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ABSTRACT

Lipid-based systems, such as self-microemulsifying systems (SMEDDS)
are attracting strong attention as a formulation approach to improve the
bioavailability of poorly water-soluble drugs. By applying the “spring
and parachute” strategy in designing supersaturable SMEDDS, it is pos-
sible to maintain the drug in the supersaturated state long enough to
allow absorption of the complete dose, thus improving the drug’s bio-
availability. As such an approach allows the incorporation of larger
amounts of the drug in equal or even lower volumes of SMEDDS, it also
enables the production of smaller final dosage forms as well as decreased
gastrointestinal irritation, being of particular importance when formu-
lating dosage forms for children or the elderly. In this review, the techno-
logical approaches used to prolong the drug supersaturation are dis-
cussed regarding the type and concentration of polymers used in liquid
and solid SMEDDS formulation. The addition of hypromellose deriva-
tives, vinyl polymers, polyethylene glycol, polyoxyethylene, or poly-
metacrylate copolymers proved to be effective in inhibiting drug pre-
cipitation. Regarding the available literature, hypromellose has been the
most commonly used polymeric precipitation inhibitor, added in a con-
centration of 5 % (m/m). However, the inhibiting ability is mainly governed
not only by the physicochemical properties of the polymer but also by
the API, therefore the choice of optimal precipitation inhibitor is recom-
mended to be evaluated on an individual basis.

Keywords: lipid-based systems, self-microemulsifying systems, SMEDDS,
precipitation inhibitors, supersaturation

INTRODUCTION

In relation to population aging occurring globally, it is estimated that the number of
people aged > 60 years could double by 2050 (1). Given the numerous chronic diseases
associated with advancing age, the risks of adverse drug reactions due to polypharmacy are
increasing (2). In some cases, the extend of undesired side effects could be decreased by
applying lower doses of active pharmaceutical ingredient (API), thereby also reducing the
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effect of pharmaceuticals on the environment, which is in line with the current trend toward
green pharmacy (3). While for some APIs it is possible to reduce the dose directly without
compromising therapeutic efficacy, other options would utilize different aspects of pharma-
cokinetics —in particular improving absorption of the API or retarding metabolism or excre-
tion (4). As the proportion of drugs with poor aqueous solubility continuous to increase (5-7),
different strategies for improving their solubility are of vital importance in drug develop-
ment, especially for APIs with doses > 50 mg, which are usually incompletely absorbed when
administered orally. Following the commercial success of Sandimune Neoral® as a self-
-microemulsifying drug delivery system (SMEDDS) formulated with cyclosporine A, lipid-
-based systems (LBSs) have attracted considerable attention as a formulation approach for
improving the bioavailability of API with poor biopharmaceutical properties (8).

This type of formulation has been on the market for more than 30 years, so it is no
longer considered new. Nevertheless, the number of publications on LBSs is constantly
increasing, together with the interest in developing them for clinical applications. The
current state of patents for self(micro)emulsifying drug delivery systems was critically
evaluated in the recent review (9). Over the last decade, research has focused on various
(industrially applicable) solidification techniques that can be utilized to transform liquid
SMEDDS into solids that merge the advantages of liquid LBSs and solid dosage forms
(10-12) and are able to maintain API in a dissolved state not only in the formulation but
also during passage through the gastrointestinal tract (13). The development of (solid)
SMEDDS and their characterization techniques, which are beyond the scope of this review,
have recently been described in detail by Rajpoot ef al. (14), while current and future
industrially applicable approaches to maintain the API in a solubilized state were sum-
marized by Holm et al. (15). To maintain APl in a dissolved state throughout gastrointestinal
transit, so called supersaturable SMEDDS were introduced (16, 17) containing polymers
capable of reducing the precipitation of API in vivo by maintaining the transient super-
saturation of the drug that occurs after dispersion of LBSs in the gastrointestinal fluid.
Holm et al. systematically presented also the design and evaluation of supersaturated LBSs,
containing APl in concentrations above thermodynamic solubility already in the formula-
tion, together with the impact of both types of supersaturating LBSs on improved bio-
availability of drugs formulated either as liquid SMEDDS or SMEDDS powders obtained
by direct adsorption technique.

In the present review, the influence of different precipitation inhibitors on the pre-
cipitation of API is presented from a mechanistic point of view, which is particularly rele-
vant for pharmaceutical technologists focusing on preformulation studies of supersatu-
rable LBSs. In addition to self-emulsifying powders, self-emulsifying granules, and pellets
with polymeric precipitation inhibitors were also discussed. Besides being patient-friendly
dosage forms, multiparticulates can also be further processed into self-emulsifying tablets
or hard capsules, which is in line with the ability of supersaturating LBSs to load the entire
dose of APl into the defined volumes of hard capsules (or a tablet of acceptable size).

LIPID-BASED SYSTEMS AS FORMULATION APPROACH TO IMPROVE
THE API BIOAVAILABILITY AND DOSE LOWERING

By solubilizing the drug within SMEDDS, bioavailability could be improved not only
by enhancing API aqueous solubility or ideally avoiding the dissolution step, but also by
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improving intestine permeability and inhibiting efflux proteins in addition to decreasing
pre-systemic metabolism (6, 18, 19), as previously presented in the present journal (20).
LBSs are therefore recognized as one of the most plausible platforms for the delivery of
lipophilic but also hydrophobic APIs, and particularly emulsion-based systems are suit-
able for such purposes (21-23). In addition to facilitating the development of formulations
for enhanced oral application and patient compliance, the use of SMEDDS for the delivery
of therapeutic peptides and genes is also being investigated. Based on the recent research
(24, 25) S(M)EDDS demonstrates the capability to shield macromolecules from the harsh
biological environment, thus the potential applications of this system are not limited to
small molecule APIs.

