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Abstract 

 
This paper presents a comprehensive analysis of the intricate dynamics between policy stringency, 
human behavior, and pandemic outcomes during the COVID-19 crisis. Drawing inspiration from the 
’Taylor rule’, we develop and estimate a theoretical C-SI (Cases - Stringency Index) model, providing 
policymakers with an intuitive framework to assess the efficacy of economic and health policies enacted 
in response to the pandemic. Our C-SI model considers the interplay between formal stringency 
measures and individual behaviors, recognizing the nuanced factors influencing decisions to adhere to 
restrictions. Through rigorous theoretical development and empirical testing using a three-stage least 
squares (3SLS) approach we investigate the endogenous interaction between policy instruments, 
individual behavior, and pandemic outcomes. Our results underscore the significant influence of public 
interest in COVID-related topics, or the ”fear factor,” on individual behavior, suggesting that this factor  
rivals/complement formal stringency measures in shaping behavior. We identify a clear trade-off 
between economic and health outcomes and we observe a nonlinear relationship between stringency and 
mobility, indicating that changes in stringency measures do not consistently correlate with changes in 
behavior. Our analysis reveals no evidence of stringency policy endogeneity while we find strong 
evidence that vaccination rates exert a strong influence on policymakers across all analyzed states. 
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1. Introduction

In this paper we develop and estimate theoretical C-SI model as an intuitive tool for analyzing

the effectiveness of economic and health policies implemented during the COVID-19 pandemic.

We adopt a framework reminiscent of the ’Taylor rule’ wherein policymakers utilize the strin-

gency level as a policy instrument, navigating a delicate trade-off between health and economic

outcomes (Sonora 2022). It is assumed that formal stringency measures only imperfectly alter

human behavior, which in terms is assumed to influence both health and economic outcomes.

At its root, the decision to stay home during the COVID-19 crisis can be divided into two

sub-behaviors, those influenced by the policy to restrict the movements and minimize the risk

of spreading, and unobserved idiosyncratic individual choice that is the function of the set of

available and beliefs of each individual.

Cervantes et al (2022) and Celsa-Arellano et al (2023) already modelled and estimated impact

of COVID induced panic on financial markets. Expanding on their concept, we incorporate the

influence of news and/or panic on health and economic outcomes via their impact on idiosyncratic

component of human behavior. This modelling strategy broadens the array of tools available to

policymakers, recognizing that targeted communication strategies could complement or serve as

alternatives to formal restrictions.

By constructing and applying a model that analyzes these interactions, policymakers can

gain valuable insights into relative effectiveness of policy instruments and how different inter-

ventions health and economic outcomes. The significance of the model is in shedding light on

stylized empirical facts related to the COVID-19 pandemic. The inclusion of the news effect

within the model provides a valuable theoretical and empirical framework for examining the

diverse approaches adopted by different countries in managing the pandemic. For instance, it

facilitates analysis of China’s strategy, characterized by stringent total lockdown measures in

affected regions, as well as Sweden’s approach, which primarily relies on recommendations and

communication tools rather than strict mandates (Figure 4).

The model also aims to shed light on the significant differences in death rates observed among

countries with comparable levels of development and similar quality of data reporting and/or lack

of negative correlation between stringency index and death rates across countries. For instance,

South Korea reported approximately 665 deaths per million residents, contrasting sharply with

the Czech Republic, a nation with a similar per capita real GDP, where the figure stood at
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3,967 per million. Similarly, Portugal recorded 2,575 deaths per million residents, while Croatia,

a Mediterranean country with comparable development levels, experienced almost double that

figure, at 4,381 deaths per million. In the United States, where healthcare expenditure as a share

of GDP is the highest, the death rate reached about 3,410 per million, highest among western

economies (Figure 5 and 6).

Furthermore, the model also accounts for instances where the number of reported cases

exhibits an immediate response to stringency measures, contrary to the expected delay dictated

by the virus’s typical incubation period. For example, in the December 2020. after a more than

a week-long campaign to raise awareness and build public support, the number of cases dropped

immediately after the announcement of new measures of social distancing (Figure 7).

We start with development of the C-SI (Cases - Stringency index) theoretical model with

four endogenous variables: stringency index as a proxy for the behaviour of policy makers, index

of mobility of population as an proxy for the individual behaviour and two outcome variables for

number of COVID cases and unemployment.

In order to make theoretical analysis as intuitive as possible we develop the model within

the framework of comparative statics traditionally used by economists. We use mathematical

system of four equations with four endogenous variables to derive slopes and shifts of two curves

in the two-dimensional space. The derived graphical representation of the system of equation is

methodological similar to IS-LM model and it can be quite intuitively used to explore predicted

outcomes of various policies and shocks. In the theoretical part we graphically explore the effects

of economic shocks, shocks in vaccination rates and news (panic) effects on the model.

The empirical model is tested with a four equation system using three stage least squares

(3SLS). The modeling methodology allows us to account for endogeneity across the behavioral

and outcome variables to investigate the endogenous interaction between the behavioral and

outcome variables. Our two year sample period is weekly and begins in February 2020. Due to

limited availability of weekly data for economic indicators during the period of interest (2020-

2023), we have decided to estimate our model on the data for four largest US states. Google’s

phone data helps us to track mobility and identify patterns of idiosyncratic behavioral changes:

mobility should decrease as stringency increases and differences in preferences across the states

should lead to idiosyncratic responses to policy recommendations. We study the properties of

unobserved individual behavior; the estimated residuals from a model of mobility conditional on
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policy restrictions for each state in the sample. The residual represents the unobserved mobility

preferences of individuals and is an indicator how closely individual and policy-maker preferences

align.

The COVID pandemic of 2020-2023 provides researchers with a unique opportunity to ob-

serve both individual behavior as well as policy-makers decisions. We use weekly cell phone

mobility data and an index of behavioral policy restrictions to investigate how effective pol-

icy is at modifying individual’s behavior to meet a goal. Following out theoretical model, our

empirical 4 × 4 model also includes two behavioral variables, the policy instruments and indi-

vidual behavior, and two “outcome” variables, COVID cases and unemployment. The news (the

“fear factor”) effect as potential alternative policy instrument is included as exogenous variable.

We also include a number of other exogenous variables in our estimates in order to control for

vaccination rates, climate, hospital capacity, etc.

While our estimation results vary among states, we can still derive some overarching conclu-

sions from the empirical model. Firstly, our results highlight the substantial influence of public

interest, or the ”fear factor,” in shaping individual behavior during the pandemic. This factor

emerges as a formidable driver of behavior, rivaling the impact of formal stringency measures in

shaping public responses. Additionally, we observe a nonlinear relationship between stringency

measures and mobility patterns, suggesting that shifts in policy stringency do not consistently

correspond with changes in mobility. Moreover, our analysis uncovers no evidence of policy endo-

geneity, suggesting that mobility does not significantly sway policy decisions, which aligns with

the results found in Sonora and Gottwald-Belinić (2023). Secondly, we identify a pronounced

trade-off between economic prosperity and public health outcomes, underscoring the complex

decisions policymakers must navigate, similar in spirit to result found in Sonora (2022). Lastly,

vaccination rates emerge as a significant influencer of policy decisions across all states, prompting

reductions in stringency measures.

The remainder of the paper is organized as follows. Section 2 discuss how policy effectiveness

is defined in the paper. Section 3 develops theoretical model; Section 4 provides an overview

of the methodology and discusses the data. In Section 5 we present the empirical results, and

Section 6 concludes.
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2. Policy Effectiveness

Herein lies the crucial research question: how effective is policy? To determine this we must

first define it. We define policy effectiveness by how closely it is followed by the policy-makers

constituents. This definition does not necessarily mean the policy will be successful at achieving

its goals, but whether or not they were adhered to. A presumption of this definition is that policy-

makers to have a policy goal which is socially beneficial, for example, preventing a majority of

the population from getting COVID and not a random whim of the regulator.2

According to Potter and Harries (2006) the “determinants of policy effectiveness” for health

policy models requires public administration system to include diverse social, cultural and eco-

nomic motivators engaged in behavior. A state of pandemic represents a rare opportunity to

empirically analyze individual behavior during a period of lock-down and public fear and behav-

ioral respond to changes on policies intended to minimize infection rates and protect the health

of the residents (Heuring (2021)). According to the survey made among the citizens across the

United States in May 2020, the reaction on widespread support to stay-at-home policies were

actively accepted among the majority of the surveyed residents Czeisler et al. (2021). Individual

reactions went even beyond the intended policy. People indicated that they would feel unsafe if

restrictions were lifted. The anxiety level and concerns about the impact of disease on individual

health as well as the health of their peers triggered risk averse behavior in population.

