
213Pomorski zbornik Posebno izdanje, 213-228

ISSN 0554-6397
Stručni članak
(Professional paper)

Deni Klen
E-mail: dklen@riteh.hr
Jonatan Lerga
E-mail: jlerga@riteh.hr
University of Rijeka, Faculty of Engineering, Vukovarska 58, 51000 Rijeka, Croatia
Irena Petrijevčanin
E-mail: ipetrijevcanin@uniri.hr
Center for Artificial Intelligence and Cybersecurity, University of Rijeka, R. Matejcic 2,
51000 Rijeka, Croatia

Txt and Tif File Compression Using Lzw, Huffman, and
Arithmetic Coding

Abstract

The paper compares compression methods such as Lempel-Ziv-Welch (LZW), Huffman, and arithmetic
coding applied to different large text and image datasets. Comparison is done based on metrics such
as execution time and compression ratio. LZW produced results of about 30 % median compression
ratio for all text records and a median of about 70 % for image records. In addition, Huffman coding
produced a compression rate of about 40 % median for text data and a median of about 55 % for
image data. Finally, arithmetic coding yielded results of about 70 % median for text compression and
about 55 % median for image data compression. The time required was lowest for LZW, followed by
Huffman, and worst for arithmetic coding.

Keywords: coding, LZW, Huffman, arithmetic coding, compression

1.1. Introduction

As our dependence on electronic media increases significantly each year with the
advancement of the digital age, so does the need to store these vast amounts of data.
Storage solutions become increasingly important as more data is created, processed,
and exchanged digitally. This is true for personal file storage and businesses and
organizations that need to store large amounts of data for various purposes such
as analysis, research, and development [2]. Therefore, investing in efficient data
compression techniques is crucial to keep up with the ever-increasing demand for data

214 Pomorski zbornik Posebno izdanje, 213-228

Txt and Tif File Compression...Deni Klen, Jonatan Lerga, Irena Petrijevčanin

processing and transfer. So, what exactly is data compression? Data compression is an
encoding technique used to transfer data from one representation to another, resulting
in a reduction in file or data size. In other words, the number of bits needed to represent
and store the data is smaller. However, from an information-theory point-of-view, the
main goal is to minimize the amount of data to be transmitted or stored [3]. Compression
algorithms can be divided into two types: (1) lossless and (2) lossy. Although their
names are self-explanatory, no data loss occurs with lossless data compression. The
compression is performed by the file with a smaller number of bits without losing
any information. On the other hand, lossy compression removes the unnecessary
data, reducing the size of the file [4]. The compressed file cannot be converted back
to the original file but rather to its approximation because some information is lost
during compression [5]. This paper briefly explains the operation of well-known
lossless compression algorithms such as Lempel-Ziv-Welch (LZW), Huffman [6],
and arithmetic coding. Then, they are compared based on their compression ratio, and
compression and decompression speed. The rest of the paper is structured as follows:
Section II discusses traditional and modern compression algorithms. Section III explains
and collects information about the database used and compares the algorithms based
on their performance on the database. Section V concludes the paper with a summary
and suggestions for future work.

1.2. Material and methods

In this section, we briefly review selected compression algorithms used in our
analysis.

1.2.1. Huffman compression

Huffman coding is a traditional compression algorithm based on the frequency
of characters, such that the character with the highest frequency gets the shortest
binary code. The algorithm was first proposed by David A. Huffman in 1952 and has
since become a staple for data compression applications [7]. It is a widely used and
implemented algorithm because it is fast, requires little computational power, and
provides good to very good compression ratios.

215Pomorski zbornik Posebno izdanje, 213-228

Txt and Tif File Compression...Deni Klen, Jonatan Lerga, Irena Petrijevčanin

Fig. 1. Flowchart of Huffman algorithm taken from [8]

The Huffman coding algorithm goes through the data and creates a frequency
table. It then recursively removes the last symbol from the table and merges it with the
second most frequent symbol until only one node remains. At the end of the recursion,
a tree is available from which an adaptive Huffman code can be generated for the given
data set. Once the tree is built, starting with the root, one branch is assigned a 0, and
the other branch is assigned a 1. As the tree is traversed, each symbol is assigned a
code value that is replaced during encoding or decoding. Also, to produce compressed
output, each symbol in the original code is replaced with the corresponding value from
the tree. To decompress the Huffman encoding, each Huffman symbol must be replaced
with the original symbol, as shown in Figure 1.