According to the lipid-based classification system, LBSs are divided into 4 classes,
with SMEDDS belonging to type IIIb systems (20, 26). It is defined as an isotropic mixture
of oils, (hydrophilic) surfactants, co-surfactants, and hydrophilic cosolvents that spontane-
ously form oil-in-water (micro)emulsion with droplet size below 50 or 100 nm in the pres-
ence of aqueous media. In addition to self-emulsifying drug delivery systems (SEDDS) and
self-nanoemulsifying drug delivery systems (SNEDDS), also known for their self-emulsi-
fying ability, it is acknowledged as one of the most efficient in improving aqueous solubility
and bioavailability of poorly water-soluble APIs (27). They have fairly similar composi-
tions, varying in oil/surfactant ratio and lipophilicity. In the literature, the use of termi-
nology with regard to SMEDDS and SNEDDS is rather inconsistent (28), therefore in the
present review article, the naming SMEDDS will be used for all systems forming (micro)
emulsion with droplet size below 100 nm on contact with aqueous milieu that can be clas-
sified as Type IIIb systems. On the other side, SEDDS could be classified either as Type II
or Illa system, depending on the hydro-lipophilicity of incorporated surfactants and pro-
portion of lipids, with Type II formulation being less hydrophilic. Nevertheless, both
SEDDS types form emulsions with lipid droplet size 100-300 (250) nm upon oral admini-
stration. Beside self-emulsifying formulations, type IV systems, as representatives of most
hydrophilic LBSs composed only of surfactants and hydrophilic co-solvents, also self-dis-
perse spontaneously in contact with aqueous media. However, in this case, dispersion of
colloidal-size micelles is formed instead of (micro)emulsion. The risk of drug precipitation
upon oral administration of LBSs increases with lower oil phase content and higher hydro-
philicity of surfactants and/or cosolvents. In keeping with this, most hydrophilic formula-
tions, i.e. Type IV systems closely followed by Type IIIB, are associated with a higher risk
of incomplete drug absorption (26, 29-31).

ODdDD> .

® Glycerides  ® Surfactants (HLB <12)  m Surfactants (HLB > 12) Hydrophilic cosolvent

Fig. 1. Classification and approximate composition of lipid formulation system, based upon (26).
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Upon oral administration, SMEDDS exhibit rapid self-emulsification in the aqueous
media supported by agitation provided by natural motility of the gastrointestinal tract.
Ideally, this process enables the API to remain dissolved within the resulting oil droplets
of microemulsion (19). In reality, dilution of LBSs with gastrointestinal fluids is the first
critical step possibly leading to API precipitation, in addition to the lipid digestion process,
as API saturation and subsequent supersaturation are likely to occur (6).

Chemical digestion of lipids starts in the stomach by gastric lipases digesting the
short- and medium-chain fatty acids, and proceeds in the duodenum under the action of
pancreatic (co)lipases digesting also the long-chain triglycerides (32). In the intestine, API
is then solubilized in a complex mixture of colloidal species, composed of (digested) com-
ponents of SMEDDS, endogenous bile salts, and phospholipids as well as cholesterol. The
risk for API precipitation from formed microemulsion depends on the physicochemical
characteristic of API and lipids (i.e. the chain-length of fatty acids esterified in the trigly-
cerides effects) in addition to the increased polarity of products obtained through the
lipid digestion process that negatively influences the ability of SMEDDS to incorporate the
lipophilic drug (33). The solubility effect of LBS digestion products was studied by Alskar
et al. (34) where weak bases were reported to show significantly increased solubility in the
less lipophilic milieu upon lipid digestion as compared to the solubility of neutral and
acidic API that decreases. In addition, the API solubilization capacity can also be reduced
due to faster absorption of lipid-digestion products as compared to API, potentially result-
ing in exceeding saturation concentration (35). As high drug concentrations are the driving
force not only for API precipitation but also for its flux across the GIT membrane, enhanced
absorption could be reached after a sufficient supersaturation period. In keeping with this
ideal, SMEDDS formulation should maintain a supersaturated state long enough to allow
transport of the complete dose through the intestinal wall, which could be achieved with
the support of polymeric precipitation inhibitors.

The importance of supersaturation induction and its maintenance through
longer periods of time

The supersaturation state is favorable in terms of enhanced absorption and as such
presents a good strategy for supersaturation that could be described with the supersatura-
tion ratio (SR) expressed as the quotient of measured (supersaturated) API concentration
at a determined time point (c) and equilibrium API solubility overcoming the challenge of
low oral bioavailability of API with limited aqueous solubility (i.e. BCS II and BCS IV
drugs) as well as those with a high single dose. According to definition the supersaturation
(36) occurs when API is present in the amount higher than its saturation solubility. The
state of (c.q) (Equation 1):

SR=— o

On this basis, saturated solutions are described with a value of SR =1 and supersatu-
rated with SR >1 (37). Nevertheless, the supersaturated state tends to return to the equi-
librium state by precipitation due to its thermodynamic instability. Since the molecules of
the API move randomly within the homogenous supersaturated solution, with limited
interparticulate space, they spontaneously associate in small clusters. In addition to active
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deposition on the neighboring surfaces, the nucleation process could also be triggered by
the presence of various impurities, onto which the solute aggregates (38, 39), although the
exact process of nucleation is still unclear (40). Regardless of the origin of nucleation, the
formed cluster grows by further deposition of molecules on its surface until it reaches a
critical size, which can then grow into ordered macroscopic crystals by becoming the cen-
ter of crystallization. Three main theoretical models (the surface energy theory, the diffu-
sion theory, and the adsorption layer theory) were introduced to describe the crystal
growth process (39, 41-43). To avoid the crystallization process and take advantage of the
induced supersaturated state, the process of API precipitation must be inhibited or de-
layed. The concept of generating and maintaining a metastable supersaturated state is
commonly referred to as the “spring and parachute” theory (44-46). The state of super-
saturation is usually generated by increasing the drug concentration beyond the saturation
solubility, as described by the term “spring”. The degree of supersaturation is the initial
driving force for precipitation — the higher the initial supersaturation, the faster precipita-
tion occurs (47). By applying a precipitation inhibitor (i.e. the “parachute”) supersaturation
is maintained by stabilizing the metastable state produced. By slowly lowering the concen-
tration to the saturation limit, the “parachute” excipient provides sufficient time for
absorption, similar to how the parachute device slows the movement of an object through
the atmosphere (48). The “spring” effect of API-loaded SMEDDS generating a metastable
supersaturated state and the “parachute” effect supporting the prolonged API super-
saturation achieved by the incorporation of (polymeric) precipitation inhibitors into such
a formulation is schematically illustrated in Figure 2. For comparison, the drug dissolution
profile of a conventional solid dosage form is also illustrated to depict the impact of
solubilization and supersaturation effect achieved by simple API-loaded SMEDDS and
SMEDDS with precipitation inhibitors.