We therefore couch the discussion in terms of policy effectiveness. To determine whether or

not a policy is effective is defined by how closely residents follow the prescribed restriction. This

requires the designer to also understand the preferences of her constituents. Thus, as in Brainard

(1967), we can consider policy effectiveness, for any time t, compactly in the relationship

Bt = θtPt + ut, θ ≥ 0 (1)

where individual behavior is represented by B, P represents the policy in question, and u repre-

sent other exogenous factors influencing an individuals actions. If policy is effective, regardless

of whether or not it is the correct policy, implies the policy response parameter, θ, is greater

2An example of policy making on a whim with no social benefit occurred about 50 years ago in Myanmar when
then dictator U Ne Win suddenly introduced right-hand traffic after years of left-hand traffic on the advice of an
astrologer to prevent bad luck.

5



than or equal to 1. That is the optimal policy is one such that

B∗
t = P ∗

t .

If any given individual ignores the policy θ = 0. On other hand, others may believe the policy

does not go far enough and θ > 1. Aggregating over the all individuals it reasonable to assume

that the average policy response is given as θ̄ ≤ 1. Note that θ and P are time dependent

representing that new information may change both policy and individual’s policy responses. In

this context, deviations from the prescribed policy are given in u which reflects individual’s set

of preferences and animal spirits. u also represents individual’s level of understanding of what is

being asked of them and also reflects a lag between the policy announcement and the behavioral

adjustment.

Alternatively, policy must also consider the preferences of households,

Pt = λtBt + et, λ ≤ 1

where λ represent the policy-maker’s understanding of her constituents preferences and e rep-

resents exogenous new information or factors which force the policy to deviate from what they

believe their constituents will follow. The policy-maker must recognize what level of restrictions

is feasible to impose otherwise residents will not take it too seriously. The better the policy-

makers knows her constituents the more likely the policy-maker will achieve her goals. It is

important to note that, in this discussion, the policy may not be the best policy to achieve the

goal. Rather it is a function of how well the policy-maker understands her constituents. Thus,

policy effectiveness is defined as what can feasibly be implemented and whether or not individu-

als will buy into any restrictions. It is also a function of how enforceable the policy is, if the cost

of monitoring behavior is too high, constituents may be willing to flaunt the new rules, rendering

it ineffective.

Therefore, in order for policy to be effective individuals have to believe the policy-maker

and the policy-maker has to understand her constituents. This implies there is a feedback loop

between individual behavior and policy decisions. Recently, Sonora and Gottwald-Belinić (2023),

estimated a version of equation (1) for the 10 largest US states and assumed that policy was

exogenous. They demonstrated that policy is followed, but it can take up to 1.5 years to be 100%
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effective. Perhaps of more realistically, they found that for policy to be 50% effective it took

between 150, in Texas, to 500 days in Pennsylvania – in the context of equation (1), θTX > θPA.

What this paper did not answer, however, is how well was the policy designed given resident’s

preferences, that is the level of λ. Did the time required for policy to be effective reflect households

willingness to adapt to the policy restriction? Or was it that in some states, the policy-makers

better understood their constituents? Or some combination of the two? By endogenizing these

two processes, we can analyze the relationship between policy construction and resident responses

to better understand the dynamics of policy effectiveness.

3. Introducing the theoretical C − SI model

We begin our analysis by introducing a formal theoretical model to analyze the interaction

between policy-maker and resident preferences. In this model, the revealed preferences of each

agent are manifested in stringency policy, si, for policy-makers and mobility. Because COVID is

an outcome of transmission, via mobility and density, the model is discussed in policy-COVID

space.

We start with general system of equations with four endogenous variables: the policy strin-

gency index si; the change in COVID c, defined either in terms of cases or deaths; an index of

individual mobility, gmi; and the unemployment rate u which is a gauge for economic activity.

Exogenous shocks in our systems are news (in terms of Google searches) gs, the vaccination rate

v and economic conditions ec.

The general form of the model is the system of equations:

si = si
( (+)
c ,

(−)
u ,

(+)

gmi |
(−)
v ) (2)

gmi = gmi
( (−)
c ,

(−)

si ,
(+)
u |

(+)
v ,

(−)
gs
)

(3)

c = c
( (+)

gmi,
(−)
u |

(−)
gs ,

(−)
v
)

(4)

u = u
( (−)

gmi,
(+)

si |
(−)
ec
)

(5)

where positive and negative signs represent the sign of the partial derivative, e.g.

si =si(
(−)
c, ·) ⇒ ∂si

∂c
> 0 ⇒ sic > 0,

c =c(
(−)
·, u, ·) ⇒ ∂c

∂u
< 0 ⇒ cu < 0.

(6)

7



Equation (2) is the policy function. We assume: the number of cases increases stringency

sic > 0; an increase in mobility of population will induce policy-makers to increase stringency

sigmi > 0 (unless there is accommodating policy making); rising unemployment creates pressures

to soften stringency siu < 0; and the vaccination rate is an alternative for stringency measures,

siv < 0

Equation (4) defines changes in the number of cases. We assume that mobility increases the

spread of the virus, cgmi > 0; while unemployment, greater pandemic information seeking; and

vaccination rates reduce cases, cℵ < 0 where ℵ = u, gs, v.

Equation (3) captures individual resident behavior (mobility) and its determinants. We

assume that stringency measures and number of cases reduces mobility, gmisi < 0 and gmic < 0.

We also assume that the “fear factor” parameter, captured by information gathering is also

negative, mobility in this case, cgs < 0. Unemployment and the vaccination rate are assumed to

have positive effects, gmiu > 0 and gmiv > 0.

Finally, we model the function for the state of the economy in equation (5). We assume that

unemployment rate is driven by general economic conditions uec < 0 and that the restrictions

affect unemployment positively, usi > 0, while the reaction of population to stringency proxied by

mobility has opposite sign ugmi < 0. Increase in mobility raises demand for labor and decreases

unemployment.3

Besides the assumed theoretical signs of coefficients it is important to pay attention to ab-

solute size of effects. For example, if reaction of stringency to change in number of cases is less

than one in absolute terms |sic| ∈ (0, 1), we can conclude that policy-makers are risk taking.

On the other if the response of mobility is less than one |gmic| ∈ (0, 1) we can conclude that

individuals are risk taking as well. The values above unity sic > 1 and |gmic| > 1 would imply

that they are risk averse. From the perspective of individuals, similar logic can be applied to the

fear factor coefficient gmigs.

In order to build intuition around the model, we use IS − LM style comparative static

analysis where we analyze effects of exogenous shocks on the stringency index and number of

cases. Formally, in the derivation of the model we keep all four variables (stringency, cases,

mobility and unemployment) endogenous, but due to limitation of two-dimensional figures, the

3We assume that working from home labor supply and online commerce can not substitute shock completely.
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stringency index is on represented on the Y−axis and COVID are on the X−axis.4.

We start the graphical analysis of the theoretical model with a shock that deteriorates eco-

nomic conditions. According to Sonora (2022) such a shock would induce Taylor rule choice

between stringency and economic deterioration and - depending on the preferences of policy-

makers - might induce downward shift of si curve. Clearly, some policy-makers will be willing

to have more cases and therefore have less stringency, which is shown by a shift in the policy

curve from si to si1 which yields lower stringency and more cases.

Figure 1: Effect of economic shocks in the C − SI model

c0

si0

A

si1

Z

c

si

c0

si0

c1

si1

This phenomenon was demonstrated in Sonora (2022) who used a COVID loss function to

show that some states were willing to accept more cases to preserve the economy while others

stressed reducing COVID. His results found that Florida and Texas were consistently more

economy-centric than New York and California.