A. Implementation:

To implement and compress or decompress files with the Huffman algorithm
library dahuffman [9] is needed to install it, we use the command

216 Pomorski zbornik Posebno izdanje, 213-228

Txt and Tif File Compression...Deni Klen, Jonatan Lerga, Irena Petrijevčanin

Furthermore, implementing it is as follows for encoding, decoding, and training
sets.

1.2.2. Lempel-Ziv-Welch compression

The algorithm Lempel–Ziv–Welch, hence the name, was developed in 1984 by A.
Lempel, J. Ziv, and T. Welch. The algorithm is widely used, especially for GIF, PDF, and
TIFF formats. It uses a code table to represent a sequence of repeating bytes, allowing
good compression rates to be achieved without data loss. Although compression rates
can generally be high, the effectiveness depends heavily on the characteristics of the
data to be compressed [10].

One of the advantages of LZW is its simplicity of implementation. In addition,
its performance is not hardware heavy, which makes it a popular choice for various
use cases. However, it should be noted that LZW is not the most efficient compression
method for short and diverse data. Nevertheless, it is widely used due to its versatility,
ease of implementation, and lossless data compression.

The algorithm works with an empty dictionary that is traversed from left to right
in the original data to find sequences that are not in it. If the sequence is not in the
dictionary, it is added with a representative code. To compress the file, we traverse the
data and replace the longest repeating sequence with its code. Decompressing the file
is done by searching backward for the codes in the dictionary.

A. Implementation:

To implement and compress or decompress files with the Lempel–Ziv–Welch
algorithm library lzwpython [11] is needed. Implementation is as follows

Inside the compress function is also dictionary creation, so a separate function
call is not needed.

1.2.3. Arithmetic coding

Arithmetic coding is a lossless data compression technique that was first introduced
in 1976 and has become very popular due to its high compression ratios, lossless

217Pomorski zbornik Posebno izdanje, 213-228

Txt and Tif File Compression...Deni Klen, Jonatan Lerga, Irena Petrijevčanin

capabilities, and wide range of applications. Due to its adaptability, it can result in
more compact compressed data compared to other algorithms. Arithmetic coding
is well suited for small data sets but requires more computational effort than the
previously mentioned methods. As with Huffman coding, arithmetic coding requires
the probability distribution of the input symbols to be known in advance [12]. The basic
idea of arithmetic coding is to divide the unit interval into subintervals, each of which
represents a particular letter. The smaller the subinterval, the more bits are needed to
distinguish it from other subintervals. The idea of replacing each input symbol with
a codeword is bypassed. Instead, a stream of input symbols is encoded with a single
fraction, a number between 0 and 1, as compressed output [13].

A. Implementation:

To implement and compress or decompress files with the arithmetic coding
algorithm, the library arithmetic-compressor [14] is needed. Implementation is as
follows

1.2.4. Evaluation

For the evaluation, which will be discussed later, we wrote our own methods that
go through the entire folder we want to evaluate and take each file and run it through all
the methods. Each method then has its own timer that records the time for the encoding
and decoding process. This time does not include the time it takes to read or write. Once
all that is done, we need a function to compare original files and compressed files. This
is accomplished with the Python library os[15].

1.3. Case study

This section will describe the datasets used in this work and evaluate the thoughts
and processes.

1.3.1. Data Sets

For successful implementation and evaluation of the results, we need to prepare
data sets [16]. Compression datasets are used for comparison and evaluation of lossless

218 Pomorski zbornik Posebno izdanje, 213-228

Txt and Tif File Compression...Deni Klen, Jonatan Lerga, Irena Petrijevčanin

compression methods. Compression methods are usually applied to different file types,
but for this work, we chose to apply and evaluate them to text and image files (more
specifically, for the .txt and .tif formats). These formats were chosen because they
contain unformatted objects with no special styling, compression methods, formatting,
etc. Both datasets are divided into three groups. The text files are divided by context
type. The first dataset contains 35 speeches by Donald Trump, the more versatile dataset
in which words and characters are not often repeated. The second dataset contains song
lyrics, in which words and characters are simpler and are often repeated. It contains
49 artists and all song lyrics from their music bibliography. The last dataset is a large
file of movie scripts and books from which the movies were transcribed. Again, each
file in this group is very space intensive, ranging from 15 MB to 100 MB. The image
dataset is also divided into three groups by size: small - up to 15 MB, medium - from
15 to 100 MB, and large data over 100 MB. The first two datasets are based on a size
score and the third on a context score, where each image is a copy of the same original
grayscale image but has repeating pixels at different locations in the image, so we can
see how pixel placement affects time and compression ratios.