In several studies conducted by Williams et al., the composition of different LBS for-
mulations was tested in relation to the supersaturation effect. It was found that medium-
-chain LBSs were able to produce a higher degree of supersaturation compared to long-
-chain triglycerides, due to a higher API loading related to the better solubility of the
hydrophobic API studied in medium-chain triglycerides and more water-soluble lipid-
digestion products with lower solubilization capacity. This proved to be advantageous for
highly permeable APIs, such as fenofibrate and tolfenamic acid, both being widely used in
the elderly population for the treatment of dyslipidemia and pain-relief (49). However, the
in vivo behavior of medium-chain and long-chain LBS is drug-specific and therefore can-
not be considered as a rule.

Another study by Williams et al. investigated the API-, formulation- and dose-depen-
dence in relation to the maintenance of supersaturation and precipitation potential during
in vitro digestion testing. The authors were able to predict the probability of precipitation
in vitro by observing the maximum supersaturation ratio SRM (maximum degree of super-
saturation). The study revealed a threshold value of SRMequal to 3 (SRM= 3), as the tested
LBSs with a value below 3 maintained supersaturation without signs of precipitation,
while a higher supersaturation concentration (SRM> 3) led to precipitation of APL There-
fore, the “favorable” supersaturation concentrations (SRVM< 3) are more likely to enhance
absorption in vivo, while formulations with SRM value above 3 may promote precipitation
of API, resulting in incomplete bioavailability (50, 51).
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In line with the “spring and parachute” strategy, drug development is focused on
formulations that are capable not only of inducing the supersaturation state but also delay-
ing and/or inhibiting the precipitation of API, thus supporting the beneficial effects of the
supersaturation state. By designing such supersaturable delivery systems, it is possible to
maintain this state for a limited time period, long enough to allow adequate absorption. In
addition, such formulations allow a higher dose of API to be incorporated and absorbed
with less risk of precipitation (16, 33, 36). Thus, the main advantage of supersaturable
SMEDDS over the “simple” SMEDDS is that they are able to deliver a larger amount of the
in an equal or even smaller volume of SMEDDS, thus also delivering lower concertation of
surfactant, which contributes to less irritation of the gastrointestinal tract.

As far as terminology is concerned, supersaturable formulations should not be misun-
derstood for supersaturated once. While supersaturated SMEDDS are formulations in which
the APIis incorporated in a concentration above the solubility limit, the API concentration
in supersaturable SMEDDS becomes supersaturated upon dilution/dispersion of the formu-
lation. Therefore, the API in supersaturated formulations may already precipitate during
storage due to thermodynamic instability, while this is not the case in supersaturable sys-
tems (13).

PRECIPITATION INHIBITION AND EXCIPIENTS USED TO STABILIZE
SUPERSATURATION

Various excipients have been investigated as precipitation inhibitors in supersaturable
formulations, of which polymeric molecules have been found to be the most efficient (38,
44, 52). They can inhibit either nucleation or crystal growth, both important steps in the
crystallization process of APL It has been reported that polymers that can be dissolved in
LBSs can function just as well as polymeric precipitation inhibitors when compared to
those that are readily soluble in water (53, 54). The group of polymers most widely used to
stabilize the supersaturation formed upon administration of SMEDDS include: 1) cellulose

API-loaded SMEDDS with
precipitation inhibitor

[API]q

API-loaded SMEDDS

" APIin conventional
solid DF

Time

Fig. 2. The influence of the drug delivery systems (SMEDDS with or without precipitation inhibitors
vs. conventional solid dosage form (DF)) on the dissolution profile and solubility of APIin the gastro-
intestinal fluids is schematically presented, and the importance of precipitation inhibitors in super-
saturating drug delivery systems is illustrated. Adapted from (18).
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derivatives, e.g. hypromellose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellu-
lose (HEC); 2) vinyl polymers, e.g. polyvinypyrrolidone (PVP), polyvinyl alcohol (PVA),
polyvinypyrrolidone/vinyl acetate copolymer (PVP/VA); 3) polyethylene glycol (PEG)
copolymers; 4) polyoxyethylene copolymers; 5) polymetacrylates and 6) others (Fig. 3).
Added in low concentrations, they significantly affect drug nucleation and/or crystal
growth rates, leading to drug precipitation inhibition (37, 55).

OR Hydroxyethyl cellulose: R =H or CH,CH,OH
%O =\ ._ Hydroxypropyl cellulose: R =H or CH,CH(OH) CH;
- \7\0 Hydroxypropylmethyl cellulose: R = H or CH; or CH,CH(OH) CH;
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n
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Fig. 3. Chemical structures of main polymeric precipitation inhibitors.

In order to tailor the selection of precipitation inhibiting polymer to the specific API
and lipid-based formulation, a throughout understanding of their interference with these
critical processes is crucial. More specifically, they influence the kinetics and/or thermo-
dynamics of the system. The addition of the excipient can delay precipitation of the API,
which is typically measured as prolonged supersaturation time and/or increased solubility
of APL while the extent to which supersaturation is maintained could also be determined
by the supersaturation holding capacity of the polymers introduced by Chavan et al. (53).
Such effects can be achieved, for example, when the amphiphilic copolymer Soluplus® is
added at a concentration above its critical micellar concentration. In this case, thermo-
dynamic stabilization is achieved by the solubilization properties of Soluplus® linked to
micelles formation. Otherwise, if the polymer effect manifests itself in a temporary inhibi-
tion of the onset of precipitation, the change is in the system kinetics. The ability of the
inhibitor to kinetically stabilize the state of supersaturation is likely the result of the inter-
molecular interactions between the API and the polymer and/or its ability to sterically
hinder the surface of the API and prevent precipitation (56, 57). By forming hydrogen
bonds with API molecules, the precipitation inhibitor adsorbs onto the surface of the API
and thus acts as a steric barrier to the adhesion of other API molecules. In this way, the
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polymer acts as a mechanical barrier that slows down the nucleation process and further
nuclei growth (17).