The result of exogenous deterioration in the labor market would ceterus paribus result in

higher number of cases and lower stringency index. As suggested by authors, strength of such

policies is off course dependent on the preferences of policy-makers and hospital capacities to

deal with more cases.

Second shock that we address is the increase in vaccination rate that will shift si curve

downwards and c curve leftward. Intuition for the shift of si comes from the fact that rise

in vaccination rate will affect stringency directly through expectations of policy-makers and

indirectly through the drop in COVID cases and increase in mobility (we assume that the effect

4See Appendix A for the formal derivation of the slopes and shifts of the C − SI model
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of the drop in COVID cases dominate over the effect of the rise in mobility).

When it comes to c curve it will shift to the left, since rise in vaccination rate will reduce

number of COVID cases for each level of stringency. Again we assume that vaccination effect

dominates the fact that people will get more active once they get vaccinated.

As a result we will end up with lower stringency level for each number of COVID cases

(Figure 2). While the change in number of COVID cases in the new equilibrium will depend on

the strength of the relative shifts of si and c. If the shift of si curve is bigger, the model will end

up in equilibrium X with higher number of cases and vice versa if the shift of c curve is stronger,

the number of cases will be smaller in new equilibrium Z.

Intuitively, the relative size of shift will depend of the ratio of expected drop in cases relative to

the actual drop in cases and indirectly on the relationship between vaccination rate and mobility

of vaccinated and general population. The stronger the effect of vaccination is on transmission

of COVID and the weaker is the effect of vaccination on the mobility of people, drop in COVID

cases in more probable in the new equilibrium for a given change in stringency.

Figure 2: Vaccination rate shift in the C − SI model
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Finally we explore the effect of the so called fear factor or frequency of COVID related news.

We can assume that COVID related news and other COVID related media or social network

activities will have impact on behavior of people. For example, rise in awareness of COVID

related dangers might decrease mobility of people and transmission in general (social contacts,

washing hands, wearing masks, etc.) and number of cases for given stringency level.

In terms of our model, that would imply shift of the c curve to the left, implying lower level
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of cases and lower stringency in the new equilibrium (Figure 3). The intuition is based on the

assumption that frequency of COVID related news and information related to COVID in general

affect behavior of the population and changes the speed of the transmission in the similar way

as formal stringency rules.

In terms of policy making, effect of news is important due to the fact that it’s effects on

COVID cases are opposite relative to the case of reaction of policy-makers to economic slowdown.

Figure 3: Effect of news in the C − SI model
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4. Methodology and Data

4.1. Methodology

We employ three stage least square estimator in order to estimate empirical model with four

endogenous variables: stringency index sit, mobility index gmit, change in COVID cases ∆ct

and unemployment rate ut:

sit = s0 + s1sit−n + s2∆ct−n + s3ût + s4ût−n + s5gmit−n + s6vt−n + s7bedst−n + ϵt (7)

gmit = g0 + g1gmit−n + g2∆ct−n + g3sit−n + g4si
2
t−n + g5ût−n + g6vt−n + g7gst−n + ηt (8)

∆ct = c0 + c1∆ct−n + c2gmit−n + c3ut−n + c4(gmit−n ∗ (1− vt−n)) + c5vt−n + c6gst−n

+ c7seast−n + c8Bident + ψt (9)

ut = υ0 + υ1ut−n + υ2gmit−n + υ3sit−n + ϕt (10)
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where vt represents vaccination rate, si2 is squared stringency index (nonlinear effect), gst
is the news effect, 1 − vt is non-vaccination rate, bedst are hospital utilization rate, seast is

dummy variable for summer (proxy for temperature oscillation), Bident is time fixed effect

which represent the change in federal COVID policy after President Biden was inaugurated and

ϵ, ηt, ψt and ϕt represents error terms in estimated equations. All variables are in logs with

exception of vaccination rate vt and unemployment rate ut that are expressed as percentages.

Equation (7) models behavior of stringency index and in a way represents behavioral model

of the policy-makers. Equation (8) represents the behavioral model of the individual agents

measured by the mobility index. In the equation (9) the dynamics of pandemics is modeled

measured by the change in COVID cases or deaths. Finally in equation (10) we model impact

of the pandemics onto economic conditions proxied by unemployment.

We model nonlinear effects of stringency index on individual behavior in two ways [Equation

(8)]. First, we allow for concave/convex response of mobility to stringency with square terms

sit−n and si2t−n and after that we estimate model with sample split analysis where we measure

response of mobility to stringency in two regimes Dtsit−n and (1 − Dt)sit−n where Dt = 1 if

change in stringency index is positive, ∆sit > 0, and zero otherwise.

We estimate equations 7 through 10 using a three-stage least squares (3SLS) GMM estimator

based weighting matrix:

Ẇ =

(
N−1

N∑
t=1

Z ′
tΩ̂Zt

)
(11)

where ˆ̂ui are estimated residuals from the initial two stage (2SLS) and G×G matrix of residuals

is defined as:

Ω̂ ≡ N−1
N∑
t=1

ˆ̂ut ˆ̂u
′
t (12)

and estimated coefficients using 3SLS are defined as:

β̂ = [X ′ZẆZ ′X]−1X ′ZẆZ ′Y (13)

The estimated β̂ is defined such that it is consistent and asymptotically normal.

4.2. Data

Our data is weekly and the sample is the two year period February 2020 to February 2022,

which roughly coincides with the end of the omicron variant spike. To simplify the presentation
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of the analysis we choose the four largest states in terms of gross state product (GSP). In

descending order the states are: California (D), Texas (R), New York (D), and Florida (R).

There are differences in the way Democrat (D) and Republican (R) Governors responded to the

pandemic and our sample includes a balanced mix of the two parties.

To proxy for individual mobility behavior we use recently available cell phone data to observe

movements. Google’s Community Mobility Report (Google (2021)) indexes six different “types”

of mobility, by state: Grocery and pharmacy, retail and recreation, parks, residential, work, and

transit. We use the daily mean of five of these indices to derive an overall index of mobility, the

Google mobility index (GMI).5 The index is defined as the percentage difference between the

mobility on any given day based on pre-pandemic mobility, GMI ∈ (−100%, 100%). We exclude

“park” mobility – defined as “…trends for places like national parks, public beaches, marinas, dog

parks, plazas, and public gardens, see Google (2021) – for two reasons. First, stringency measures

are designed to restrict movement and with many areas being closed off, outdoor mobility will

rise as there are few other locations to go outside the home. Secondly, from a data standpoint,

the park index varies greatly across the states. In Ohio, mobility in parks averaged about 130%

above pre-pandemic levels.

Two other mobility indices were also considered. The first is the Dallas Federal Reserve

Bank’s Mobility and Engagement Index derived from cell phone tracking data. However this

data was discontinued in late-March of 2021 which limits the time series length and would

exclude some important structural changes in national COVID policy, such as the vaccine being

readily available to all residents over the age of 18. A second alternative is produced by Apple

called the Mobility Trends Report, Apple (2021). We chose not to use this index because it is

constructed from users of iPhones, which could bias results given that iPhone users are generally

more urban, higher income, and better educated, see Hixon (2014).

COVID restriction policies are from the Oxford Coronavirus Government Response Tracker

(OxCGRT) Stringency Index (denoted OxSI) (Hale et al. (2021)). This one of the several

indices constructed by OxCGRT but was chosen as it quantifies the degree to which states

restrict individual movements, via “lockdown” policies, rather than economic support or health

containment policies. The index is between 0 and 100 with a value of 100 being the most

5We also tried a principle components approach. Because the correlation between the mean and principle
component index was over 0.94 for all states we chose to use the mean as the calculation is more transparent.
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restrictive. The index represents all containment and closure policy indicators, such as school

and workplace closing, public events cancellation and restrictions on gathering, public transport

access restrictions, and travel restriction incorporated with stay at home promotions including

the proxy for recorded public information campaigns. OxCGRT daily data captures the intensity

and modality on policy interventions for COVID-19. The stringency index shows variation within

regions and states, correlated with political determination of particular state government.

