanced 
through the integration of advanced technologies. This 
includes combining various logs to locate and measure 
excessive water sources behind the casing. This im-
provement extended the diagnosing surveys to the reser-
voir	by	 identifying	flowing	zones	and	detecting	undis-
covered breaches (Bhagavatula et al., 2015). For in-
stance,	PLT	could	be	an	efficient	 tool	for	 investigating	
well integrity diagnosing, and discovering leaks, rather 
than production allocation, particularly in open-hole 
completion (Yaakob, 2017). Additionally, the water 
flow	log	has	evolved	as	a	viable	standalone	approach	for	
locating	tubing	leaks	and	tracking	water	flow	within	and	
behind casings or tubing (Saxen et al., 2013). However, 
the cost of running High Precision Temperature logging 
(HPT), Spectral Noise Logging (SNL), Spinner (Flow 
Meter Logs), and PLT is too high for each well and it is 
sometimes necessary to suspend production while log-
ging,	which	impacts	the	cash	flow.	Furthermore,	log	data	
processing, evaluation, and interpretation are frequently 
sophisticated, demanding, expensive, and time-consum-
ing (Nikravesh & Aminzadeh, 2001). Moreover, the 
constraints restriction in deviated wells limit PLT appli-
cation,	citing	complex	flow	dynamics	that	make	moni-
toring	downhole	fluid	velocities	and	liquid	holdups	chal-
lenging (Al Hasani et al., 2008).

On the contrary, analytical tools, such as production 
data analyses, are the most often utilized approaches for 
analyzing reservoirs, individual well performance, and 
water management. The recorded percentages of pro-
duced oil and water, acquired at normal periods, are the 
most important component of the production data (usu-
ally daily). Alongside the produced oil and water rates, 
the water-to-oil (WOR) ratio is also taken into consid-
eration. These approaches can be summarized as recov-
ery plots and production history plots. For instance, but 
not limited to, water cut versus time, is frequently used 
to illustrate the growth and severity of excessive water 

Figure 3: Coning phenomena reproduced  
(Okon et al., 2017)

3. Excessive Water Diagnostic Methods

There are several methods for diagnosing excessive 
water production varying from traditional ones to the re-
cent advanced and analytical approaches. Here, we will 
address the common methods used in the industry. It is 
generally recommended to monitor water production in 
each well by regularly analyzing samples and establish-
ing a baseline. This provides valuable information in the 
event of unexpected changes in production or well con-
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(Bailey et al., 2000). Another technique, the X-plot, is 
an extension of the water-cut plot (Ershaghi & Omori-
gie, 1978). It establishes a linear relationship between 
cumulative oil (Qo) and variable water-cut features. Fur-
thermore, decline-curve analysis, which is one of the 
most common methods for evaluating well performance 
during normal depletion, involves identifying a straight 
decline bar for each well from production data. Any de-
viation in the bar could indicate water or other issues 
(Bailey et al., 2000). However, these analytical methods 
of production plots have limited diagnostic capabilities 
and do not provide information about the underlying 
reasons for excessive water production, as the shapes of 
the plots appear similar. These plots can be useful for 
assessing	production	efficiency,	but	 they	do	not	 reveal	
any	data	on	reservoir	flow	characteristics	(Chan, 1995).

4. Chan Diagnostic Plot

The Chan plot is a simple representation of the water-
oil ratio (WOR) and its derivative (WOR-D) on a loga-
rithmic	scale.	This	plot	effectively	captures	changes	 in	
the WOR, making it a valuable tool for identifying ex-
cessive water production mechanisms. Additionally, the 
integration of the WOR-D allows for the determination 
of whether the water problem is due to coning or multi-
layer channeling. Chan demonstrated his theory by us-
ing a three-dimensional, three-phase black oil reservoir 
simulator to showcase WOR plots for various drive 
mechanisms	 and	 waterflood	 scenarios.	 He	 observed	
three behavioural periods for coning and channeling. 
The WOR remains constant for both mechanisms 
throughout	the	first	phase	until	water	breakthrough,	after	
which the departure time begins. While the WOR sharp-
ly increases for channeling, it gradually rises for coning 
until it reaches a constant value (Chan, 1995). Usually, 
Coning takes less time than channeling.

Moreover, the WOR-D exhibits a distinct visual char-
acteristic when tracking the slope of the WOR-D points. 
It demonstrates a relatively positive slope for channeling 
and a declining slope for coning (Chan, 1995). Figure 4 
presents	 an	 ideal	 plot	 that	 effectively	 portrays	 coning	
and channeling behaviour in a well.