1.3.2. Evaluation

The evaluation of our work includes the computation and implementation of all
algorithms, as well as analysis of the results and drawing a conclusion from them. All
implemented algorithms were executed on a platform whose specification is shown in
Table 1. The results of the executed compression methods are stored in separate Excel
and CSV tables, which are divided into data sets. To evaluate the lossless compression
methods, the following data are stored: the original file size, the training or learning
time of the encoder, the encoding time, the decoding time, and the compression ratio
for each method. The compression ratio is the percentage difference of the file change
between two files.

Table 1: specification of the platform that has been used for the execution of the
programs.

RAM DDR4 - 16GB
Processor Ryzen 7 5800H
Number of cores of processor 16
Processor clock speed 3.2GHz
Operating system Windows 11 Pro - 64 bit

219Pomorski zbornik Posebno izdanje, 213-228

Txt and Tif File Compression...Deni Klen, Jonatan Lerga, Irena Petrijevčanin

1.4. Rezultati/Results

In this section, we present the raw results, divided and explained based on the
input databases and show some selected results from each database that best describe
the progress.

1.4.1. .txt

First, by looking through all the records, we can find and extract recurring patterns.
Lempel–Ziv–Welch algorithm had a compression reduction of about 24 to 35 percent
and a time rate that slowly increased with file size. In addition, the Huffman algorithm’s
compression size results were slightly better, ranging from 40 to 50 percent in reduced
size of compressed data, but the combined time was about twice as long as the LZW
algorithm. Finally, the arithmetic algorithm showed the best compression rates in the
70 to 75 percent range but with a much larger time overhead than the previous two
algorithms. Now let us take a closer look at the individual data sets.

A. First dataset:

In the first data set, the results follow the pattern described earlier. The best
compression ratio is obtained with the arithmetic coding and the best time with the
Lempel–Ziv–Welch method. If we take a closer look at the

Table 2: compression rates dataset 1

Original size (B) LZW (%) Huffman (%) Arithmetic (%)
14616 25.81 44.27 71.87
34486 26.98 43.86 71.99
49162 26.34 43.48 71.84
64560 26.47 43.20 71.78
78192 26.20 43.77 72.04
95916 26.47 43.39 71.88

results, we can see that the compression methods have almost the same efficiency for
the same method over the whole data, as shown in table 2. On the other hand, the time
cost is slightly larger than it may be expected on the arithmetic side. For the first two
methods, Huffman and LZW, it increases slowly, while the time required for arithmetic
coding increases in a much steeper curve, as shown in Table 3.

220 Pomorski zbornik Posebno izdanje, 213-228

Txt and Tif File Compression...Deni Klen, Jonatan Lerga, Irena Petrijevčanin

Table 3: combined time needed for compression and decompression dataset 1.

Original size (B) LZW (s) Huffman (s) Arithmetic (s)
14616 0.016 0.020 14.806
34486 0.031 0.058 35.335
49162 0.047 0.062 51.567
64560 0.066 0.068 66.736
78192 0.081 0.103 81.177
95916 0.099 0.121 109.430

B. Second dataset:

The results of the second dataset show us that the compression ratio is consistent,
but there is one important thing to mention. Files with more word repetitions and a
larger number of the same characters have a slightly better compression rate than
others. This is the expected result since all algorithms work with repeating characters
and patterns within the compression code. For example, in the data shown in Table
4, it can be seen that the penultimate file has better compression than the others, even
though it requires more memory. The time required for compression and decompression
follows the previous conclusions and grows with file, as shown in table 5, but with
the same execution options as described before. As can be seen, larger files with more
repetitions in their content require more time than files with the same file size but
whose content is more versatile. This difference is particularly evident in the arithmetic
encoding of inputs five and six, where file number six takes less time than file five
despite its larger size.

C. Third dataset:

On the third data set, we again see that the results are as for the previous groups.
The file compression for each of them falls within the range described, as shown in
the table 6, but the time consumption here is worth mentioning.