The per-capita case and death data is from the John Hopkins Coronavirus Resource Center,

Dong et al. (2020), available from Johns Hopkins University (2021). The weekly unemploy-

ment data used is the insured unemployment rate, from the U.S. Employment and Training

Administration (2021), and is the percent of the insured labor force that is continuing to file for

unemployment insurance. The long run unemployment rate, ū, is the average of the insured un-

employment rate from January 1, 2019 – January 21, 2020, the pre-pandemic normal. While not

strictly the commonly used definition of unemployment, we will call this variable unemployment

throughout the paper. To control for changing healthcare infrastructure we use hospital bed va-

cancy rates, also from Johns Hopkins (2021). This accounts for i. policy-makers not wanting to

over-burden hospitals with new cases and ii. access to healthcare for COVID patients. Secondly,

we include the current and one-week lagged percentage of eligible population which has been

vaccinated, %V AX, at least once.

A time fixed effect effective the date of the Biden administration’s inauguration on January

20, 2021 which signaled a shift in national COVID policy, discussed before the election by

Malakoff (2020) with differences later highlighted in Kates et al.. Finally, seasonal fixed effects

are also included: The first is a summer indicator, June 1 to September 1 for both 2020 and

2021. The second is a winter holiday season variable extending from October 1 to January 15.

The 2021 Texas power crisis, February 10-27, 2021 is also included in the Texas model as this

had a significant impact on mobility in the state.

Lastly, for policy-makers and residents seeing information on COVID we use state level

internet search data from Google Trends, Google (2022). This captures information, particularly

concern about the spread of COVID, seeking and is assumed to alter both policy-maker and

resident decisions. The data is the number of weekly searches for “COVID” from users of the

Google search engine.

Table provides the mean, standard deviation (SD), the minimum and maximum of the GMI
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and OxSI data by party of the governor and for each state. States with a Republican governor

had fewer restrictions and more overall mobility. The GMI averaged –15.6 and –11.2 and the

OxSI averaged 53.1 and 47.7 for Democrat and Republican governor states respectively. The

state with highest mobility is Oho and the least mobility is in New York while the least/most

stringent states are Florida and New York. It is also worth noting that states governed by

either party followed similar policy responses across party lines, indicated by comparable OxSI

standard deviations. However, there is greater differences in mobility behavior in Democrat

states than Republican ones. Republican led states have more mobility and less stringency than

Democrat states. Interestingly, at the end of the sample period Democrat led states have less

stringency than Republican states. This is likely because of the surge in new cases in non-

vaccinated residents due to the Delta variant of COVID which primarily impacted Republican

states. We can also see the effect of severe weather that precipitated the Texas power problem

in February, 2021. Holiday mobility can also be seen to decline.

5. Results

We present the results of the estimated equations (7) through (10) in Table 3 for registered

COVID cases and Table 4 for registered COVID related deaths. Table 3 presents results for each

state in separate column, while results for equations (7) through (10) are separated by horizontal

lines.

Results for equation (7) are showing strong level of persistence in stringency index indicating

gradual changes in pandemic related restrictions. Another robust results is for vaccination rate

where we have estimated negative and statistically significant result in all states.

When it comes to response of stringency to change in cases, we have got intuitive results

for Florida and California, while results for New York and Texas are not significant. When it

comes to the effect of unemployment lagged results are negative in all states with exception

of California. Indicator of hospital beds utilization is only marginally significant in Texas and

California.

Obviously such results imply that policymakers change policies in gradual way, that the vac-

cination rate influenced their behavior in all analyzed cross sections regardless of the narratives.

Besides that we are able to find evidence of a loss function were policy-makers were trying to

minimize losses relative to unemployment and COVID cases depending on their relative prefer-
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ences.

With respect to equation (8) that models individual behavior results also indicate high level

of persistence. Results indicate strong and robustly negative effects of the growth rate of COVID

cases and news effect as well. Obviously individual behavior was affected with data on the spread

on pandemics, but also on the awareness of the population about existence of pandemics (gst
variable is proxied by google search statistics about COVID).

Vaccination rate is also important in explaining mobility and estimated coefficient has positive

sign in all states with exception of New York. When it comes to nonlinear effects, we have

estimated nonlinearity in all states with exception of Florida. In Figure 9 we provide visualization

of the estimated coefficients for sit−n and si2t−n. The results suggest that the strength of the

effect of stringency on the individual behavior (measured by mobility index) depends on the level

of stringency (on history of stringency measures).

The third section of the Table 3 presents results of the equation (9). Mobility index and

interaction term between mobility and non-vaccination rate have positive effect on the pandemic

dynamics, while vaccination rate has negative effect over all cross-sections. When it comes to

effects of summer seas1t−n and the change in federal COVID policy bident−n we have only

marginally significant results.

When it comes to modeling economic situation we have modeled unemployment as a function

of mobility, stringency and wider economic conditions, equation (10). Results show evidence that

deterioration of economic activity as measured by unemployment was predominately driven by

swings in the mobility of population. Estimated coefficient is robust and negative in all states

with exception of California. In the California, results is driven by economic conditions index. As

all other three results, we have also evidence that unemployment is strongly persistent variable.

Table 4 presents results for the model in which growth rate of COVID cases is replaced by

growth rate of COVID related deaths. Qualitatively, results are the same as in Table 4. The

major differences are in the fact that estimated coefficients for nonlinear effects of stringency on

mobility are at different levels of significance. In the case with death related statistics estimates

for California are not statistically different from zero, while estimate for Florida is statistically

significant. The visualization of estimated coefficients sit−n and si2t−n is presented on Figure 10.

We have also estimated nonlinear relationship between stringency and mobility using sample

split technique. We have estimated two separate coefficients, one for the positive change in strin-
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gency upsit−n and another for negative change in stringency downsit−n. Results are presented

in Table 5. Both coefficients are insignificant in most of the states, and in California they are

not statistically different between two regimes.

6. Conclusion

In this paper we use a system approach to gain insight into policy-maker and resident behavior

during the 2020-2022 COVID pandemic. Unlike previous research into the responses of policy-

makers and residents which took the other’s decisions as exogenous, this paper endogenizes

policy-maker and resident behavior.

We begin by constructing a theoretical model which allows to provide some background into

how the two sets of preferences respond to each other and with a two other outcome endogenous

variables: the economy and COVID cases. We then applied three stage least squares to the theo-

retical model to four of the larges US states to provide empirical results and examine differences

in behavior across the regions.

The main conclusions from the paper are as follows. First, our results highlight the substan-

tial influence of public interest, or the ”fear factor,” in shaping individual behavior during the

pandemic. This factor emerges as a formidable driver of behavior, rivaling the impact of formal

stringency measures in shaping public responses. This result implies that news effects can have

as significant impact on individual behavior as policy in managing the negative health and eco-

nomic outcomes of pandemics. Second, there is also a nonlinear reaction of mobility on policy,

but in interesting ways. We find that as stringency rises, California residents initially increase

their level of mobility and need more stringency to induce them to reduce moving around. This

is contrary to the other three states in the sample, all of which show that stringency reduces

movement but at a decreasing rate, that is there are diminishing returns to greater stringency.

Third, we are able to demonstrate that there is some degree of exogeneity with respect to how

policy is conducted. Our result corroborate those found in Sonora (2022), who demonstrates

there is a trade-off between resident health and the state economy and that this trade-off can

vary considerably across states. The exogeneity of policy also aligns with the results found in

Sonora and Gottwald-Belinić (2023) which assumed exogenous policy to determine whether or

not policy has an impact on resident behavior. Results from our model, which allows policy-

makers to be influenced by resident behavior, suggest that COVID policy was partially exogenous
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in the states in our sample, that is mobility has a positive or zero effect on stringency index.

However, we also find that vaccination rates, another indicator of resident preferences, do

impact stringency measures. It is interesting to note that higher vaccination rates has a strong

influence on policy-makers to reduce restrictions on mobility. This suggests that policy-makers

are aware of the unpopularity of stringency and are quick to reduce restrictions if residents

“voluntarily” reduce the probability contracting the disease through higher vaccination rates.