It can be inferred that Chan’s diagnostic plot provides 
a more thorough understanding and information for 
evaluating performance. This plot can be used for the 
whole	well	 life	or	a	 specific	phase,	 such	as	 the	water-
flood	phase.	The	analytical	results	offer	valuable	insight	
into	reservoir	flow	dynamics,	enabling	a	comprehensive	
understanding of the key mechanisms behind excessive 
water production when combined with a complete work-
over history. Furthermore, the WOR and WOR-D slope 
switch indicates the various patterns, including normal 
displacement production behaviour, multilayer water 
breakthrough behaviour, fast layer depletion, coning, 
and water recycling activity (Chan, 1995).

However, the application of Chan’s method poses 
challenges for engineers due to the presence of noise and 
interruptions in actual production data. In many cases, 
the visual interpretation of the slope can be misleading, 
making	it	difficult	to	differentiate	between	different	pat-
terns (Mukhanov et al., 2018). The slope feature typi-
cally exhibits growth for multilayer channeling, result-
ing in various slopes compared to a single slope observed 
for channeling behaviour. Additionally, distinguishing 
between straight and horizontal lines for Constant WOR 
and Normal Displacement patterns can be challenging 
(Mukhanov et al., 2018). Although the inclusion of 
generated points along the log cycle may be an addi-
tional feature, the limited number of points within the 
log period may not be comprehensive. Additionally, 
WOR and WOR-D are highly sensitive to production 
changes	and	field	characteristics.	Therefore,	it	is	neces-
sary to rely on comprehensive information from reliable 

Figure 4: WOR-D Shifting from Coning to late time Channeling (Chan, 1995)
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and periodic data sources in order to trust the results. To 
address these challenges, Chan’s plot has been included 
in	water	management	workflows,	combined	with	other	
tools to diagnose excessive water production.

5.  Coupling Chan Plot Interpretation  
with Other Diagnostic Tools

Chan plots have been widely used as a standalone di-
agnostic tool in various case studies. It has been applied 
to	Jake’s	oil	field	in	Sudan	(Mahgoup & Khair, 2015). 
By comparing the results to Chan’s standard plot, they 
were able to discern the distinction between channeling 
and coning in each well. The study revealed that chan-
neling was the primary factor contributing to water pro-
duction in wells containing high-permeability sandstone 
zones. Also, Chan’s diagnostic plot was applied to ex-
amine	the	excessive	water	production	in	Aswad	Oilfield,	
Libya (Abdulmaein Bin Younus, 2020). Three wells 
were selected for diagnosis, exhibiting water rates of up 
to	88%	per	day.	In	conclusion,	the	Chan	plot	effectively	
identified	channeling	as	the	main	driver	of	water	produc-
tion. Recently, the Chan plot was utilized with two diag-
nostic methods: conventional plotting of water-cut over 
time and well card data, to identify causes of water pro-
duction (Hazarika et al., 2022).	The	Chan	plot	 effec-
tively	identified	multilayer	channeling	and	coning	as	the	
underlying causes of excessive water production. The 
findings	underscore	the	crucial	role	of	the	Chan	plot	in	
accurately pinpointing water sources and guiding reme-
dial operations to prolong oil production. Evidently, in 
sandstone reservoirs, the two forms of channeling signa-
ture and coning to some extent appear readily as slope 
changes instantly for the various watered-out permeable 
layers. Similarly, the Chan model was employed for di-
agnosis and concluded that inadequate well surveillance 
and	deficiencies	 in	well	 reservoir	and	facility	manage-
ment were present (Nmegbu et al., 2020). Following 
this	identification	of	water-related	issues,	a	shutoff	plan	
was implemented, resulting in an increase in oil produc-
tion for both of the tested wells, along with a 1% reduc-
tion in water production.

However, in order to address the limitations of Chan’s 
plot, such as potentially misleading results and the lack 
of reliable WOR records, engineers have integrated 
Chan’s	 plot	with	 other	 diagnostic	 tools	 to	 confirm	 the	
causes of excessive water production. Reyes et al. 
(2010) introduced a Reliability-Based Systemic Method 
that incorporates the Six Sigma tool. This method com-
bines Chan’s plot with logging tools to identify the 
source of excessive water production and classify water 
as either desired or undesired. This comprehensive ap-
proach evaluates the entire system, including both sur-
face and subsurface components, and examines how 
they	interact	to	influence	water	production	using	a	prob-
ability index. While Chan’s plot serves as a primary di-
agnostic tool, it is important to note that the accuracy of 

the results may be compromised if crucial data and test-
ing information are missing. Additionally, running this 
workflow	may	also	require	a	significant	amount	of	time.
Another	inclusive	workflow	was	proposed	to	under-