Interestingly, in the presence of polymeric precipitation inhibitors, a change in crystal
habit can occur. Gao et al. (58) reported the precipitation of AMG 517, a poorly water-solu-
ble drug, in amorphous form in the presence of HPMC, while the use of PVP as a super-
saturation stabilizer resulted in a crystalline form of the precipitate. As the amorphous
state is known for rapid dissolution due to its higher-energy state, some studies focused
on promoting precipitation of APIin the amorphous form to allow faster dissolution of the
API and thus improved oral absorption (18, 59).

Tables I and II provide a list of the polymeric excipients, their concentration (in per-
centages), and their in vitro performance in relation to their use as precipitation inhibitors
(i.e. prolongation of supersaturation time). In addition, Table I shows the amount of each
component of liquid supersaturable LBSs in percentage (% of oil phase, % of (co)
surfactant(s), and % of cosolvent), while Table II refers to the solids. In recent years, atten-
tion has undoubtedly shifted to the solidification of SMEDDS due to improved product
stability, lower production costs, and better patient compliance (10, 60-63). In addition, the
formulations of supersaturable solid SMEDDS offer the possibility of producing patient-
-friendly, multiunit dosage forms (such as granules, pellets, or mini-tablets), as they are
capable of incorporating a higher amount of API due to their higher solubility. Therefore,
adsorption to solid carriers, pelletization, granulation, spray drying, and hot-melt extru-
sion (HME) are among the most investigated technologies, yet the most favorable solidifi-
cation technology is still on its way to establish itself in the pharmaceutical market (64).

Cellulose derivatives

The investigation of cellulose derivatives as precipitation inhibitors and stabilizers
has been a major area of interest for formulation scientists focusing on the development of
supersaturating formulations for the delivery of poorly water-soluble APIs (65). Various
cellulose polymers have been used as inhibitors of API precipitation, with HPMC being
the most studied. It has been shown that the extent of precipitation depends on the addi-
tion of HPMC (17). When HPMC is added in a wide concentration window from 2.5 to 25 %,
it shows an efficient prolongation of supersaturation. Most frequently it is added in 5 %
(m/my), though. Compared to the formulation without HPMC, where the drug precipitated
quickly (reportedly, turbidity of the dispersion medium was observed first, followed by
the formation of a white solid precipitate), the addition of the polymer prolonged the drug
concentration beyond equilibrium solubility by two more hours (52). Other results indi-
cated that the presence of HPMC at 5 % (m/m) can delay the precipitation of t-resveratrol
and maintain a higher apparent concentration for about 60 min (66), longer than when
added at 1 % (m/m). Even when the polymer is not a constituent of the formulation, but is
instead dissolved in the release medium at a remarkably low concentration of 0.025 %
prior to the dissolution test, its presence effectively suppresses the precipitation of the
poorly water-soluble drug X and maintains supersaturation for at least 6 hours (17). The
comparative in vivo studies of supersaturable SEDDS and simple SEDDS clearly confirm
that the presence of HPMC has a significant inhibitory effect on drug precipitation, as high
concentrations of paclitaxel included in the supersaturable formulation led to a higher
maximum concentration (c,,,,) and increased oral bioavailability (52).

max.
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As the HPMC molecule is rich in free hydroxyl groups (hydrogen bond donor), the
interaction with hydrogen bond acceptor groups is expected to increase the energy barrier
for the onset of nucleation, and thereby stabilize the metastable supersaturated state. In
the study of saquinavir-loaded supersaturable SMEDDS, HPMC was found to interact
more strongly with the drug molecules than PVP K90, due to the formation of hydrogen
bonds. Therefore, it was hypothesized to inhibit the precipitation of the API to a greater
extent than povidone, resulting in higher solubility of the drug in the diluted formulation
(67). Another proposed mechanism for the maintenance of supersaturation by HPMC is
associated with the formation of cellulose bundles in water (17). As reported by Albaid-
hani et al. (68), the addition of HPMC significantly delayed the precipitation of candesartan
cilexetil as the HPMC chains swelled. In addition, cellulose polymer chains can also
adsorb onto the surface of nuclei or crystals and hinder the incorporation of the molecules
into the crystal lattice. In this way, the polymer acts as a mechanical barrier that slows
down the process of nucleation and crystal growth (17, 69).

HPMC is available in a wide range of substitution grades, on which the inhibitory
effect depends (54). Different ratios of hydroxypropyl and methyl substitution give each
type of hypromellose (i.e. E, F, and K grades) its specific characteristics. The low molecular
weight and low viscosity grades are most commonly used in supersaturable LBSs (E
grades, e.g. ESLV, E15LV, E50LV). Due to their good water-solubility, blending in lipid for-
mulations is a challenge. Therefore, the polymer powder is usually dispersed in simple
LBS to obtain a uniform HPMC suspension, which can be classified as supersaturable LBS
(52). In support of this, Suys et al. reported that HPMC E4M forms a stable suspension in
which no polymer particles sink to the bottom and no sampling difficulties are encoun-
tered (54). In short, the study also showed that water-soluble polymers, when stably and
homogeneously suspended, can prevent drug precipitation as effectively as those dis-
solved in LBFs. It is unlikely that in formulations with HPMC concentrations of 20 % or
more, the liquid state could be converted to a paste-like consistency when the powder is
suspended. As such, it would exhibit poor release on contact with the dissolution medium
7).