This observation arises from the fact that vaccination robustly reduces spread of pandemics even

in periods of high mobility which is a robust predictor for contagion.
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Tables

Table 1: Descriptive statistics

count mean sd min max

SI

CA 105 3.86 0.45 2.12 4.41
FL 104 3.66 0.48 1.72 4.41
NY 105 3.89 0.48 2.12 4.41
TX 105 3.68 0.57 1.02 4.36

GMI

CA 105 -18.68 5.60 -31.51 2.37
FL 105 -14.73 6.57 -32.49 3.20
NY 105 -18.50 7.30 -38.17 2.69
TX 105 -11.25 5.84 -28.94 4.69

∆Case

CA 104 0.12 0.29 0.002 1.70
FL 102 0.15 0.40 0.002 2.54
NY 102 0.15 0.62 0.001 5.02
TX 101 0.13 0.32 0.003 2.17

∆Death

CA 101 0.12 0.28 -0.0022 1.85
FL 101 0.10 0.25 0.0003 1.55
NY 100 0.08 0.34 0.0006 2.61
TX 100 0.11 0.28 0.0030 2.08

UR

CA 105 7.07 5.64 2.04 27.75
TX 105 3.78 3.32 0 .85 11.39
NY 105 6.84 6.15 1.69 23.43
FL 105 2.79 3.56 0.37 25.04
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Table 2: Correlation matrix

CA

si_CA gmi_CA dc_CA u_CA v_CA gs_CA ec_CA
si_CA 1.0
gmi_CA -0.8 1.0
dc_CA 0.1 0.0 1.0
u_CA 0.6 -0.5 0.1 1.0
v_CA -0.7 0.4 -0.3 -0.6 1.0
gs_CA 0.4 -0.6 -0.1 -0.0 0.0 1.0
ec_CA -0.7 0.6 -0.2 -0.9 0.8 -0.1 1.0

NY

si_NY gmi_NY dc_NY u_NY v_NY gs_NY ec_NY
si_NY 1.0
gmi_NY -0.7 1.0
dc_NY 0.0 0.1 1.0
u_NY 0.7 -0.6 -0.0 1.0
v_NY -1.0 0.6 -0.2 -0.6 1.0
gs_NY 0.2 -0.4 -0.0 -0.1 -0.2 1.0
ec_NY -0.8 0.8 -0.1 -0.9 0.8 -0.1 1.0

FL

si_FL gmi_FL dc_FL u_FL v_FL gs_FL ec_FL
si_FL 1.0
gmi_FL -0.8 1.0
dc_FL 0.3 -0.1 1.0
u_FL 0.7 -0.6 0.0 1.0
v_FL -0.8 0.7 -0.3 -0.5 1.0
gs_FL 0.2 -0.2 0.1 -0.0 -0.1 1.0
ec_FL -0.9 0.8 -0.2 -0.8 0.8 -0.1 1.0

TX

si_TX gmi_TX dc_TX u_TX v_TX gs_TX ec_TX
si_TX 1.0
gmi_TX -0.7 1.0
dc_TX 0.4 -0.4 1.0
u_TX 0.7 -0.6 0.2 1.0
v_TX -0.9 0.7 -0.3 -0.7 1.0
gs_TX 0.1 -0.3 0.3 0.1 -0.2 1.0
ec_TX -0.8 0.8 -0.3 -0.9 0.9 -0.2 1.0
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Table 3: Comparison of the model estimates for CA, NY, FL, TX - cases

(1)
si_CA

si_CA
L.si_CA 0.670***

(0.000)
L.dc_CA 0.149***

(0.001)
u_CA -0.024***

(0.000)
L.u_CA 0.016***

(0.001)
L.gmi_CA -0.001

(0.750)
L.v_CA -0.004***

(0.000)
L.beds_CA -0.344*

(0.060)
gmi_CA
L.gmi_CA 0.646***

(0.000)
L.dc_CA -5.784***

(0.000)
L.si_CA -47.708***

(0.000)
L.sqsi_CA 6.240***

(0.000)
L.u_CA 0.014

(0.692)
L.v_CA 0.026**

(0.029)
L.gs_CA -1.106**

(0.014)
dc_CA
L.dc_CA 0.798***

(0.000)
L.gmi_CA 0.015***

(0.000)
L.u_CA -0.003

(0.297)
L.giv_CA 0.000***

(0.000)
L.v_CA -0.009***

(0.000)
L.gs_CA -0.034

(0.167)
L.seas1 -0.019

(0.345)
L.biden -0.056*

(0.075)
u_CA
L.u_CA 0.686***

(0.000)
L.gmi_CA 0.016

(0.817)
L.si_CA 1.128

(0.282)
L.ec_CA -0.244**

(0.018)
N 102

p-values in parentheses
* p<.10, ** p<.05, *** p<.01

(1)
si_NY

si_NY
L.si_NY 0.682***

(0.000)
L.dc_NY -0.029

(0.543)
u_NY 0.093***

(0.001)
L.u_NY -0.087***

(0.001)
L.gmi_NY 0.008***

(0.000)
L.v_NY -0.004***

(0.001)
L.beds_NY -0.340

(0.178)
gmi_NY
L.gmi_NY 0.580***

(0.000)
L.dc_NY -3.793***

(0.000)
L.si_NY 40.240**

(0.022)
L.sqsi_NY -5.480**

(0.025)
L.u_NY -0.032

(0.561)
L.v_NY 0.013

(0.730)
L.gs_NY -2.456***

(0.000)
dc_NY
L.dc_NY 0.708***

(0.000)
L.gmi_NY 0.021***

(0.000)
L.u_NY 0.006

(0.213)
L.giv_NY 0.000***

(0.004)
L.v_NY -0.007***

(0.001)
L.gs_NY 0.061

(0.205)
L.seas1 -0.061*

(0.089)
L.biden -0.012

(0.819)
u_NY
L.u_NY 0.927***

(0.000)
L.gmi_NY -0.087***

(0.001)
L.si_NY -0.179

(0.669)
L.ec_NY -0.017

(0.707)
N 100

p-values in parentheses
* p<.10, ** p<.05, *** p<.01

(1)
si_FL

si_FL
L.si_FL 0.509***

(0.000)
L.dc_FL 0.170***

(0.000)
u_FL 0.084***

(0.000)
L.u_FL -0.027***

(0.000)
L.gmi_FL 0.009**

(0.023)
L.v_FL -0.004***

(0.000)
L.beds_FL 0.224*

(0.079)
gmi_FL
L.gmi_FL 0.685***

(0.000)
L.dc_FL -4.521***

(0.000)
L.si_FL 21.569

(0.128)
L.sqsi_FL -2.848

(0.126)
L.u_FL 0.031

(0.635)
L.v_FL 0.049***

(0.006)
L.gs_FL -0.201

(0.549)
dc_FL
L.dc_FL 0.728***

(0.000)
L.gmi_FL 0.011***

(0.000)
L.u_FL 0.005***

(0.001)
L.giv_FL 0.000**

(0.015)
L.v_FL -0.002***

(0.005)
L.gs_FL 0.012

(0.239)
L.seas1 0.009

(0.326)
L.biden -0.073***

(0.000)
u_FL
L.u_FL 0.439***

(0.000)
L.gmi_FL -0.114*

(0.080)
L.si_FL 1.711*

(0.084)
L.ec_FL -0.049

(0.551)
N 100

p-values in parentheses
* p<.10, ** p<.05, *** p<.01

(1)
si_TX

si_TX
L.si_TX 0.861***

(0.000)
L.dc_TX -0.005

(0.944)
u_TX 0.164**

(0.015)
L.u_TX -0.154**

(0.016)
L.gmi_TX 0.003

(0.196)
L.v_TX -0.003***

(0.004)
L.beds_TX 0.701**

(0.045)
gmi_TX
L.gmi_TX 0.310***

(0.001)
L.dc_TX -3.762***

(0.000)
L.si_TX 50.820***

(0.005)
L.sqsi_TX -7.232***

(0.005)
L.u_TX 0.170

(0.107)
L.v_TX 0.073***

(0.004)
L.gs_TX -1.400***

(0.010)
dc_TX
L.dc_TX 0.789***

(0.000)
L.gmi_TX 0.014***

(0.000)
L.u_TX 0.002

(0.694)
L.giv_TX 0.000***

(0.009)
L.v_TX -0.004***

(0.002)
L.gs_TX 0.003

(0.889)
L.seas1 -0.011

(0.602)
L.biden -0.045

(0.193)
u_TX
L.u_TX 0.941***

(0.000)
L.gmi_TX -0.035**

(0.028)
L.si_TX 0.256

(0.322)
L.ec_TX 0.004

(0.917)
N 100

p-values in parentheses
* p<.10, ** p<.05, *** p<.01
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Table 4: Comparison of the model estimates for CA, NY, FL, TX - deaths