stand water breakthrough mechanisms and prioritize 
well remediation (Dokhon et al., 2020). The Chan cor-
relation was their essential analytical tool, while the sec-
ondary investigative tools were PLT and ionic-produced 
water	analysis.	This	systematic	method	can	be	effective-
ly applied without the need for the PLT step. Five out of 
seven wells were successfully diagnosed by combining 
geological features with the Chan plot and comparing 
initial water salinity with current salinity. The change in 
water quality due to pressure and temperature is rela-
tively small, making it easy to analyze excessive water 
production source. This approach has assisted engineers 
in gaining a deeper understanding of reservoir commu-
nication, especially in the context of injection projects. 
However, in order to reduce the noise in actual data, a 
workflow	was	recommended	involving	reservoir	numer-
ical simulation to smooth the data by matching the ac-
tual production trends (Alexis, 2010). This roadmap in-
creased	confidence	in	using	Chan’s	plot,	as	the	modeled	
patterns closely resembled Chan. Furthermore, the slope 
growth feature was examined using X-plots to diagnose 
the multilayer channeling pattern and identify the domi-
nant layer contributing to water production (Alexis, 
2010). In the same context, the X-plot was used to detect 
layering in multilayering systems based on the slope 
changes due to various permeability layers contrast Na-
bila et al. (2022).

The numerical simulation was used once again as a 
verification	tool	in	the	Asmari	reservoir	within	the	Abu	
Ghirab	oilfield,	located	southeast	of	Iraq	(Mohammed 
et al. 2020). Despite the geological complication and 
missing 70% of production data from 1980 to 2011, 
Chan’s analytical results were identical to simulation re-
sults, showing that the channeling is the cause of water 
production due to high permeability zones, high water 
saturation zones, and faults or fracturing. Their integra-
tion	assisted	 in	confirming	 the	appearance	of	 reservoir	
geological features of channeling and fracturing detect-
ed by Chan’s signature and observing the change in the 
water	 flow	 path	 in	 the	 model	 as	 the	 water	 chose	 the	
shortest path (Shabibi & Sahraei, 2021). However, all 
the	above	workflows	assisted	in	overcoming	the	need	for	
running additional costing tools and helped in determin-
ing the geological structure, especially the fractures that 
developed after production. However, the major draw-
back of the X-plot is its applicability solely to high wa-
ter-cut wells, particularly for addressing channeling. 
While	coning	behaviour	can	be	studied	and	verified	by	
numerical	 simulation,	 it	 is	 time	 and	 effort-consuming,	
requiring an extensive data set. A single study may take 
months for history matching, requiring continuous up-
dates for the producing wells.

Other investigations have explored the suitability of 
Chan’s	 diagnostic	 plot	 across	 different	well	 and	 reser-
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Table 1: Summary of studies on Chan plot Integration with other diagnostic tools

Diagnostic Tools Advantages Disadvantages Reference
•	 Production History
•	 Chan plot
•	 PLT
•	 Pressure
•	 Temperature log

By methodically assessing each 
component of the production system 
and supporting the suggestion of 
several solutions to increase 
productivity,	Six	Sigma	offers	a	solid	
framework for a water production 
analysis. This approach helps the 
identification	of	underlying	issues	and	
streamlines the process of thoroughly 
investigating the system.

The	developed	workflow	is	
operationally oriented and explains 
the general integration of tools, but it 
lacks	a	specific	technical	focus	on	
diagnosing the water problem. It 
overlooks considerations such as tool 
availability and the time and cost 
required for running these tools.

Reyes et al., 2010

•	 Chan correlation
•	 PLT for determining 

the water entry zone
•	 Lab analysis for ionic 

concentration

The introduction of lab analysis 
combined with the Chan plot is an 
efficient	way	to	address	water	
problems and understand reservoir 
communication easily and quickly. 
Also,	the	workflow	can	identify	the	
excessive water qualitatively and 
quantitatively.

Any use of a Production logging tool 
will	directly	affect	the	overall	
operation costs. Additionally, without 
initial properties of produced water, 
benchmarking for the future, 
especially in the context of any 
injection project, becomes 
challenging.

Dokhon et al., 
2020

•	 Numerical simulation
•	 Chan’s Diagnostic 

plot
•	 X-Plot
•	 Hall and the Hearn 

Plots

The	proposed	workflow	involves	
incorporating numerical simulation for 
the reservoir, enhancing the 
confidence	in	interpreting	diagnostic	
plots after history matching. The 
successful integration of the X-plot 
with	Chan	proved	to	be	an	effective	
module for diagnosing multilayer 
channeling behaviour.

Time-consuming and requiring 
ongoing	effort,	it	needs	to	be	updated	
for as long as the well is in production 
to align with the production and 
Water-Oil Ratio (WOR) data.

Alexis, 2010

•	 X-Plot
•	 Chan’s Diagnostic 

Plot
•	 Decline Curve 

Analysis

While the noisy data posed challenges 
in interpretation, the integration of the 
X-Plot and the Chan plot in the case 
study assisted in verifying and 
confirming	the	patterns	detected	from	
the Chan plot.

The	methodology	can	be	efficient	for	
multilayer channeling problems but 
may not be suitable for addressing 
other issues, such as coning.