In addition to HPMC, other cellulose derivatives have also been used as precipitation
inhibitors, which differ in their performance (70). When a supersaturable fenofibrate for-
mulation was tested, HPMC and HPMC-acetate succinate were found to be more effective
than HEC and cationic-HEC-ethoxylate (54). The use of HPMC-phthalate (in 10 %, m/m)
and HPC (in 2.65 %) has also been reported (71). The incorporation of HPC into SEDDS
resulted in an opaque suspension, as the cellulose derivative is not soluble in the oily
vehicle, and therefore had to be suspended in the formulation. but didn’t impair the self-
-emulsifying ability, as the size of the obtained droplets did not change (72).

Moreover, the formulation of hard gelatin capsules filled with liquid SEDDS with
suspended HPMC was compared with simple SEDDS encapsulated in an HPMC capsule
shell. Both formulations prolonged supersaturated ezetimibe concentrations for 60 min
compared to simple SNEDDS, indicating that the HPMC capsule acts similarly to HPMC
suspended in liquid SNEDDS (73). Similar results were reported by Gao and Morozowich,
who observed comparable behavior of both supersaturable capsules in terms of mainte-
nance of supersaturation maintenance, which were superior to simple SNEDDS (17). Clini-
cal evaluation in humans confirmed these results and showed better pharmacokinetic
parameters (c,,,,, as the maximum observed concentration, T,,,,, as the time in which the

max”/ max”/
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maximum concentration was reached and Area Under the Curve (AUC), as the integral of
a curve illustrating the change in plasma concentration of APl in a unit of time) for super-
saturable SEDDS, indicating faster and more complete absorption. The advantage of
HPMC capsules lies not only in their greater resistance to water migration (which is very
important in terms of stability and storage of the dosage form), but also in the vegan
population.

Adsorption onto solid carriers, fluid-bed, and high-shear granulation have also been
investigated as solidification techniques for LBS. In the study on carvedilol-loaded
SMEDDS, the effect on supersaturation was not directly evaluated as the concentration of
API was not above its solubility limit. Instead, HPMC was added in the granulation disper-
sion as a binder, and both the SMEDDS granules and tablets produced showed complete
drug release (74, 75).

As an acetate succinate derivative, HPMC-acetate succinate is also effective as a pre-
cipitation inhibitor in supersaturable formulations, although it was originally developed
as an enteric coating polymer. Due to its amphiphilic nature, this HPMC analog can
maintain supersaturated drug concentrations over a prolonged period of time by forming
colloidal species in aqueous medium. Its hydrophobic regions can interact with the poor-
ly water-soluble drug molecules, while its hydrophilic regions align with the water
medium and stabilize the formed associate structures. Possible interactions with the API
also depend on the acetyl and succinyl content, as HPMC-acetate succinate is available
in three different degrees of substitution: L, M, and H. Each grade is also available as F
(fine) or G (granular), depending on the particle size. Accordingly, grade H as the most
hydrophobic derivative (with a high acetate: succinate ratio), has the potential for a stron-
ger interaction with poorly water-soluble API (76). A stronger interaction could also lead
to stabilization of supersaturation, and thus be superior to HPMC as well as PVP and
PVP/VA (77, 78).

Unfortunately, the utility of HPMC-acetate succinate in LBSs may be limited by its
poor solubility in formulations. Although some hydrophilic polymers can be suspended
in lipid-based formulations, the suspension of HPMC-acetate succinate resulted in a vis-
cous system with polymer aggregates that made homogeneous sampling difficult (54).

Vinyl derivatives

PVP, also known under the trade name Kollidon®, is a polymer often used in super-
saturable SMEDDS formulations and is available in a variety of grades (e.g. according to
different K-values) (80). The K-value depends on the relative viscosity of the aqueous solu-
tion, which is positively correlated with the average molecular weight of the polymer (80).
PVP K30 and K90 are the most commonly used and the best results in preventing pre-
cipitation are obtained when they are added in concentrations of 2.5 to 5 % (m/m) (67, 72,
73). Nevertheless, even a low concentration of PVP K17 of 0.5 % was able to maintain a
high concentration of indirubin in the aqueous medium, resulting in increased bio-
availability in rats compared to a simple formulation without a polymeric precipitation
inhibitor (78).

The use of PVP/VA has been much less reported in the literature on supersaturable
formulations. Lee et al. (72) compared the supersaturable SEDDS containing PVP, PVP/VA,
or HPC. Of all the formulations tested, PVP showed the best ability to prevent precipita-
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tion and maintained the drug concentration above 75 % for 6 h. The best performance of
the vinyl polymer was explained by the formation of hydrogen bonds between the PVP
molecule and the APL Since PVP molecules have many carbonyl groups that are hydrogen
bond acceptors, they tend to interact with hydrogen bond donating groups. Cyclosporine
A as a model drug is a polypeptide that contains both hydrogen bond donors and accep-
tors. As such, its hydrogen bond donor groups can associate with the carbonyl groups of
PVP. The interaction between the polymer and the drug molecules influences the activa-
tion energy of nucleation and effectively slows down the onset of nucleation and conse-
quently crystal growth. Therefore, PVP proves to be more effective in inhibiting the pre-
cipitation of drugs with hydrogen bond donor groups in the molecule compared to HPC
as an example of hydrogen bond donors. However, the difference between the efficacy of
the two formulations is sometimes difficult to measure. In a comparative study of super-
saturable SMEDDS with HPMC or PVP, no noticeable difference was found in the ability
of polymers to prolong supersaturation. Nevertheless, the formulations maintained the
high drug concentration for 90 minutes, which was an improvement compared to simple
SMEDDS (67). The effect of PVP on the crystallization process of API has also been inves-
tigated. Lindfors et al. reported the adsorption of PVP to the bicalutamide crystals formed
in a supersaturated solution, creating a physical barrier that resulted in the inhibition of
crystal growth (81).