Table 4: compression rates dataset 2

Original size (B) LZW (%) Huffman (%) Arithmetic (%)
77505 30.99 42.68 71.76
113457 30.17 42.85 42.93
143729 30.84 42.93 71.91
170292 22.73 41.63 71.68
210141 28.85 41.96 71.43

221Pomorski zbornik Posebno izdanje, 213-228

Txt and Tif File Compression...Deni Klen, Jonatan Lerga, Irena Petrijevčanin

257379 27.26 45.34 72.20
322587 25.85 42.67 71.64

Table 5: combined time needed for compression and decompression dataset 2

Original size (B) LZW (s) Huffman (s) Arithmetic (s)
77505 0.068 0.100 78.469
113457 0.105 0.145 124.278
143729 0.133 0.186 159.343
170292 0.163 0.219 192.796
210141 0.202 0.293 252.443
257379 0.240 0.293 250.621
322587 0.312 0.419 422.772

As we can see with arithmetic coding, the time almost doubles for each increase
in file size, while the other two methods do not have such a steep curve, as shown in
table 7.

Table 6: compression rates dataset 3

Original size (B) LZW (%) Huffman (%) Arithmetic (%)
9675152 24.83 42.34 70.80
23031328 25.00 42.39 70.63
25906340 24.94 45.63 72.50
38342761 24.54 43.51 72.27
45944328 25.17 45.10 72.17

Table 7: combined time needed for compression and decompression dataset 3

Original size (B) LZW (s) Huffman (s) Arithmetic (s)
9675152 9.581 12.867 15127.286
23031328 22.539 29.193 30520.398
25906340 26.838 31.632 38791.480
38342761 38.045 51.684 48729.519
45944328 50.155 58.953 76512.883

222 Pomorski zbornik Posebno izdanje, 213-228

Txt and Tif File Compression...Deni Klen, Jonatan Lerga, Irena Petrijevčanin

1.4.2. .tif

As for the image datasets, the patterns were highly dependent on the pixel groups
of the image. For example, images containing only grayscale pixels achieved the best
compression results with the arithmetic coding, while the other two datasets achieved
the best results with the Huffman compression algorithm. The best results are obtained
with arithmetic compression in the case of this dataset. The compression ratios are
given individually since we do not have a general pattern, while the temporal results
Lempel–Ziv–Welch are far better than the other two algorithms, followed by Huffman,
and the worst result for time consumption is arithmetic coding. Let us now consider
the individual results.

A. First dataset:

The first dataset consisted of color images up to 15 MB, and the size results were
as follows: The best compression rate is achieved with Huffman in the range of 80 to
90 percent, followed by Lempel–Ziv–Welch ranging in the same range but with lower
rates, and finally arithmetic coding in the range of 50 to 51 percent. As can be seen
from the 8 and 9 tables, the best time for compression and decompression is by far on
the side of LZW. Moreover, we can conclude from the results that the best algorithm
for this dataset was Lempel–Ziv–Welch, although the overall compression ratio is
lower than Huffman’s due to more efficient time consumption. It is also worth noting
that the compression rate did not change dramatically over this period, but we could
see a pattern where the compression decreases slightly as the file size increases, as
shown in Table 9.

Table 8: compression rates image dataset 1

Original size (B) LZW (%) Huffman (%) Arithmetic (%)
6356928 90.18 91.22 50.45
7733184 88.03 89.29 50.35
8847296 86.27 87.74 50.30
10354688 83.94 85.63 50.22
11042816 82.87 84.68 50.21

Table 9: combined time needed for compression and decompression image dataset 1

Original size (B) LZW (s) Huffman (s) Arithmetic (s)
6356928 8.610 13.123 464.758
7733184 10.595 15.122 576.795

223Pomorski zbornik Posebno izdanje, 213-228

Txt and Tif File Compression...Deni Klen, Jonatan Lerga, Irena Petrijevčanin

8847296 11.929 17.947 647.519
10354688 14.381 20.957 757.654
11042816 15.450 22.986 816.332

B. Second dataset:

The second dataset consisted of color images ranging in size from 15 MB to 40
MB and yielded the following results: The highest compression rates were obtained
with Huffman, although less consistently. While Huffman and LZW both ranged from
25 MB to 65 MB, image compression was highly context-dependent, while arithmetic
coding had a consistent rate of about 50 percent, as seen in Table 10. Considering the
time required to compress and decompress

Table 10: compression rates image dataset 2

Original size (B) LZW (%) Huffman (%) Arithmetic (%)
17945404 58.40 62.88 50.24
18405661 57.32 61.94 50.27
20163380 53.33 58.42 50.39
25500362 40.94 47.59 50.58
35719284 17.58 27.51 51.22

the data, the Lempel–Ziv–Welch algorithm was also best in this case. Although the
compression ratio is slightly lower than Huffman’s, it is much faster, as can be seen
in Table 11.

