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Abstract – In cellular networks, with the increase in demand, designing a base station (BS) with less energy consumption remains a 
challenge for researchers. Also, in a heterogeneous network that is dense in nature, the distribution of numerous small BS has become 
a challenging issue in terms of expanding the cost of energy. In this paper, we investigate an optimized nature-based cluster sleep 
technique for reducing the power consumption in the BS as well as the interference in the network. The small BS are grouped along with 
the interference, which is assumed to be the cluster, which is quite large, where the fire fly (FF) algorithm is applied to frame the sleep 
technique for the small BS. These FF algorithms, which are based on fire fly attractiveness behavior, improve connectivity among the 
base stations in an energy-efficient way. The outcomes reveal that the projected sleep technique with the FF algorithm reduces the power 
consumed by the BS and also gives satisfactory performance for mobile users. The results were compared with the other techniques, such 
as BS conventional sleep mode and BS sleep mode with LEACH. The proposed method outperformed the other techniques. 

Keywords: Firefly algorithm, Base station, sleeps technique, power consumption, and heterogeneous network

1.  INTRODUCTION

In cellular networks, reducing energy consumption is 
a challenging topic of interest and is beneficial for both 
telecommunication operators and the global environ-
ment [1]. Also, in recent years, there has been a tre-
mendous increase in the usage of mobile data, which 
is predominantly determined by smart phones, which 
offer user-friendly internet access and a variety of mul-
timedia applications. On the whole, information and 
communication technology (ICT) is accountable for 
about 2% of CO2 emissions globally, and it will reach 
4% in 2021 [1]. The conventional BSs have not been 
able to offer quality of service (QOS) to mobile users. 
According to the 2012 census, there were nearly 5.8 
million conventional BSs worldwide, and it was expect-
ed to be more than 10 million in 2020 [2]. As of now, 
the global number of small BS (SBS) has now exceeded 

the conventional numbers. Thus, the increase in ener-
gy demand over the past few years has given way to 
green communication in cellular networks. And it is a 
well-known fact that the cellular network BS is the one 
that consumes two-thirds of the energy consumed by 
the whole radio access network. Consequently, reduc-
ing the energy utilized by the BS has become the main 
topic of research.

Energy-efficient BS can be achieved from many per-
spectives, like using energy-efficient power amplifiers, 
making use of renewable resources, and also deploying 
relays and small BSs. Cell zooming can also be used to 
reduce the energy consumption of BS. In practice, cell 
zooming reduces the number of active BS when there 
is low traffic. At the point when few BSs are switched 
off, the remaining active BSs tend to zoom out for an 
uninterrupted quality of service (QOS). It is necessary 
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to control the transmission power of the cellular net-
work, as 50–60% of total energy is consumed by the 
processing circuit and cooling system when the BS is in 
a working state [3]. According to the data set presented 
in [4], the data traffic during the day is much larger than 
the data traffic at night. And also, it slightly varies from 
normal work days to the end of the week. As discussed, 
earlier SBS can be maintained and deployed easily as 
compared to conventional ones, which also require low 
transmission power. Of the advantages stated above, 
these SBS form a heterogeneous network (HNET) along 
with the macro-BS (MBS). Basically, the main idea be-
hind SBS is to reduce the heavy load encountered by 
MBS for a better QOS. But on the other side, due to the 
large number of SBS, the newly formed HNET experi-
enced severe interference in terms of both cross-tier 
interference and co-tier interference [5].