(1)
si_CA

si_CA
L.si_CA 0.753***

(0.000)
L.dd_CA 0.057*

(0.097)
u_CA -0.012**

(0.010)
L.u_CA 0.008**

(0.038)
L.gmi_CA -0.002

(0.449)
L.v_CA -0.003***

(0.000)
L.beds_CA -0.085

(0.676)
gmi_CA
L.gmi_CA 0.501***

(0.000)
L.dd_CA -4.865***

(0.000)
L.si_CA -10.301

(0.681)
L.sqsi_CA 1.407

(0.676)
L.u_CA 0.020

(0.638)
L.v_CA 0.046***

(0.001)
L.gs_CA -1.631***

(0.000)
dd_CA
L.dd_CA 0.892***

(0.000)
L.gmi_CA 0.020***

(0.000)
L.u_CA -0.001

(0.752)
L.giv_CA 0.000***

(0.003)
L.v_CA -0.007***

(0.000)
L.gs_CA 0.031

(0.160)
L.seas1 -0.014

(0.398)
L.biden -0.010

(0.689)
u_CA
L.u_CA 0.654***

(0.000)
L.gmi_CA 0.032

(0.726)
L.si_CA 0.710

(0.513)
L.ec_CA -0.318**

(0.010)
N 100

p-values in parentheses
* p<.10, ** p<.05, *** p<.01

(1)
si_NY

si_NY
L.si_NY 0.718***

(0.000)
L.dd_NY -0.054

(0.183)
u_NY 0.099***

(0.000)
L.u_NY -0.094***

(0.000)
L.gmi_NY 0.008***

(0.000)
L.v_NY -0.004***

(0.003)
L.beds_NY -0.331

(0.115)
gmi_NY
L.gmi_NY 0.662***

(0.000)
L.dd_NY -1.974***

(0.002)
L.si_NY 38.205**

(0.019)
L.sqsi_NY -5.558**

(0.015)
L.u_NY -0.007

(0.891)
L.v_NY -0.029

(0.466)
L.gs_NY -2.364***

(0.000)
dd_NY
L.dd_NY 0.666***

(0.000)
L.gmi_NY 0.003***

(0.001)
L.u_NY 0.000

(0.858)
L.giv_NY 0.000

(0.128)
L.v_NY -0.001*

(0.051)
L.gs_NY 0.007

(0.333)
L.seas1 -0.005

(0.461)
L.biden 0.001

(0.892)
u_NY
L.u_NY 0.937***

(0.000)
L.gmi_NY -0.104***

(0.000)
L.si_NY -0.518

(0.168)
L.ec_NY -0.016

(0.703)
N 99

p-values in parentheses
* p<.10, ** p<.05, *** p<.01

(1)
si_FL

si_FL
L.si_FL 0.515***

(0.000)
L.dd_FL 0.307***

(0.000)
u_FL 0.078***

(0.000)
L.u_FL -0.021***

(0.001)
L.gmi_FL 0.016***

(0.000)
L.v_FL -0.004***

(0.000)
L.beds_FL 0.186

(0.124)
gmi_FL
L.gmi_FL 0.481***

(0.000)
L.dd_FL -6.316***

(0.000)
L.si_FL 39.074***

(0.009)
L.sqsi_FL -5.170***

(0.008)
L.u_FL 0.023

(0.763)
L.v_FL 0.083***

(0.000)
L.gs_FL -0.508

(0.169)
dd_FL
L.dd_FL 1.036***

(0.000)
L.gmi_FL 0.021***

(0.000)
L.u_FL 0.004*

(0.076)
L.giv_FL 0.000***

(0.000)
L.v_FL -0.005***

(0.000)
L.gs_FL 0.002

(0.874)
L.seas1 -0.000

(0.990)
L.biden -0.102***

(0.000)
u_FL
L.u_FL 0.405***

(0.000)
L.gmi_FL -0.090

(0.173)
L.si_FL 1.220

(0.225)
L.ec_FL -0.134

(0.105)
N 100

p-values in parentheses
* p<.10, ** p<.05, *** p<.01

(1)
si_TX

si_TX
L.si_TX 0.877***

(0.000)
L.dd_TX 0.016

(0.794)
u_TX 0.161***

(0.008)
L.u_TX -0.151***

(0.009)
L.gmi_TX 0.003

(0.226)
L.v_TX -0.002***

(0.007)
L.beds_TX 0.812**

(0.014)
gmi_TX
L.gmi_TX 0.311***

(0.001)
L.dd_TX -3.629***

(0.000)
L.si_TX 46.519**

(0.010)
L.sqsi_TX -6.554**

(0.010)
L.u_TX 0.126

(0.240)
L.v_TX 0.077***

(0.004)
L.gs_TX -1.520***

(0.004)
dd_TX
L.dd_TX 0.692***

(0.000)
L.gmi_TX 0.002**

(0.034)
L.u_TX 0.001

(0.438)
L.giv_TX 0.000

(0.251)
L.v_TX -0.001

(0.135)
L.gs_TX 0.010

(0.104)
L.seas1 0.010

(0.140)
L.biden -0.016

(0.124)
u_TX
L.u_TX 0.960***

(0.000)
L.gmi_TX -0.049***

(0.001)
L.si_TX 0.078

(0.744)
L.ec_TX 0.017

(0.601)
N 99

p-values in parentheses
* p<.10, ** p<.05, *** p<.01
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Table 5: Comparison of the threshold model estimates for CA, NY, FL, TX