Nabila et al., 2022

•	 Chan’s Diagnostic 
Plot

Chan demonstrates its applicability as 
a standalone diagnostic tool that 
accurately	differentiates	between	
channeling and coning problems 
accurately, especially after 
remediation took place.

The noise in the actual production 
data, challenges in interpreting the 
first	derivative	order	of	Water-Oil	
Ratio (WOR), and irregularities in the 
production	profile	due	to	various	
activities.

Mahgoup & 
Khair, 2015;
Nmegbu et al., 
2020;
Abdulmaein Bin 
Younus, 2020;
Mekunye & 
Ogbeide, 2021

•	 PLT
•	 Water-oil-ratio 

(WOR) plots
•	 3-D simulation model

This contribution examined and 
confirmed	the	application	of	Chan	 
in horizontal wells, showing a high 
degree of alignment with Chan’s 
published work. It considered various 
types	of	artificial	lift	influence	on	the	
plot interpretation for both coning and 
channeling signatures.

Yet, the work needs to demonstrate its 
practicality using actual production 
data for horizontal wells.

Al Hasani et al., 
2008

•	 Chan diagnostic plots
•	 Permeability
•	 PLT
•	 PTA

A new method of integrating 
permeability	&	FZI	profiles	with	Chan	
plot for advanced dynamic 
interpreting by segmenting well life 
cycle into early, middle, and late time 
to predict watered-out layers and 
water breakthrough, and this is 
confirmed	by	PTA	&	PLT	in	a	
complex carbonate reservoir.

Predicting the permeability of 
carbonate reservoirs is challenging 
due to natural fractures acting as 
secondary porosity. The analysis of 
transient pressure data necessitates 
sophisticated techniques, and the 
associated costs for conducting both 
Pressure Transient Analysis (PTA) and 
Production Logging Tool (PLT) can be 
substantial.

AlOtaibi et al., 
2019
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voir conditions in their research. One study investigated 
the application of Chan plots to horizontal wells in the 
Oman	oil	field	(Al Hasani et al., 2008). The limitations 
of PLT in these wells motivated this exploration. Flow 
dynamics	and	gravity	effects	on	the	flow	pattern	within	
horizontal wells often lead to complex PLT interpreta-
tions. A 3D simulation model consisting of one horizon-
tal and three vertical wells was developed to explore the 
impact of the coning and channeling through a fracture 
on the plot signature (Al Hasani et al., 2008). In conclu-
sion, the results agreed with Chan’s published work, 
even	considering	the	impact	of	using	artificial	lifts	for	oil	
production. However, this study modeled the channeling 
behaviour by modifying the layer’s permeability in ho-
mogenous strata and neglecting the reservoir environ-
mental deposition, that could lead to induced fractures 
and geological features like carbonate reservoir, as stud-
ied later. AlOtaibi et al. (2019)	articulate	the	effective-
ness of using the Chan diagnostic plot in these complex 
reservoirs. The approach involved segmenting the well 
into early, middle and late time periods, using a Flow 
Zone	Indicator	(FZI)	for	rock	typing	to	reflect	the	per-
meability	profile	and	Pressure	Transient	Analysis	(PTA)	
to	study	the	flow	around	the	wellbore.	This	methodology	
emphasized	that	FZI	can	affect	the	upward	slope	shift	of	
the WOR trend rather than the simple permeability vari-
ation for the same layers. This phenomenon can be due 
to	the	dominating	flow	unit	within	the	reservoir	in	spe-
cific	areas.	Therefore,	this	may	broaden	the	integration	
of Chan’s interpretation in understanding the reservoir 
geocomplexity by addressing the variations in rock types 
within the reservoirs, in addition to detecting fractures 
and fault communication.

From the literature, the Chan plot has been validated 
for	many	fields	 through	numerical	simulation	and	 log-
ging tools for various excessive water problems. Addi-
tionally, Chan’s applicability has been demonstrated in 
both sandstone and carbonate reservoirs, exhibiting a 
reasonable degree of matching with Chan’s published 
work on sandstone, besides vertical and horizontal wells. 
However,	 the	 developed	 workflows	 and	 the	 coupling	
with other tools are both economically and technically 
exhausting, requiring a substantial amount of time for 
interpretation.	Therefore,	machine	learning	and	artificial	
intelligence have the potential to become powerful tools 
for standardizing and automating Chan plot interpreta-
tion, thereby reducing the associated challenges. Below 
is a literature summary showing the tools combined with 
Chan to diagnose excessive water production.