The source of intrusion is the variance in power 
among the nodes due to the deployment of cells, 
which are not planned beforehand as they can be 
switched on and off at any time or moved anywhere. 
These interferences may greatly reduce the HNET's 
functioning. Further, more severe interference leads 
to radio link failure in mobile equipment (ME), and 
due to unreliable control channels, the user might 
not continue to use the existing service or be unable 
to request a new service. To avoid all these problems, 
inter-cell interference coordination can be used for its 
proper operation. FF is a bio-roused method that has 
been utilized for settling nonlinear optimization issues. 
It depends on perceptions from the social bug settle-
ments, where every person (for example, a firefly spar-
kling through bioluminescence) seems to work for its 
own advantage, but then the gathering in general per-
forms to be profoundly coordinated [6]. FF algorithm 
firefly's brightness relies upon the fitness work. The ob-
jective of the FF is to achieve effective self-coordination 
among BSs. Fitness esteem chooses the brightness of 
the BS; henceforth, the fireflies with lesser fitness es-
teem move towards more prominent fitness esteem. 
BSs are considered haphazardly conveyed fireflies [7]. 
In [8], the constraint of firefly measurement is repealed 
by utilizing the hybrid approach of particle swarm op-
timization (PSO) and firefly measurement, which incor-
porates the usefulness of PSO in firefly measurement 
and, additionally, works on the conduct of fireflies en-
gaged in the search for a better solution.

In [9], the author sets up a cluster for BS using the 
FF algorithm that minimizes the cost function. The ob-
jective of the FF algorithm is to observe the particle 
position of those outcomes for the best assessment of 
guaranteed fitness function. At the point when groups 
are framed with the FF algorithm, all bunch hubs initi-
ate the transmission of information to their individual 
group heads. Group heads gather information from 
hubs and move to the base station for less energy uti-
lization [10]. The author in [11] has suggested a meth-
od for energy-efficient clustering where they start by 

producing the irregular population of n fireflies. Every 
particle computes its light force (fitness). Without fail, 
all fireflies are arranged by request, diminishing as in-
dicated by their fitness and view as the best one. Later, 
with a pairwise correlation of the light power, the fire-
fly with less light pushes toward a more splendid one. 
This development relies on the distance between two 
fireflies. During the process, the best-up-to this point 
arrangement is refreshed until terminal measures are 
fulfilled. Firefly measurement is by all accounts an ide-
al improvement apparatus peculiarity because of the 
impact of the allure work, which is exceptional to the 
FF conduct [12]. Firefly doesn't retain or recollect any 
set of experiences of better circumstances, and they 
may wind up missing their circumstances [13]. Energy 
consumption of the node is estimated on the premise 
of transmission. The energy examination additionally 
demonstrates that the energy consumed-through cor-
relation among LEACH, direct transmission, and the 
fast firefly algorithm performs better-through-less en-
ergy [14].

The Python implementation of the framework is used 
to assess its performance using real-world network 
construction datasets from a 5G operator. Through 
thorough simulations, the benefits given by net-
work slicing are studied in terms of the attained data 
rates for V2X, blocking likelihood, and handover ratio 
through various mixtures of traffic types. The findings 
showed that when network traffic load in a region of 
interest and end users' quality of service are taken into 
consideration, appropriate resource splitting is crucial 
for slicing across V2X and other varieties of services.

This paper deals with the sleep mode technique used 
to reduce BS power consumption by the FF algorithm 
used to formulate the sleep technique. Interference is 
reduced by the FF algorithm, and the proposed FF algo-
rithm optimizes the power consumed by the base sta-
tion. The remainder of the paper is structured as follows: 
In Section II, the proposed model and general problem 
are discussed. Section III discusses the FF algorithm to 
formulate the sleep technique, and interference reduc-
tion is discussed. Section IV demonstrates the perfor-
mance and simulation results of the proposed algo-
rithm. Section V deals with the conclusion of the paper.