(1)
si_CA

si_CA
L.si_CA 0.712***

(0.000)
L.dc_CA 0.233***

(0.000)
u_CA -0.026**

(0.011)
L.u_CA 0.020**

(0.019)
L.gmi_CA 0.001

(0.865)
L.v_CA -0.004***

(0.000)
gmi_CA
L.gmi_CA 0.567***

(0.000)
L.dc_CA -4.629***

(0.000)
L.upsi_CA -2.791***

(0.000)
L.downsi_CA -2.964***

(0.000)
L.u_CA 0.043

(0.237)
L.v_CA 0.002

(0.807)
L.gs_CA -1.778***

(0.000)
dc_CA
L.dc_CA 0.807***

(0.000)
L.gmi_CA 0.015***

(0.000)
L.u_CA -0.002

(0.223)
L.giv_CA 0.001***

(0.000)
L.v_CA -0.011***

(0.000)
L.gs_CA -0.060***

(0.006)
u_CA
L.u_CA 0.820***

(0.000)
L.gmi_CA 0.007

(0.919)
L.si_CA 1.931*

(0.055)
N 103

p-values in parentheses
* p<.10, ** p<.05, *** p<.01

(1)
si_NY

si_NY
L.si_NY 0.815***

(0.000)
L.dc_NY 0.135**

(0.011)
u_NY -0.070*

(0.063)
L.u_NY 0.068*

(0.054)
L.gmi_NY -0.002

(0.463)
L.v_NY -0.002

(0.287)
gmi_NY
L.gmi_NY 0.662***

(0.000)
L.dc_NY -2.754***

(0.000)
L.upsi_NY -1.752

(0.440)
L.downsi_NY -1.860

(0.415)
L.u_NY -0.078

(0.139)
L.v_NY -0.002

(0.955)
L.gs_NY -3.191***

(0.000)
dc_NY
L.dc_NY 0.473***

(0.000)
L.gmi_NY 0.008*

(0.063)
L.u_NY 0.000

(0.979)
L.giv_NY 0.000

(0.108)
L.v_NY -0.005*

(0.050)
L.gs_NY 0.081

(0.148)
u_NY
L.u_NY 0.943***

(0.000)
L.gmi_NY -0.072***

(0.001)
L.si_NY -0.134

(0.737)
N 101

p-values in parentheses
* p<.10, ** p<.05, *** p<.01

(1)
si_FL

si_FL
L.si_FL 0.412***

(0.000)
L.dc_FL 0.208***

(0.000)
u_FL 0.082***

(0.000)
L.u_FL -0.022***

(0.008)
L.gmi_FL 0.013***

(0.002)
L.v_FL -0.005***

(0.000)
gmi_FL
L.gmi_FL 0.765***

(0.000)
L.dc_FL -4.187***

(0.000)
L.upsi_FL -0.519

(0.537)
L.downsi_FL -0.375

(0.665)
L.u_FL 0.002

(0.977)
L.v_FL 0.020*

(0.054)
L.gs_FL -0.263

(0.435)
dc_FL
L.dc_FL 0.831***

(0.000)
L.gmi_FL 0.018***

(0.000)
L.u_FL 0.008***

(0.003)
L.giv_FL 0.000***

(0.003)
L.v_FL -0.006***

(0.000)
L.gs_FL -0.034*

(0.055)
u_FL
L.u_FL 0.427***

(0.000)
L.gmi_FL -0.066

(0.261)
L.si_FL 3.036***

(0.001)
N 101

p-values in parentheses
* p<.10, ** p<.05, *** p<.01

(1)
si_TX

si_TX
L.si_TX 0.840***

(0.000)
L.dc_TX 0.067

(0.598)
u_TX 0.049

(0.644)
L.u_TX -0.048

(0.638)
L.gmi_TX 0.003

(0.305)
L.v_TX -0.003**

(0.031)
gmi_TX
L.gmi_TX 0.482***

(0.000)
L.dc_TX -4.655***

(0.000)
L.upsi_TX -0.264

(0.876)
L.downsi_TX -0.304

(0.860)
L.u_TX 0.047

(0.641)
L.v_TX 0.061**

(0.020)
L.gs_TX -1.512***

(0.007)
dc_TX
L.dc_TX 0.801***

(0.000)
L.gmi_TX 0.013***

(0.000)
L.u_TX 0.003

(0.350)
L.giv_TX 0.000***

(0.009)
L.v_TX -0.005***

(0.000)
L.gs_TX -0.000

(0.993)
u_TX
L.u_TX 0.939***

(0.000)
L.gmi_TX -0.034**

(0.016)
L.si_TX 0.244

(0.295)
N 100

p-values in parentheses
* p<.10, ** p<.05, *** p<.01
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Figures

Figure 4: Stringency index in China and Sweden

Source: Hale et al. (2021)

Figure 5: Correlation between GDP per capita and number of death per million

Source: Hale et al. (2021); World Bank
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Figure 6: Correlation between average stringency index and number of death per million

Source: Hale et al. (2021); World Bank

Figure 7: Stringency index and number of new cases in Croatia (December 2020-June 2021)

Source: Hale et al. (2021)
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Figure 8: Data on endogenous variables

Source: Hale et al. (2021)
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Figure 9: Nonlinear relationship between si and gmi for Table 3
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Figure 10: Nonlinear relationship between si and gmi in the model without news effect - Table 4
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Appendix A. Derivation of the C-SI model

We present derivation of the C-SI model in two parts. First, we present the derivation of the

equilibrium and after that we derive slopes and shifts of si and c curves.

Appendix A.1. Derivation of the equilibrium value

Matrix representation of the model defined in equation 2 through 5 is given in matrix notation

of the form Ax = B, where A is matrix of coefficients, x is vector of endogenous variables and

B is vector of exogenous variables:


−1 sic sigmi siu

0 −1 cgmi cu

gmisi gmic −1 gmiu

usi 0 ugmi −1




si

c

gmi

u

 =


−siv v

−cgs gs− cv v

−gmigs gs− gmiv v

−ecuec

 (A.1)

In order to solve the 4× 4 model for the equilibrium of the entire 4x4 system for the variable

si we need to apply Cramer’s rule and calculate determinant of the matrix:

Aj =


−siv v sic sigmi siu

−cgs gs− cv v −1 cgmi cu

−gmigs gs− gmiv v gmic −1 gmiu

−ecuec 0 ugmi −1

 (A.2)

in which first row is vector B from equation (A.1).

In the next step we need to calculate determinant of the matrix A from equation (A.1) and

the solution for the equilibrium of the si equation will be:

si = |Aj |/|A| (A.3)

In order to derive reduced form solutions for c, gmi and u, we can iterate Cramer’s in order to

calculate determinant |Aj | for each variable. Reduced forms of equations for each variable can

be used for simulations of shocks in vaccination rate v, news effects gs and economic conditions

ec.

Besides simulations, the system of equation can be used in order to analyze shocks of ex-

ogenous variables within the two-dimensional diagram in the c and si space. That way we can
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get useful tool for the development of the intuition about the interplay of various policy tools,

economic limitations and pandemic dynamics.

Appendix A.2. Shifts and slopes of si curve

With a goal to build two-dimensional model within c and si space, we proceed by deriving

slopes and shifts of reduced forms of c and si equations from equation (A.1).

First, we start with si curve. In order to derive slope and shift of the si curve in the c − si

space we assume that c is exogenous. Therefore, A matrix and x and B vectors for si curve’s

shift and slope derivation are:


−1 sigmi siu

gmisi −1 gmiu

usi ugmi −1




si

gmi

u

 =


−c sic − siv v

−c gmic − gmigs gs− gmiv v

−ecuec

 (A.4)

matrix Aj for si curve is:

Aj =


−c sic − siv v sigmi siu

−c gmic − gmigs gs− gmiv v −1 gmiu

−ecuec ugmi −1

 (A.5)

In order to solve the model in equation (A.4) for si, we need to calculate determinant of the

matrix Aj :

Aj =c gmiu sic ugmi − siv v − c gmic sigmi − gmigs gs sigmi − ec siu uec − gmiv sigmi v

− c gmic siu ugmi − c sic − ec gmiu sigmi uec − gmigs gs siu ugmi + gmiu siv ugmi v−

gmiv siu ugmi v

(A.6)

and determinant of the matrix A from equation (A.4):

|A| = gmisi sigmi + gmiu ugmi + siu usi + gmisi siu ugmi + gmiu sigmi usi − 1 (A.7)

The ratio of equation (A.5) to equation (A.7) represents function of the si curve with c being

exogenous:

si = |Aj |/|A| (A.8)
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In order to derive the slope of the si curve we need to take the partial derivation of the si curve

with respect to c:

∂si/∂c = − sic + gmic sigmi + gmic siu ugmi − gmiu sic ugmi

gmisi sigmi + gmiu ugmi + siu usi + gmisi siu ugmi + gmiu sigmi usi − 1
= −Φsic

Ωsi
> 0

(A.9)

We assume that slope of the si curve is upward sloping in the c − si space due to the fact

that increase in number of cases ceteris paribus induces policy-makers to impose new COVID

measures. In terms of theoretical model, this implies opposite signs of Φsic and Ωsi (either

Φsic > 0 and Ωsi < 0 or Φsic < 0 and Ωsi > 0).

In the next step we proceed with derivation of the shift of the si curve. The partial derivation

of the si function with respect to exogenous shock v is:

∂si/∂v = − siv + gmiv sigmi − gmiu siv ugmi + gmiv siu ugmi

gmisi sigmi + gmiu ugmi + siu usi + gmisi siu ugmi + gmiu sigmi usi − 1
= −Φsiv

Ωsi
< 0

(A.10)

We assume that rise in vaccination rate will ceteris paribus decrease level of stringency for the

given number of COVID cases. In terms of theoretical model, this implies that Φsiv and Ωsi are

of the same sign (either Φsiv > 0 and Ωsi > 0 or Φsiv < 0 and Ωsi < 0).

Following equation (A.9) and (A.10) Figure A.11 presents slope and the shift of the si curve

due to rise in vaccination rate.