Table 11: combined time needed for compression and decompression image dataset 2

Original size (B) LZW (s) Huffman (s) Arithmetic (s)
17945404 25.120 36.907 1296.596
18405661 24.639 36.028 1325.421
20163380 28.896 41.286 1445.024
25500362 35.510 52.115 1885.728
35719284 50.906 72.136 2533.473

C. Thrid dataset:

The third dataset was the largest among them and contained ten grayscale files
created from the original grayscale image but with different pixel values. The goal of
this dataset was to find out if the repetition of pixels could improve the compression

224 Pomorski zbornik Posebno izdanje, 213-228

Txt and Tif File Compression...Deni Klen, Jonatan Lerga, Irena Petrijevčanin

ratio of images. The first image had the most pixel variations and then slowly decreased.
Taking this into account, we can see the following results. The best compression rates
can be seen for arithmetic coding with about 77 percent, followed by Lempel–Ziv–
Welch with compression rates of about 73 percent, and lastly Huffman with about 54
percent, as can be seen in the table 12. Looking at the computation time, LZW has
the best time consumption of all three algorithms, followed by Huffman and lastly,
arithmetic coding, as seen in table 13.

Table 12: compression rates image dataset 3

Original size (B) LZW (%) Huffman (%) Arithmetic (%)
149334502 73.66 53.56 77.24
149334502 73.60 53.58 77.25
149334502 73.38 53.59 77.25
149334502 73.37 53.60 77.26
149334502 73.47 53.87 77.40
149334502 73.73 53.93 77.43
149334502 73.89 54.06 77.50
149334502 73.91 53.99 77.47
149334502 73.65 53.79 77.37
149334502 73.41 53.71 77.31

Table 13: combined time needed for compression and decompression image dataset 3

Original size (B) LZW (s) Huffman (s) Arithmetic (s)
149334502 74.318 172.287 10178.523
149334502 67.645 172.536 10134.959
149334502 63.539 155.998 12190.427
149334502 65.051 164.515 9316.795
149334502 64.110 162.338 9545.117

1.5. Discussion

In this work, we aimed to test and compare standard lossless compression methods
such as Huffman coding, arithmetic coding, and Lempel–Ziv–Welch coding and
evaluate their results. After analyzing the compression rates and speed, including (1)
training time, if necessary, (2) encoding time, and (3) decoding time. Each algorithm
has its advantages and disadvantages, and we will discuss each in the sequel.

225Pomorski zbornik Posebno izdanje, 213-228

Txt and Tif File Compression...Deni Klen, Jonatan Lerga, Irena Petrijevčanin

Fig. 2. Compression rate for images

Arithmetic coding has been shown to give the best result for both text and image
datasets for different sizes, as shown in figures 2 and 3, but this performance is not
without cost. For some large files, arithmetic coding takes up to 100 times longer than
the other two algorithms, and for images, it can take even longer, and for that reason,
results for arithmetic coding time shown on plots are divided by 100.

Fig. 3. Compression rate for text

This means that the high compression ratio of the arithmetic algorithm is not free.

226 Pomorski zbornik Posebno izdanje, 213-228

Txt and Tif File Compression...Deni Klen, Jonatan Lerga, Irena Petrijevčanin

Fig. 4. Combined compression times for images

Considering this, arithmetic coding is well suited for small jobs where compression
is more important than execution speed or for jobs running on small microcontrollers
where the data is no larger than 100 KB, but compression is still important. Arithmetic
coding is followed by Huffman coding, which offers the best of both worlds. It keeps
time and processing power low while providing medium to high compression ratios,
as shown in image 4. This makes it the best overall candidate and is, therefore, mostly
used in compression programs such as 7zip or in dictionary-based compression. Finally,
we have Lempel–Ziv–Welch with its high speed shown in figure 5 and sufficient
compression ratios that make it suitable for compression where data input speed is
important. LZW may be used, for example, in fax transmission, where the speed of
encoding and decoding is important while saving space in the transmission bandwidth.