In addition, Kollidon® (80) was also used in hot melt extrusion and spray drying, both
of which have emerged as SMEDDS solidification techniques. However, for supersaturable
formulations, research has mostly focused on simple adsorption techniques. Patki et al.
used a co-processed excipient for the adsorption of liquid SNEDDS (82). The excipients, the
mesoporous carrier Florite®100 and the hydrophilic polymer PVA, were co-processed in
the laboratory by simple mixing in a glass mortar with a pestle and the addition of purified
water. The study results showed a complete release of the API from the formulation, imply-
ing that precipitation of the API could also be prevented by the incorporation of a precipi-
tation-inhibiting component in the co-processed excipients.

Soluplus®

Soluplus® is a copolymer with a PEG 6000 backbone (consisting of 13 % PEG 6000/ 57 %
vinyl caprolactam/ 30 % vinyl acetate). The amphiphilic structure, composed of hydrophilic
polyethylene glycol and hydrophobic polycaprolactam groups, implies its solubilizing
ability, which acts like a surfactant and self-associates into colloidal structures when the
concentration exceeds the critical micellar concentration. In this context, the addition of
the optimal amount of Soluplus® is closely linked to the micelle formation as poorly-water
soluble drugs can be incorporated into the hydrophobic region of the formed micelles (83).
In addition, the hydrophobic group of Soluplus® can also intercalate to the hydrophobic
tails of surfactant, thus affecting the dispersed phase and making the interphase firmer/
stronger. At the same time, the hydrophilic polyethylene groups of the inhibitor, which are
present on the surface of colloidal species, can sterically stabilize the system and protect it
from aggregation and (micro)emulsion collapse. Overall, the addition of the excipient
stabilizes the supersaturation state by increasing the solubilization capacity.

Furthermore, its inhibitory effect can also be achieved by kinetically stabilizing the
supersaturation. Two hydroxyl groups in the molecule, which behave like hydrogen-bond
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donors, can interact with hydrogen-bond acceptor functional groups in the drug molecule.
The established hydrogen bonds increase the activation energy of nucleation and lead to a
delay in the onset of nucleation and crystal growth of fenofibrate (84).

In the study with dutasteride-loaded supersaturable SEDDS, various polymers
(HPMC 2910, PVP K90, Soluplus®, etc.) were tested for their precipitation-inhibiting effect.
All inhibitors tested were added at the same concentration (15 %, m/m), with Soluplus®
showing a superior ability to inhibit precipitation and maintain the highest drug concen-
tration during the 2-hour dissolution test under non-sink conditions. Interestingly, the
addition of Soluplus® in the increasing amounts of 15, 30, and 45 % resulted in a compa-
rable dissolution profile of the API to the supersaturable SEDDS with 10 % Soluplus®. The
combination of Soluplus® with other hydrophilic polymers, HPMC or Kollicoat® MAE
(methacrylic acid ethylacrylate copolymer), was also investigated. Although a comple-
mentary precipitation inhibiting effect was expected, the combinations proved to be
antagonistic compared to Soluplus® alone, as an increase in drug precipitation was
observed.

Once again, Soluplus® proved to be the best choice among the precipitation inhibi-
tors, alongside HPMC and PVP, as shown in the comparative in vitro study. The addition
of 6.7 % excipient in liquid supersaturable SEDDS maintained the dissolution rate at ~85 %
over 24 hours, which is consistent with the in vivo absorption study that showed signifi-
cantly higher ¢, and AUC values, thus facilitating the oral absorption of tacrolimus
(compared to simple SMEDDS) (85).

In addition, Soluplus® can also be used to solidify supersaturable SMEDDS due to its
widespread use in hot melt extrusion as well as the spray drying process. However, the
precipitation-inhibiting effect of Soluplus® has so far only been investigated for super-
saturable LBF produced by adsorption onto solid carriers, the simplest and most com-
monly used solidification technique for S(M)EDDS. In comparison to corresponding
supersaturable liquid SEDDS, celecoxib-loaded solids exhibited a slower dissolution rate
due to slower desorption from the solid carriers (86). In addition, the high amount of
added polymer (18 %, m/m) could also contribute to a slower dissolution profile. Thicken-
ing the microenvironment of the formulation (i.e. the dissolution media surrounding the
formulation particles), increased the viscosity of the system, which contributed to lower
molecular mobility (69).

Poloxamers

The poloxamer structure is composed of a central hydrophobic chain of polypropyl-
ene oxide with two hydrophilic polyoxyethylene chains on each side. These non-ionic
three-block copolymers are distinguished from each other by the three digits, which are a
function of the molecular mass of the polymer and the polyoxyethylene content. It is also
known under the trade names Pluronic®, Kolliphor®P, Synperonic® PE, and Lutrol®.

Due to its amphiphilic nature, its surface-active properties have also been utilized in
supersaturable formulations to prevent drug precipitation. Poloxamer 407 is the most com-
monly used copolymer, which is added to liquid LBSs in wide concentration ranges up to
18 % (m/m) (optimally 5-10 %). In the case of the SMEDDS formulation, it was added under
slight heating (~45 °C) and constant stirring until a homogeneous mixture was obtained
(70).
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Poloxamer 407, added at a concentration of 10 % (m/m), was selected for the compara-
tive study in SNEDDS. Compared to HPMC, polymethacrylate, and cyclodextrin poly-
mers, poloxamer showed superior dissolution efficacy as it maintained supersaturation for
the longest period of time. As discussed by the authors, when the copolymer was added at
a concentration above the critical micellar concentration, the excess drug molecules were
incorporated into the colloidal structures, thermodynamically stabilizing the state of
supersaturation. In another study, the interaction between polymer and silymarin was
determined by Fourier transform IR spectroscopy, and found that poloxamer 407 acted as
a hydrogen bond acceptor for the (-OH) donor group of silymarin. In this way, super-
saturation was successfully maintained by kinetic stabilization (70).

Moreover, poloxamer 407 acts as an inhibitor of P-glycoprotein, a drug efflux trans-
porter located in the intestinal epithelium. Its inhibition increased the permeation rate and
consequently, the oral bioavailability of APIs that are P-glycoprotein substrates (87).