6. Chan Plot Improvement

Artificial	 intelligence	 (AI)	 has	 already	 sparked	 sig-
nificant	changes	in	the	oil	and	gas	industry	and	assisted	
in solving many problems. Although the earliest applica-
tions of AI in the oil and gas business were studied in the 
1970s, the industry has recently begun to seek AI appli-

cation potential more consciously (Li et al., 2021). All 
the described AI techniques have one thing in common: 
without access to vast and high-quality training data, AI 
algorithms are much less helpful, if not unusable. “Good 
enough” indicates that the data must be wide-ranging 
enough to cover all relevant events, actions, and behav-
iours (Ng, 2016). The oil industry is full of data based on 
correlation that require feature engineering procedures 
to establish a good relationship between the input varia-
bles, for instance, geological correlation, log correlation, 
and rock typing, as well as plot interpretation. In general 
machine	learning	(ML)	can	be	classified	into	two	super-
vised and unsupervised machine learning depending on 
the data set and the objective of the study. Unsupervised 
learning focuses on clustering and grouping the data by 
identifying the common relationship from the given sets, 
while in supervised learning the model is trained from 
given labeled data and tested its performance in test sets. 
Based on the problem the models can be utilized either 
for	regression	or	classification.

Chan’s interpretation can be considered a multiclass 
classification	problem	as	the	plot	can	have	two	or	more	
classes.	These	plots	are	difficult	to	simply	address	as	ML	
problems because, in terms of the data set, there is no 
specific	 range	 for	WOR	&	WOR-D	values	 for	various	
patterns for example the normal displacement with high 
water rate values is quite identical to the channeling 
problems. In addition, relevant data such as production 
rate,	 water-cut	 percentages,	 and	 artificial	 pump	 data	
don’t	help	the	model	extract	any	specific	features.	How-
ever, in terms of visualization signature, slope is the ba-
sic concept of the Chan plot and in order to be captured 
by	the	ML	model,	an	effort	should	be	made	to	remove	
outliers and feature engineering parts. Outliers may ei-
ther be removed manually before labeling or be detected 
using	different	advanced	models.	Some	models	use	the	
point distance from the mean to remove nonconformist 
points. However, this approach may remove representa-
tive points, in short-period patterns. Additionally, time 
series models can be used for outlier detection in two 
forms, an overall or neighbouring threshold to extract 
abnormal points, or a sequential pattern to remove ab-
normal	behaviour,	in	the	two	cases	they	are	difficult	to	
apply, as the former, will smooth the point and become 
blurred to obtain the slope, while the latter can’t be ap-
plied as Chan is not in form of series data and sequence 
pattern. For example, unsupervised methods could be 
statistical,	such	as	Z-score,	Modified	Z-score,	and	Inter-
quartile Range (IQR), or ML-based such as Angle-Based 
Outlier Detection (ABOD), Isolation Forest, K-Nearest 
Neighbours (KNN), and Local Outlier Factor (LOF). 
ABOD was used for detecting outliers from production 
time-series data to develop a computer vision that inter-
prets Chan’s signature (Abdelaziem et al., 2022). How-
ever, the algorithm operated on the whole production 
data from the well start to the abandonment stage, which 
means after the water problem pattern is fully developed 
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and does not track the outliers as active learning. More 
effort	can	be	made	to	improve	outlier	detection	for	future	
recommendations. So, the choice of removing manual 
outliers can be a good option for now, particularly for 
very low and high abrupt changes in water-oil ratios 
(WOR) due to any changes in the well production envi-
ronment. In addition, the feature engineering part should 
be well designed as WOR&WOR-D alone can’t be 
enough to detect patterns even if it’s normalized. The 
slope used as a special added feature instead of WOR 
points, but only for detecting single pattern (Garcia et 
al., 2019). Still a need for unique features that can easily 
be captured when the slope trend changes with time, be-
low is a review of all the previous attempts to improve 
Chan plot interpretation. Table 2 summarizes the sig-

nificant	work	done	to	improve	Chan	diagnostic	plot	in-
terpretation.
One	of	the	earliest	efforts	to	find	a	solution	for	the	disor-

derly data associated in the Chan diagnostic plot employed 
spectral analysis, particularly Fourier transformation, to 
overcome the high noise in WOR data points (Egbe & 
Appah 2005). Their approach involved investigating auto-
covariance and autocorrelation to understand the frequen-
cy of WOR in time domine. However, their model could 
only	 differentiate	 between	 the	 coning	 and	 non-coning	
problems, mainly normal high WOR scenarios. This led to 
the question of whether the model could identify chan-
neling problems, given the similar WOR frequency; and 
potential	changes	in	the	production	profile	due	to	any	op-
erational	activities	that	reflected	in	WOR	change.

Table 2: Summary of Chan’s Improvement Attempts

Study Methodology Findings Reference
Noise associated with 
the analysis of 
diagnostic plots 
involving	fluctuating	
and random functions in 
the time domain.

•	 Spectral Analysis The developed software aimed to mitigate the high 
noise in Water-Oil Ratio (WOR) data points by 
exploring autocovariance and autocorrelation, 
providing insight into the frequency of WOR in the 
time domain. The results indicate that coning can be 
reasonably closely modeled as a low-order 
autoregressive process with a narrow spectrum. 
However, the model’s capability is limited to 
distinguishing between coning and non-coning 
issues, especially in normal high WOR scenarios.