Fig. 5. Combined compression times for text

227Pomorski zbornik Posebno izdanje, 213-228

Txt and Tif File Compression...Deni Klen, Jonatan Lerga, Irena Petrijevčanin

2. Conclusions

In conclusion, this work compared three lossless compression algorithms: (1)
Lempel–Ziv–Welch, Huffman coding, and arithmetic coding. LZW compression
provides a good balance between time and compression rates, making it a widely
used algorithm. Huffman coding provides good compression rates with sufficient
computation time. Arithmetic coding achieves the highest compression rates in most
cases but with the slowest times. To add to what has already been said, all three
compression methods are commonly used, and none is generally better than the other
for all datasets. Each method has proven its superiority in some cases. For real-time
data compression, LZW is best, while for compression where time is not an issue,
arithmetic coding is the best choice. For the compression of images and other media,
Huffman has shown that excellent compression results can be achieved with a slightly
longer execution time and slightly higher computational cost, which is why it is used in
programs such as ZIP, GZIP, etc. Overall, this work provided insight into the differences
in using different compression methods. The choice of algorithm depends heavily on
the requirements of the application. Future work could include exploring algorithms
even for larger datasets and hardware implementations of these algorithms.

3. Acknowledgements

This work was supported by the EU Horizon 2020 project INNO2MARE (”
Strengthening the capacity for excellence of Slovenian and Croatian innovation
ecosystems to support the digital and green transitions of maritime regions”) under the
number 101087348, INTERREG projects Veza2 and AI.com, and University of Rijeka
projects uniri-tehnic-18-17, uniri-zip2103-4-22 and uniri-tehnic-18-15.

4. References

1.	 Modern lossless compression techniques: Review, comparison and analysis — ieeexplore.ieee.
org. https://ieeexplore.ieee.org/abstract/document/8117850. [Accessed 30-Jun-2023].

2.	 Senthil Shanmugasundaram and Robert Lourdusamy. A comparative study of text compression
algorithms. International Journal of Wisdom Based Computing, 1(3):68–76, 2011.

3.	 Debra A. Lelewer and Daniel S. Hirschberg. Data compression. ACM Comput. Surv., 19(3):261–
296, sep 1987.

4.	 SR Kodituwakku and US Amarasinghe. Comparison of lossless data compression algorithms for
text data. Indian journal of computer science and engineering, 1(4):416–425, 2010.

5.	 Apoorv Gupta, Aman Bansal, and Vidhi Khanduja. Modern lossless compression techniques:
Review, comparison and analysis. In 2017 Second International Conference on Electrical,
Computer and Communication Technologies (ICECCT), pages 1–8, 2017.

6.	 David Salomon and Giovanni Motta. Data Compression: The Complete Reference. Springer
Science & Business Media, 2007.

7.	 Donald E Knuth. Dynamic huffman coding. Journal of algorithms, 6(2):163–180, 1985.
8.	 Alistair Moffat. Huffman coding. ACM Computing Surveys (CSUR), 52(4):1–35, 2019.
9.	 dahuffman — pypi.org. https://pypi.org/project/dahuffman/. [Accessed 30-Jun-2023].

228 Pomorski zbornik Posebno izdanje, 213-228

Txt and Tif File Compression...Deni Klen, Jonatan Lerga, Irena Petrijevčanin

10.	 Mark R Nelson. Lzw data compression. Dr. Dobb’s Journal, 14(10):29–36, 1989.
11.	 GitHub - joeatwork/python-lzw: LZW compression in pure python — github.com. https://github.

com/joeatwork/python-lzw. [Accessed 24-Jun-2023].
12.	 Jorma Rissanen and Glen G Langdon. Arithmetic coding. IBM Journal of research and

development, 23(2):149–162, 1979.
13.	 Khalid Sayood. Chapter 4 - arithmetic coding. In Khalid Sayood, editor, Introduction to Data

Compression (Fifth Edition), The Morgan Kaufmann Series in Multimedia Information and
Systems, pages 89–130. Morgan Kaufmann, fifth edition edition, 2018.

14.	 arithmetic-compressor — pypi.org. https://pypi.org/project/arithmeticcompressor/. [Accessed
24-Jun-2023].

15.	 os — Miscellaneous operating system interfaces — docs.python.org. https://docs.python.org/3/
library/os.html. [Accessed 22-Jun-2023].

16.	 Preparing Your Dataset for Machine Learning: 10 Basic Techniques That Make Your Data Better
— altexsoft.com. [Accessed 15-Jun-2023].