In the study with valsartan-loaded SMEDDS, the addition of poloxamer 407 as a suc-
cessful precipitation inhibitor at concentrations of 3—6 % (m/m) (in liquids) and 2-3 % (in
granules) resulted in comparable dissolution profiles (liquid SMEDDS vs. granules),
whereas SMEDDS tablets (with 1.8 % (m/m) poloxamer 407) showed slower dissolution, as
expected (88).

Finally, spray drying technology was investigated for solid SMEDDS with poloxamer
188. The mesoporous carrier was used as an adsorbent to obtain a liquisolid system —a dry
powder with 64 % liquid. At concentrations of 1.85 % (m/m) (in liquid) and 1.18 % (m/m) (in
solid SMEDDS), it was able to keep canagliflozin in a dissolved state for up to 6 hours in
both formulations tested (89).

Polymethacrylates

The addition of polymethacrylate polymers, known for their use in modified-release
formulations, has also been shown to be effective in preventing the precipitation of APIs
(57). Eudragit® is a trade name for cationic copolymers derived from esters of acrylic and
methacrylic acids. They are broadly categorized according to the desired release profile
and solubility in digestive fluids. The L, E, S, and FS grades are water-soluble copolymer
variants used for pH-dependent drug release, taste masking, and moisture protection
coating. In contrast, the RL and RS grades as water-insoluble Eudragit®s are used in
delayed and sustained release dosage forms, while the N grade with neutral functional
groups is used to produce a time-controlled drug release by pH-independent swelling
(90).

In the study on supersaturable Type IV LBS, the addition of 1 % (m/m) of different
Eudragit®s enabled the kinetic stabilization of the supersaturation state. A difference in
the ability to prevent precipitation was observed, as Eudragit® RL maintained supersatu-
ration twice as long as Eudragit® L100 and Eudragit®E100 (54). This result was related to
the good solubility of the RL grades in the lipid formulation, in contrast to the L and E
grades, which had to be suspended in the SNEDDS tested (70). Lipid-soluble polymetha-
crylates allow processing into a single-phase formulation, which makes sampling much
easier compared to hydrophilic polymers from this group. In addition, the immiscibility
of polar excipients raises concerns regarding phase separation during storage. Further-
more, Eudragit® E100 precipitated when the formulation was tested in the fasted state

213



M. Kovacevi¢ et al.: Lipid-based systems with precipitation inhibitors as formulation approach to improve the drug bioavailability
and/or lower its dose: a review, Acta Pharm. 74 (2024) 201-227.

simulated intestinal fluid, which was explained by electrostatic and/or hydrophobic
interactions between the anionic amphiphilic bile salts and the hydrophobic backbone of
the cationic copolymer (54, 91).

Other polymeric precipitation inhibitors

Some research studies report that cyclodextrins are able to prevent the precipitation
of API due to their surfactant-like properties. In particular, the non-ionic hydroxypropyl-
-beta-cyclodextrin (HPBCD) was added to SNEDDS and studied for its ability to inhibit the
crystallization of silymarin. Due to its water solubility, it was suspended in the SNEDDS
at a concentration of 10 % (m/m). The results demonstrated the potential use of cyclodex-
trins to maintain supersaturation, as HPBCD and sulfobutylether-beta-cyclodextrin main-
tained the metastable state for at least 4 hours (70). The authors suggested that cyclodex-
trins could thermodynamically stabilize supersaturation due to their solubilizing ability
linked to the formation of complexes. They could also interact with the polar regions of the
API through hydrogen bonding, analogous to kinetic stabilizers (37, 92).

Poly(propylene glycol) bis(2-aminopropyl ether) (PPGAE) was also evaluated as a pre-
cipitation inhibitor and reached the top 3 most effective precipitation inhibitors of the total
17 tested. When 1 % (m/m) was added to Type IV LBS, PPGAE prolonged the duration of
fenofibrate supersaturation by 15 minutes compared to a formulation without polymer. In
addition, evaluation of the in situ absorption of PPGAE showed a 4-fold increase in absorp-
tion, which was the best test performance. It was hypothesized that the amino groups of
the polymers interact with the hydrogen bong acceptor groups of the API through hydro-
gen bonding. Moreover, positively charged PPGAE groups could also interact with the
ionization sites of the API and thus prevent the association of the particles (54).

RATIONAL SELECTION OF THE PRECIPITATION INHIBITOR

The approach for rational selection of the precipitation inhibitor is usually performed
for each individual formulation, as there is no single formula that could directly predict
the efficacy of a particular inhibitor. Currently, a pre-screening of potential polymers is
performed to find the optimal combination of API and precipitation inhibitor, as a rational
and predictive selection of the candidate cannot be based solely on literature data, but
should be combined with the physicochemical properties of the drug and excipient.

Precipitation inhibitors can prevent API precipitation by a number of possible mecha-
nisms that depend on the properties of the precipitation inhibitor, the APL and the medium
(37). It has been shown that the process is significantly influenced by several factors, i.e.
affinity for hydrogen bonding and hydrophobic interactions between the polymer and the
APIJ, solution viscosity, steric hindrance of the molecular structure, and polymer molecular
weight (55). The overall inhibitory effect is the cumulative result of the simultaneous action
of different mechanisms, with the relative contribution of each mechanism determining
the final outcome (38).

Hydrophobic interactions occur upon contact between the hydrophobic regions of the
molecule, and higher hydrophobicity is associated with higher adsorption affinity. When
comparing two HPMC grades that differ in the side-chain substitution group (but have the
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same viscosity), the more hydrophobic HPMC-E showed a better inhibitory effect on preci-
pitation than HPMC-K, possibly due to a higher methoxy substitution than in the K-grades
(in HPMC-E the degree of substitution of the methoxy groups is 1.9, while in HPMC-K it is
only 1.4) (94).