Egbe & Appah, 
2005

Classification	of	
Excessive Water 
Production Issues and 
WOR	Deficiencies

•	 WOR vs RF 
Reservoir characteristics

•	 Tree-based ensemble 
classifiers

Considering three scenarios—pre-water production, 
post-water production with static reservoir features, 
and post-water without static reservoir 
characteristics—the Water-Oil Ratio-Reservoir 
Factor (WOR-RF) plot demonstrates accurate 
forecasting rates of at least 90%, 93%, and 82%.

Rabiei et al., 
2009

Artificial	Neural	
Network Models for 
Diagnosing Water 
Production

•	 Data obtained after 
simulation was used to 
develop	two	artificial	
neural network models

•	 Artificial	Neural	
Network (ANN)

While the data noisiness poses challenges for 
developing a diagnostic model, the neural network 
model successfully forecasted the water cut for the 
well’s last four years of production, achieving a high 
regression	coefficient	of	0.9985.

Shola, 2017

Support Vector Machine 
for Pattern Recognition 
in Water Control 
Diagnostic Plots

•	 Supervised machine 
learning (ML) 
technique,

•	 Support Victor Machine 
(SVM)

The	model	was	developed	efficiently	to	distinguish	
the various Chan’s signature of water problems, with 
an accuracy of 78%.

Mukhanov  
et al., 2018

Practical Machine 
Learning Approach for 
Identifying Chan Plot 
Signatures

•	 Machine learning 
(Multiclass 
classification	problem)

By simplifying features and improving the data 
quality used in the Chan plot signature recognition 
challenge, the accuracy of the Machine Learning 
(ML) model increased. The Radial Basis Function 
(RBF) Support Vector Machine (SVM) algorithm 
achieved an estimation of 0.90, while the nearest 
neighbour model achieved the highest f1-score of 
0.93.

Garcia et al., 
2019

Recognition of Multiple 
Chan Signatures in 
Wells Exhibiting 
Diverse Mechanisms 
Across Lifecycle

•	 Chan plots as images
•	 CNN (Convolutional 

Neural Network)
•	 YOLO as an Object 

detector

The	application	is	considered	a	novel,	as	it	is	the	first	
to	identify	different	Chan	signatures	and	patterns	that	
a well can exhibit during production with an 
accuracy exceeding 80%.

Abdelaziem  
et al., 2022
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Another	 effort	 addressed	 the	 limitation	 of	 the	Chan	
diagnostic plot, especially for the coning cases (Rabiei 
et al., 2009). This work noticed a disagreement in the 
WOR-D slope compared to the Chan idealistic result. In 
response, they proposed a WOR vs. Recovery Factor 
(RF)	plot	to	identify	the	different	water	problems	origi-
nating from multiple reservoir parameters models. They 
achieved this by extracting hidden predictive data points 
from	the	plot	using	Tree-Based	Ensemble	classifiers	and	
a Logistic Model Tree, aiming for more improvement. 
They considered three scenarios, pre-water production 
and post-water production with static reservoir charac-
teristics, and post-water production using only dynamic 
data (WOR Points). They extracted a total of 15 new 
dynamic points corresponding to RF, as shown in Fig-
ure 5, and simulated various water patterns. The Analy-
sis of Variance (ANOVA) technique was used to exam-

ine the mean for these parameters, resulting in accuracy 
rates of at least 90%, 93%, and 82%, respectively for 
each scenario (Rabiei et al., 2009). However, this model 
has limitations regarding the utilization of static reser-
voir features, which are not always available and com-
prehensive. Additionally, using static reservoir charac-
teristics alone to identify the water problem is theoreti-
cally weak, due to the changes in relative permeabilities 
by the means of saturation and mobility variation be-
cause	of	pressure	drop.	Furthermore,	 the	modifications	
in the reservoir geomechanics resulting from production 
impact	 water	 flow	 behaviour	 within	 the	 reservoir	 and	
contribute to post-production water problems. In addi-
tion, the simulated data appear smoother compared to 
the actual production data, explaining the lower accura-
cy reported when relying solely on dynamic surface 
WOR points, as actual data poses greater challenges.