2. 5G SMALL CELL NETWORK MODEL 

Let us consider a downlink model from the above 
fig. 1 of a HNET. In this model, each tier is considered a 
cellular network, with macro and small BS having their 
own prescribed radius. The mobile equipment that 
connects the concerned BS is named macro mobile 
equipment (MME) and small mobile equipment (SME). 
In Fig. 1, it is assumed that the mobile equipment is dis-
tributed uniformly, and each mobile equipment is as-
sociated with SBS and MBS. The whole frequency band 
is shared by both MBS and SBS, which are in dissimilar 
clusters. The bandwidth of the system is given by Bs, 
and the frequency reuse factor is one for the system.
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Fig. 1. Small cell and macro cell network model in 
5G systems

The transmission power of SBS b, and MBS m is given 
by Pb and Pm respectively. The path loss between mo-
bile equipment and BS for HNET outdoor network is 
given by the equation,

PL =C + 10 log 10 (Rƞ) + Sr (1)

where, PL is path loss between mobile equipment 
and BS, R is distance amid BS and mobile equipment, 
ƞ is the path loss component and Sr deals with random 
shadowing and it is zero mean random variable. After 
measuring the path loss channel gain is measured by

Cg = 10-P
L/10(2). Where PL is the value of path loss. 

Next step is to determine the signal to interference and 
noise ratio (SINR). In general, SINR is measured for typi-
cal mobile user w.r.t BS y is given by

(2)

where, Np is the noise power which is a constant, Tp is 
total received power from the whole network and is 
given by Tp= ∑yϵφWy /Plf (y) where φ is related to pois-
son point process where Wy is assumed as {Wy}yϵφ and 
is given by a collection of random variables which are 
identically and independently distributed.

The path loss function Plf is given by

Plf (|y|) = (C|y|)α with the constants C>0 and α>2 (3)

In this proposed method SINR is given for ME e that 
connects to SBS d as

(4)

Here Pd,e is transmission power of SBS d with ME e , 
Cgd,e is the channel gain between ME e and SBS d, Pm,e is 
transmission power of MBS m when is related with Me 
e. similarly Cg m,e is the channel gain of MBS m and ME e. 
Pb,e is the transmission power of SBS b when is related 
with ME e. similarly Cg m,e is the channel gain amid SBS b 
and ME e. N denotes the number of MBS and N denotes 

the number of SBS (N=6). Np is the noise power of the 
network and qb,e =1 implies the connection between 
ME e and SBS b.

Similarly, the SINR for MBS m w.r t ME t is given by,

(5)

3. POWER MANAGEMENT MODEL FOR 5G 
SYSTEMS 

Basically, the power consumed by a base station de-
pends on two types of power consumption. One is the 
dynamic power, and the other is the static power. Static 
power consumption at the base station is active even if 
there is no connection from users. On the other hand, a 
dynamic base station is a function of load or traffic [14]. 
The power consumption of SBS is given by

(6)

where, Pb,e is the transmission power of SBS when it is 
related with ME e, α is a constant which is allied with 
usage of data traffic. PSBS is the SBS transmission pow-
er. Pam denotes the power consumed by SBS in active 
mode which is static in nature. This Pam is independent 
of the transmission power. Pam is the power consump-
tion of SBS in sleeping mode. The small cell base sta-
tion components are shown in Fig. 2.

Fig. 2. Small cell base station components

4. FF ALGORITHM FOR SLEEP TECHNIQUE FOR 
OPTIMIZATION

The FF algorithm is a metaheuristic type of swarm 
intelligence technique where the behavior of FF is fol-
lowed. FF is a non-linear algorithm that has multiple 
agents and is based on swarm intelligence algorithms. 
The FF [15] algorithm is one that is derived from nature, 
as it is enthused by the behavior of fireflies. Fireflies are 
insects or beetles that have wings that produce light 
and blink at it. This light does not have any ultraviolet 
or infrared frequencies; rather, it is produced chemical-
ly from the lower abdomen, which is called biolumines-
cence. The FF algorithm, which was first introduced by 
Yang [16], is based on bioluminescent communication 
and was assumed with the following formulations: 

Fireflies will be attracted by every other firefly in spite 
of the sex since it is unisexual in nature.
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Brightness and attractiveness are proportional to 
each other; a brighter firefly will attract a less bright 
firefly. However, when the distance between two fire-
flies is increased, their attractiveness decreases.