Regarding the molecular weight of the polymers, higher molecular weight polymeric
precipitation inhibitors are expected to interact strongly with the API molecules, thereby
effectively maintaining supersaturation and preventing precipitation. Such excipients are
also known to increase the viscosity of the solution due to lower molecular mobility. In
addition, larger molecules introduce more functional groups into the system, which are
also capable of forming interactions. In fact, branched polymer chains can sterically hinder
precipitation nuclei and thus delay nucleation and crystal growth (13). The rigidity of the
structure could also play a role, as polymers with a structure that is difficult to bend are
more easily adsorbed on the crystal surface. In contrast, molecules with a flexible structure
are more able to rotate, and therefore interact less strongly with the API surface (95). Since
viscosity and average molecular weight also differ between HPMC grades, one might
expect less viscous grades, which also have a lower molecular weight, to maintain super-
saturation over a shorter period of time compared to more viscous grades. This was found
to be true in the case of HPMC, where HPMC E5LV was able to delay the precipitation of
ezetimibe for 90 minutes, whereas HPMC E50LV was able to maintain the same effect for
twice as long (73).

Data from the literature also suggests that polymeric precipitation inhibitors need to
be treated as drug-specific “tools” and that their selection needs to be evaluated on an
individual basis, as the type and amount of polymer appears to be formulation-specific
(54). In order to recognize the efficacy of supersaturable systems compared to simple LBSs,
both formulations should be loaded with the same amount of API, and the tests should be
performed under the same conditions.

In addition to in vitro supersaturation tests, the bioperformance of LBSs can be deter-
mined by in vivo studies in animals (96-99). Some supersaturable LBSs that significantly
improved intestinal absorption in vivo are commented in Table 1 and Table 2. The studies
were mainly conducted on rats and rabbits, and the effect is mainly assessed by using
pharmacokinetic parameters: ¢,,,,, Tj. and AUC, presented as average values.

max’/ ~max/

In summary, the strategy based on the prior review of the relevant literature sources
would include different precipitation inhibitors applied in lipid formulations, where pre-
cipitation inhibition is expected to be determined by the physicochemical properties of
both the drug and the inhibiting excipient in relation to their mutual specific interactions.
In this context, those excipients that are expected to be effective should be included in the
pre-screening studies. For further detailed screening, different concentrations of inhibi-
tors that show a superior inhibitory effect on precipitation should be carefully investigated
in order to achieve the best result. This should best be combined with quality-by-design-
-based development that relies on complementary data obtained through advanced ana-
lytical techniques such as NMR, IR, Raman, and fluorescence spectroscopy as well as
calorimetric techniques and atomic force microscopy. In this way, better insight into the
interaction mechanisms between API and polymer are given, which contributes to a better
understanding of the processes involved in inhibiting precipitation. Combined with expe-
rience, this can then lead to the selection of optimal precipitation inhibitors for super-
saturable formulations (43, 93).
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CONCLUSIONS

The formulation of supersaturable LBSs
is a promising strategy to improve the bio-
availability and/or lower the dose of poorly
water-soluble APIs. By inducing and stabi-
lizing a supersaturation state through the
use of polymeric precipitation inhibitors,
intensive research to provide a controlled
and robust process of transforming liquid
SMEDDS to solid dosage forms is paving the
way to their future technological competi-
tiveness. The inhibitory effect of the poly-
mers is related to several mechanisms: physi-
cochemical properties of the inhibitor (the
affinity for hydrogen bonding and hydro-
phobic interactions between the polymer
and API), its viscosity in a solution, steric
hindrance of the molecular structure and
the molecular weight of the polymer. Until
now, there were no supporting guidelines or

the rat studies confirmed the fast release of canagliflozin, with
shorter T,,, (1 h), 1.4-fold higher c,,,, and 2.1-fold larger AUC
In vitro dissolution study demonstrated higher concentrations
and better dissolution profiles of astaxanthin obtained by

(89).
wasn’t evaluated directly, but the ability of HPMC-E5 and

astaxanthin bulk powder. Their effect on supersaturation
PVA 8/88 to increase API solubility in SMEDDS for approx.
5-fold and to maintain its supersaturation state for a certain
period of time was confirmed previously (105).

In vitro dissolution study demonstrated faster and 2.1-2.7-fold
SMEDDS tablets with precipitation inhibitors as compared to

higher amount of released API, with steady concentration
maintenance up to 6 h. compared to the marketed product,

Performance

g . & z ks polymer- related tools that could estimate
S & _g _g‘ .. 8 the overall inhibitory effect as a cumulative
e} - . .
3 £ = 20 ’% result of different mechanisms, and thus
= = = . . . .
88 & &35 8 assure fhe optlmgl efficacy. The combmatlop
- v of a solid theoretical background and practi-
E§ A ® E cal experience remains the most straightfor-
Q = . .
S E 8 : YE ward selection strategy for optimal polymer
—~ = . . . . .
= R % E g X'E g choice, aiming to achieve the right balance
= = [Io} o o1: .
S % °:° = 2o 2 : between drug solubilization, supersatura-
> — = = w . . . . .
S 55 § = 25 o= tion, and precipitation, which would lead to
= Sphugy 9 . .
g £ £33 8 —%s 8 an overall improved absorption of the AP
= = ®© . . . .
> g EXS E = E In line with this, the production of smaller
o o °© ° X .
~ 227 Tiod 26 final dosage forms could also be achieved,
together with reduced irritation of the gas-
k= & trointestinal tract. The latter is not only rela-
N < .. .
= &2 e ted to the administration of lower SMEDDS
< S% e = volume compared to conventional LBS for-
o — mulations but also to the presence of poly-
= 2 EEEE: mers that support the design of formula-
=] =S k3] . .
= IS 592%¢ tions with a lower amount of surfactant due
@ . a1e P .
g | o §§ P :‘\3% Ei ] to their ability to prevent precipitation of
g gcié: e RFEe & 8 API in vivo. Both aspects are particularly
~ ~ [92] . .
S 98825 wglES important in the development of dosage forms
e a=2EEE paSasg . .
&R WE 502 SR for children or the elderly, who require not
- ] = o © . .
R SEEE S EXE a only safe and efficient but also easy-to-
2| 833FE 8 HERZH

-swallow and palatable dosage forms.
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