Figure 5: WOR vs RF (Rabiei et al., 2009)

Figure 6: Fitted WOR points used as a feature by (Mukhanov et al. in 2018)
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Additionally,	 deep	 learning,	 specifically	 Artificial	
Neural Networks (ANN), were applied to diagnose wa-
ter problems (Shola, 2017). Unfortunately, Chan’s sig-
natures were not distinguishable from the real produc-
tion data. However, a breakthrough was made by intro-
ducing	Chan	plots	as	a	multi-class	classification	problem	
using	 supervised	machine	 learning	 techniques,	 specifi-
cally support vector machine algorithm (SVM) (Mukh-
anov et al., 2018). They used around 10,000 actual com-
pletion	 data	 sets.	 The	 model	 identified	 four	 patterns	
(Constant WOR, Normal Displacement, Multilayer 
channeling, and Rapid channeling) with an accuracy of 
78%. However, this model ignored the coning problem 
and	used	fitted	WOR	points	as	a	scaled	one-dimensional	
(1D)	 vector	 (features),	 presenting	 a	 fixed	 number	 of	
points per pattern (20) points. This approach neglected 
the pattern period variation without capturing the whole 
signature.

A novel approach was demonstrated by Garcia et al. 
(2019) to improve Mukhanov et al. (2018) work by ap-
plying the slope as a feature instead of the WOR points. 
The number of features was reduced from 20 to two per 
pattern,	with	slope	coefficient	extracted	from	the	poly-
nomial equation after matching the WOR data point in-
stead	 of	 the	 fitted	 data	 points	 method.	 This	 approach	
significantly	 increased	 the	accuracy	 to	more	 than	90%	
across various applied algorithms (nearest neighbour, 
naïve Bayes, liner SVM, and RBF) (Garcia et al., 2019). 
Figure 6 and Figure 7 present the WOR data point and 
slope approaches as features for model development.

However, all the models mentioned above could de-
tect only one pattern over the well life cycle and couldn’t 
identify and capture the change in the slope directly to 
mitigate the problem before it entirely occurs. This limi-
tation addressed by developing a computer vision appli-
cation based on a Conventional Neural Network (CNN) 
to	distinguish	the	different	Chan	patterns	that	the	single	
well can exhibit during its production life. Using the You 

Only Look Once (YOLO) algorithm for object detec-
tion, they detected channeling and coning patterns with 
a	confidence	score	higher	than	80%	accuracy,	inputting	
Chan plot as an image (Abdelaziem et al., 2022). How-
ever, the YOLO algorithm may struggle with detecting 
many objects in a single image, especially small objects 
like scatter point trends, due to its rigid approach and 
limited capacity. Therefore, it may not accurately detect 
and classify many objects. Additionally, the model cap-
tures the patterns from the image after they are fully ma-
terialized which does not help in tracking and early 
problem determination. This explains the need for an 
interactive model that tracks every point and warns if 
there is any pattern change to mitigate any complication 
early on. Moreover, presentation of the Chan plots as 
images for deep learning requires a large set to enhance 
the	 accuracy.	They	 initially	 scored	 67%	 from	 the	 first	
patch, but after using additional data and applying active 
learning, accuracy increased to more than 80%. Another 
issue	is	the	failure	to	consider	other	changes	that	affect	
the	well	production	profile	and	WOR	trend	such	as,	de-
pletion, drawdown, stimulation, and any addition or re-
moval of perforation within the well life cycle it didn’t 
take into account while labeling.

Furthermore, this review aims to contribute to the im-
provement of Chan’s diagnostic plot as a more precise, 
rapid, and real-time surveillance tool for water produc-
tion problems. Building upon the slope model (Garcia 
et al., 2019), this review proposes an interactive model 
that	 employs	 a	 fixed-size	 “partition”	 that	 slides	 (rolls)	
over a time series or sequence of data points. Within 
each	window,	a	polynomial	fit	calculates	the	slope	and	
intersection, allowing the model to track changes in 
these values over time, as illustrated in Figure 8. This 
technique has the advantage of identifying abnormal 
points	 in	slope	shifts	with	greater	accuracy,	 influenced	
by the chosen window size and intersection values. No-
tably, the suggested model’s features (WOR, WOR-D, 

Figure 7: Slope used as a feature by (Garcia et al., 2019)
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slope, and intersection) form a matrix, making it insensi-
tive to the pattern period.

7. Future Directions

Suggestions for future research directions to address 
gaps	identified	in	the	review	include:

[1]  Development of a real-time model capable of 
continuously tracking slope changes in Chan pat-
terns. This model should leverage a fusion of 
Water-Oil Ratio (WOR) data points and temporal 
analysis techniques, such as time series and roll-
ing windows functions. The goal is to enable the 
early detection of water-related issues, facilitat-
ing timely mitigation of water problems and in-
creasing the potential for higher oil recovery.

[2]  Development of Interactive algorithms for detect-
ing outliers sensitive to WOR and its derivative 
WOR-D points.

[3]  Conducting a comprehensive examination of the 
coning behaviour interpretation based on empiri-
cal	field	data.	This	research	should	include	inte-
grating coning behaviour into the learning pro-
cess to enhance the model’s ability to capture a 
broader spectrum of patterns.