On the other hand, it will move around randomly if 
the level of brightness is the same.

Thus, when we relate the brightness of fireflies to 
their objective function, their attractiveness makes 
them competent to divide themselves into smaller 
groups, and each subgroup swarms around the neigh-
borhood model.

Here, the brightness Br of a firefly at a point is defined as 

Br (p) α fn (p) (7)

Where p is dimensional point in dimensional space 
and fn (p) is the fitness function which is defined. Br (p) 
is directly proportional to the value of fn (p).

As discussed, earlier attractiveness Ar depends on 
the distance amid two fireflies and the brightness is 
indirectly proportional. The attractiveness decreases 
between the fireflies as the distance increases. Thus, at-
tractiveness equation is defined by 

Ar(p) = Aroe
-γd2 (8)

where, Aro is the attractiveness at d=0 and γ is con-
stant value. The movement of firefly a toward more at-
tractive firefly b is given by the equation

(9)

where, dab is the distance amid fireflies a and b, i is the 
iteration number.

The brightest firefly moves randomly and given by 
the equation

pa
i+1=pa

i + αεi (10)

were, αεi randomization parameter.

Firefly measurement is productive and simple to ex-
ecute. It is likewise reasonable for parallel execution. 
Nonetheless, investigations show that it is delayed in 
convergence and effectively gets caught in the neigh-
borhood ideal for multimodal issues. 

Likewise, the updates exclusively rely on current 
execution, and no memory of past best solutions or 
exhibitions is kept. That might prompt losing better 
solutions. Besides, since the boundaries are fixed, the 
search conduct stays very similar for any condition in all 
emphases. Subsequently, changing the standard firefly 
measurement to support its exhibition has been one 
of the examination issues. The network power man-
agement optimization flow in small cell 5G systems is 
shown in Fig. 3.

An FF algorithm is implemented in the proposed 
methodology, where power is consumed efficiently in 
cellular BS. Initially, the BS in the network is grouped, 
and every BS in the group shares information related 
to residual energy, its distance from other BS in the 

group, and the number of retransmissions. This infor-
mation is used to choose the active BS. After every 
round, this information is modernized on every BS, and 
regrouping and macro-BS selection are carried out. In 
the firefly-based method, the value of residual energy 
plays an important role, as this value is shared between 
the other BS in the network. The distance between any 
two BS in the group is measured. Based on the values 
of residual energy and later, an active BS is found in the 
network, from macro BS to Femto BS. The BS with low 
power is enticed toward the high-power BS, and the 
attractiveness factor is measured. Any two Femto BS 
having the same power can be selected randomly. For 
5G beam-forming heterogeneous networks, an outage 
probability analysis is proposed, which consists of a cel-
lular multi-layer network. For the proposed beamform-
ing heterogeneous network, the connotation possibil-
ity, the number of users in a layer, and the serving BSs 
probability density function are derived [17, 18].

Fig. 3. Network power management optimization 
flow in small cell 5G systems

Likewise, the updates exclusively rely on current 
execution, and no memory of past best solutions or 
exhibitions is kept. That might prompt losing better 
solutions. Besides, since the boundaries are fixed, the 
search conduct stays very similar for any condition in all 
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emphases. Subsequently, changing the standard firefly 
measurement to support its exhibition has been one 
of the examination issues. The network power man-
agement optimization flow in small cell 5G systems is 
shown in Fig. 3. 

An FF algorithm is implemented in the proposed 
methodology, where power is consumed efficiently in 
cellular BS. Initially, the BS in the network is grouped, 
and every BS in the group shares information related 
to residual energy, its distance from other BS in the 
group, and the number of retransmissions. This infor-
mation is used to choose the active BS. After every 
round, this information is modernized on every BS, and 
regrouping and macro-BS selection are carried out. In 
the firefly-based method, the value of residual energy 
plays an important role, as this value is shared between 
the other BS in the network. The distance between any 
two BS in the group is measured. Based on the values 
of residual energy and later, an active BS is found in the 
network, from macro BS to Femto BS. The BS with low 

power is enticed toward the high-power BS, and the 
attractiveness factor is measured. Any two Femto BS 
having the same power can be selected randomly. For 
5G beam-forming heterogeneous networks, an outage 
probability analysis is proposed, which consists of a cel-
lular multi-layer network. For the proposed beamform-
ing heterogeneous network, the connotation possibil-
ity, the number of users in a layer, and the serving BSs 
probability density function are derived [17, 18]. 

5. RESULTS AND DISCUSSION 

Fig. 4 displays the distribution of macro- and small-
cell base station nodes in the 5G network. Macro Base 
Stations (BSs) are used as a baseline and provide uni-
form coverage.Micro and pico/femto (often also re-
ferred to as small) cells are equipped with lower power 
BSs which are deployed in hotspots to increase capac-
ity, or in dead spots unreachable by macro BSs in order 
to increase coverage. 

Fig. 5 illustrates the number of active base stations with 
25% initial base station energy. The results imply that the 
proposed FA outperformed the existing methods. Fig. 6 
shows the residual energy in a small cell 5G network 

with 25% initial base station energy. The total energy 
consumed by the base station during its operational 
time can be estimated by multiplying the energy con-
sumption rate with operational time. 

Fig. 4. Distribution of Macro and Small Cell Base Station Nodes in 5G Network      

Fig. 5. Number of active base station with 25% initial base station energy
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The number of inactive 5G base stations with 25% 
initial energy is shown in Fig. 7. If a base station is con-
sidered inactive when its energy level is below 25% of 
the total capacity, then the number of inactive base 
stations can be calculated by multiplying total num-
ber of base stations with probability that a base station 
is inactive due to having less than 25% energy. Fig. 8 
shows the throughput of a small-cell 5G network with 

25% initial energy. It is denoted that the proposed FA 
has more number of throughput than other methods. 

The distribution of small base stations is a dynamic 
process that considers the evolving needs of users, traf-
fic patterns, and the characteristics of the deployment 
area. The goal is to create a flexible and adaptive net-
work that efficiently meets the demands of 5G services.

Fig. 6. Residual energy in small cell 5G network with 25% initial base station energy

Fig. 7. Number of inactive 5G base station with 25% initial energy

Fig. 8. Throughput of small cell 5G network with 25% initial energy
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Fig. 9 displays the small-cell 5G network with 50% ini-
tial base station energy. 

The residual energy in a small cell 5G network with 
50% initial base station energy is displayed in Fig. 10. 
The number of inactive 5G base stations with 50% 
initial energy is shown in Fig. 11. Fig. 12 shows the 
throughput of a small-cell 5G network with 50% initial 

energy. The small-cell 5G network with 75% initial base 
station energy is illustrated in Fig. 13. Fig. 14 displays 
the residual energy in a small-cell 5G network with 75% 
initial base station energy. Fig. 15 shows the number of 
inactive 5G base stations with 75% initial energy. Fig. 
16 shows the throughput of a small cell 5G network 
with 75% initial energy. 

Fig. 9. Small cell 5G network with 50% initial base station energy

Fig. 10. Residual energy in small cell 5G network with 50% initial base station energy

Fig. 11. Number of inactive 5G base station with 50% initial energy
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Fig. 12. Throughput of small cell 5G network with 50% initial energy

Fig. 13. Small cell 5G network with 75% initial base station energy

Fig. 14. Residual energy in small cell 5G network with 75% initial base station energy
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Fig. 15. Number of inactive 5G base station with 75% initial energy