[4]  Leveraging slope shifting in the layering system 
to enhance reservoir characterization. This in-
volves discerning the presence of permeable lay-
ers and induced fractures post-production. The 
approach integrates Chan›s interpretational 
framework with geological attributes from the 
core and 4D-seismic data. This integrative ap-

proach is particularly pertinent for addressing 
reservoir geocomplexity issues, such as faults 
and channel communication, and determining 
flow	units.	It	holds	significance	within	the	context	
of enhanced oil recovery (EOR) projects.

8. Conclusion

In conclusion, this paper addressed the causes and ef-
fects of excessive water in both well integrity and facil-
ity scale and recovery factor at the reservoir scale. Ex-
cessive	water	mechanisms	were	classified	and	discussed.	
The Chan diagnostic plot was deliberated in detail, em-
phasizing its application as standalone and integration 
with other tools based on their availability and complex-
ity of the water production problem. Additionally, future 
directions for improving Chan’s interpretation were out-
lined. Consequently, the following conclusions can be 
drawn.

[1]  The review highlights the traditional diagnostic 
methods for excessive water production, under-
scoring	the	significance	of	regular	sample	analy-
sis and baseline establishment. While well logs 
are reliable, there are technical and economic 
drawbacks	associated	with	them.	Efforts	to	expe-
dite the logging process and enhance analysis 
should be prioritized to extend their applicability 
to reservoir water problems.

[2]	 	The	review	also	emphasized	the	effectiveness	of	
Chan	 plots	 in	 diagnosing	 water	 influx	 mecha-
nisms like channeling and coning across various 
reservoir and well conditions. Furthermore, it 
highlighted the value of integrating Chan plot in-
terpretation with existing tools like well logs and 
simulations	for	a	more	comprehensive	identifica-
tion of water production patterns.

[3]  The review focused on recent advancements in 
Chan plot interpretation using machine learning 
models.	These	models	offer	significant	advantag-
es by automating plot interpretation, leading to 
increased	accuracy	and	efficiency	 in	 identifying	
water	production	issues.	While	these	models	offer	
substantial	benefits,	future	research	should	focus	
on developing models that excel at early pattern 
detection through real-time data analysis and in-
teractive capabilities. Such models have the po-
tential to revolutionize water production manage-
ment by enabling proactive intervention strate-
gies, ultimately leading to improved well 
productivity	and	overall	production	efficiency.

Figure 8: Rolling Window with fixed size detecting slope 
and intersection
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SAŽETAK

Pregled primjene Chanova dijagrama i nedavno razvijenih naprednih modela  
za utvrđivanje prekomjerne proizvodnje slojne vode

Slojna voda jedan je od glavnih fluida povezanih s proizvodnim ciklusom u naftnoj industriji, koji je potrebno pažljivo 
razmatrati zbog utjecaja na okoliš, izgradnje postrojenja za obradu fluida i ekonomskoga utjecaja. Tijekom godina razvi-
jene su različite metode za otkrivanje uzroka prekomjerne proizvodnje slojne vode. Te metode obuhvaćaju cijeli niz 
metoda, od pouzdanih i skupih, kao što su karotažni podatci, do manje točnih metoda, koje se koriste dostupnim podat-
cima o proizvodnji te podatcima o vodo-naftnom faktoru (eng. Water-Oil Ratio, WOR), kao što je Chanov dijagram. Iz 
Chanova dijagrama vidljivo je da tijekom proizvodnje ugljikovodika do prekomjerne proizvodnje slojne vode dolazi zbog 
različitih uzročnika uključujući konstantan WOR, istiskivanje fluida, kanalno strujanje (strujanje istiskujućega fluida) i 
konusiranje. Međutim, ručna interpretacija ovih dijagrama često dovodi do zbunjujućih rezultata zbog pogrešaka (šumo-
va) prisutnih u stvarnim podatcima. Modeli strojnoga učenja poboljšali su točnost tumačenja, no još uvijek ostaju ogra-
ničenja vezana uz otkrivanje obrazaca proizvodnje vode koji se pritom razvijaju. Ovaj rad daje pregled primjene Chano-
vih dijagrama i njihove integracije s postojećim dijagnostičkim alatima za otkrivanje uzročnika prekomjerne proizvodnje 
vode. Rad je fokusiran na nedavno razvijen napredni model koji se koristi strojnim učenjem posebno osmišljenim za 
poboljšanje interpretacije Chanovih dijagrama. U ovome su preglednom radu istaknuta ograničenja tradicionalnih me-
toda tumačenja Chanovih dijagrama i istraženo je kako nedavno razvijen napredni model može riješiti ta ograničenja. 
Dodatno, u radu se ukratko raspravlja o potencijalu interaktivnoga modela za kontinuirano praćenje uzroka prekomjerne 
proizvodnje slojne vode. Na kraju, rad daje preporuke za buduće smjerove istraživanja.

Ključne riječi: 
prekomjerna proizvodnja slojne vode, vodo-naftni faktor, karotažni dijagram bušotine, strojno učenje
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