Fig. 16. Throughput of small cell 5G network with 75% initial energy

Fig. 17 displays the small-cell 5G network with in-
verse Gaussian traffic arrival. Actually, in an inverse 
Gaussian traffic arrival model, the inter-arrival times of 
packets follow an inverse Gaussian distribution. This 
type of traffic model can be used to represent bursty 
traffic patterns commonly observed in communication 
networks. Fig. 18 shows the residual energy in a small-
cell 5G network with inverse Gaussian traffic arrival. 
This process typically involves simulation or analyti-
cal modeling, where you simulate the behavior of the 
network over time and observe the energy dynamics. 
Depending on the complexity of the model and the 
simulation environment, this calculation may require 
advanced tools such as network simulators or custom 
software implementations. Fig. 19 displays the number 
of inactive 5G base stations with an inverse Gaussian 

traffic arrival. This process typically involves simulation 
or analytical modeling, where you simulate the behav-
ior of the network over time and observe the energy 
dynamics. Depending on the complexity of the model 
and the simulation environment, this calculation may 
require advanced tools such as network simulators or 
custom software implementations. The throughput of 
a small-cell 5G network with inverse Gaussian traffic ar-
rival is shown in Fig. 20. The calculation of the through-
put of a small-cell 5G network with inverse Gaussian 
traffic arrival involves modeling the traffic arrival pat-
tern, resource allocation, and network conditions.

From this research, it is experienced that manag-
ing residual energy in small cell 5G networks with in-
verse Gaussian traffic arrival requires adaptive energy 
management strategies, accurate energy prediction 

Volume 15, Number 5, 2024



446

models, and careful optimization to balance energy ef-
ficiency with network performance requirements. The 
attained results address these challenges, operators 

can maximize the operational lifetime and sustainabil-
ity of small cell deployments while ensuring high-qual-
ity service delivery to users.

Fig. 17. Small cell 5G network with inverse Gaussian traffic arrival

Fig. 18. Residual energy in small cell 5G network with inverse Gaussian traffic arrival

Fig. 19. Number of inactive 5G base station with inverse Gaussian traffic arrival

International Journal of Electrical and Computer Engineering Systems
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In 5G cellular networks, lowering base station power 
consumption is an important objective for a number of 
reasons, including the opportunity to deploy more en-
ergy-efficient networks and environmental sustainabil-
ity, as well as operating cost reductions. An optimiza-
tion technique inspired by nature, the Firefly Algorithm 
(FF), can be used to improve a number of variables, 
including wireless network power usage. Energy effi-
ciency, cost savings, environmental impact, extended 
network lifespan, capacity and performance optimi-
zation, adaptability to dynamic environments, regula-
tory compliance, trade-offs, and challenges are some 
possible effects and advantages of using the Firefly 
Algorithm for power optimization in 5G base stations. 
In conclusion, using the Firefly Algorithm to lower 5G 
base station power usage can have a variety of advan-
tageous effects, including sustainable environmental 
and economic gains. In summary, leveraging the firefly 
algorithm for performance measurement and optimi-
zation of small cell power management in 5G networks 
can lead to significant improvements in network ef-
ficiency, quality of service, energy efficiency, capacity 
optimization, and overall network performance.

6. CONCLUSION 

In order to improve interior user coverage and cell 
capacity in the 5G network, low-power small-cell base 
stations are deployed in residential and commercial 
buildings. However, power consumption from macro- 
and small-cells has grown more than the former, and 
this is a possible issue that the proposed 5G network 
aims to address. In order to save energy in 5G net-
works, we presented firefly optimization-based power 
management in this study. Comparing the suggested 
firefly optimization to traditional power management 
strategies, simulation results demonstrate a notable 
improvement in energy conservation with increased 
throughput and decreased latency. In a 5G network, 
cutting power and limiting interference has several 

advantages, including lower operating costs, environ-
mental sustainability, better network performance, 
increased spectrum efficiency, and an improved user 
experience. These elements support a 5G network's 
overall performance and competitiveness.
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