Figure A.11: Shift of the si curve in the C − SI model

sic

A

s1

B

c

si

si0

si1

33



Appendix A.3. Shifts and slopes of the c curve

Once we have shift and slope of si function we can repeat procedure for the c curve. Now,

si will be exogenous and c endogenous. Matrix A, vectors x and B for c curve are:


−1 cgmi cu

gmic −1 gmiu

0 ugmi −1




c

gmi

u

 =


−cgs gs− cv v

−gmigs gs− gmisi si− gmiv v

−ecuec − siusi

 (A.11)

matrix Aj for c curve is:

Aj =


−cgs gs− cv v cgmi cu

−gmigs gs− gmisi si− gmiv v −1 gmiu

−ecuec − siusi ugmi −1

 (A.12)

determinant of the matrix Aj in equation A.12 is:

|Aj | =cgs gmiu gsugmi − cv v − cgmi gmigs gs− cu ecuec − cgmi gmisi si− cgmi gmiv v − cu siusi−

cgmi ec gmiu uec − cgs gs− cu gmigs gsugmi − cgmi gmiu siusi − cu gmisi siugmi − cu gmiv ugmi v

+ cv gmiu ugmi v

(A.13)

and determinant of the matrix A from equation A.11:

|A| = cgmi gmic + gmiu ugmi + cu gmic ugmi − 1 (A.14)

The ratio of equation A.13 to equation A.14 represents function of the c curve with si being

exogenous:

c = |Aj |/|A| (A.15)

In order to derive the slope of the c curve we need to take the partial derivation of the c

curve with respect to si:

∂c/∂si = −cgmi gmisi + cu usi + cgmi gmiu usi + cu gmisi ugmi

cgmi gmic + gmiu ugmi + cu gmic ugmi − 1
= −Φcsi

Ωc
< 0 (A.16)
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Figure A.12: Shift of the c curve in the C − SI model
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We assume that rise in stringency will ceteris paribus decrease number of cases. In terms of

theoretical model, this implies downward slopping curve, meaning that Φcsi and Ωc are of the

same sign (either Φcsi > 0 and Ωc > 0 or Φcsi < 0 and Ωc < 0).

Furthermore in order to derive shift of the c curve we take partial derivation of the c function

with respect to exogenous shock v:

∂c/∂v = −cv + cgmi gmiv + cu gmiv ugmi − cv gmiu ugmi

cgmi gmic + gmiu ugmi + cu gmic ugmi − 1
= −Φcv

Ωc
< 0 (A.17)

We assume that rise in vaccination rate ceterus paribus decreases number of COVID cases.

In terms of theoretical model, this implies that Φcv and Ωc are of the same sign (either Φcv > 0

and Ωc > 0 or Φcv < 0 and Ωc < 0).

Based on derivation of the slope and shift in equation (A.16) and (A.17), Figure A.12 presents

slope of the c curve and it’s shift to the left due to increase in vaccination rate.

Appendix B. Derivation of the SI-MI model

Consider the following possibility, the “choice-state variable” model. We can choose SI and

MI, policy and mobility. Therefore, we have the following 2×2 choice model. In this 2 equation

model, on the choice side unemployment and cases are exogenous and will be analyzed in the

“state” equations.
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si = si
( (+)

gmi |ϵs
)

(B.1)

gmi = gmi
( (−)

si |ϵg
)

(B.2)

and the 2× 2 state variable model

c = c
( (+)
u |νc

)
(B.3)

u = u
( (+)
c |νu

)
(B.4)

where ϵ = (c, u, vax, news)′ and ν = (si, gmi, vax, news)′. I’m rethinking how we label things,

Ω refers to information, i.e. google searches.6

The total derivative of (B.1) and (B.2) are

dsi− sigmidgmi = dϵsi (B.5)

dgmi− gmisidsi = dϵg (B.6)

Equation (B.5) is the policy “reaction” function, P , and (B.6) is the behavior function, B.

Not the policy function is positively related to cases, so if cases decrease the policy is becomes

less restrictive (shifts down??? SI is on the vertical axis), P → P ′, and there is a new target

level of mobility, similarly if the number of vaccinations increase. Alternatively, if we have two

states, the one with the least stringiest policy has the greatest mobility.

So now we have the SI −GMI model, graphically this is

This would have the added bonus of greatly simplifying the Ax = b and accompanying Cramer

rule calculations.

 1 −sg

−gs 1


︸ ︷︷ ︸

A

ds
dg

 =

scdc+ sudu+ svdv + sΩdΩ+ dυs

gcdc+ gudu+ gvdv + gΩdΩ+ dυg



6is cu < 0?
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Figure B.13: Choice equations

SI

MI
0

P P ′

BB′

SIτi

MIτi

SIτj

MIτj

with the determinant of A

|A| = 1− sggs > 0.

Then using Cramer’s rule to see the impact of cases on SI and MI we have, if all other

shocks are zero sc −sg

gc 1


︸ ︷︷ ︸

A′
1

thus
ds

dc
=
sc + gcsg

|A|
=

(+) + (−)(+)

(+)
≷ 0?

however, if sc, gc and sg are between (0,1) we can safely assume that sc > gcsg.

We can also think of this being determined by the elasticity of policy to cases and mobility,

i.e. the marginal rate of substitution between cases and mobility, which also represents attitudes

towards risk,
sc
sg

≷ gc.

This say, if policy is relatively responsive to cases, they are risk averse, than the above would be

positive. If policy-makers are risk takers, this could be negative. Depends on the policy-maker.
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If the policy-makers is relatively risk averse,

ds

dc
=
sc + gcsg

|A|
> 0 (B.7)

So if cases falls, the policy function moves to P ′ and the policy-maker allows more mobility, an

downward shift in the policy function, MIτi → MIτj . Next if we consider the effect of cases on

mobility,  1 sc

−gs gc


︸ ︷︷ ︸

A′
2

or
dg

dc
=
gc + gssc

|A|
< 0 (B.8)

a negative shift in the behavior function, say B′ in the figure above. If people move around less,

policy-makers can be reduce their restrictions, SIτi → SIτj . We can do similar things for u and

v.

From this we can also how effective policy is when trying to dictate mobility. If the B curve

is inelastic, policy is ineffective compared to an elastic B curve. Similarly, the elasticity of the

policy function dictates how responsive the policy-maker is to constituent preferences. In this

case if the elasticity equals 1, then policy-makers have perfect insight into individual behavior.

Now let’s focus on the state variables, cases and unemployment. From equations (B.3) and

(B.4) we have

dc = cudu+ dνc (B.9)

du = ucdc+ dνu (B.10)

Which gives the slopes of the cases and unemployment curves, for the cases equation, curve

C, we have
dc

du
= cu > 0
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and for unemployment, curve U , we get

dc

du
=

1

uc
> 0

While both are positively sloped, if both uc and cu are less than one the U curve is steeper than

the C curve. Graphically, we have

Figure B.14: State equations

Cases

UnRate
0

CC ′U0

U1•E′
0

•
E′

1

C

U

A second case presents itself, if, on the other hand, uc > 1 then we have the U1 curve which

could be shallower than the C curve which yields two possible equilibria if there is a shift in

the C. If C shifts up, to say C ′, with the U0 curve, both cases and unemployment increase, E′
0.

However, with the U1 the opposite occurs, at E′
1. 7 Also, because of the slopes of the U curves,

we also get differences if they shift, if U0 shifts right then U and C rise, and vice versa if U1

shifts right.

Mathematically, the system of equations in (B.9) and (B.10) can be represented as

 1 −cu

−uc 1


︸ ︷︷ ︸

B

dc
du

 =

 csds+ cgdg + cvdv + cΩdΩ+ dξc

usds+ ugdg + uvdv + uΩdΩ+ dξu,



7Note: if we used a system of differential equations, we could use a phase diagram to determine if one of the
equilibria is stable and the other unstable.
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the ξs represent other shocks to c and u, with the determinant of B

|B| = 1− cuuc > 0.

if cuuc < 1, which we assume above. Assuming dg = dv = dΩ = dξc = 0 we can find how policy

affects cases and unemployment, thus the matrix B is alternatively

cs −cu

us 1


︸ ︷︷ ︸

B′

and  1 cs

−uc us


︸ ︷︷ ︸

B′′

.

The effect of stringency on cases depends on the determinant of B′ which is

dc

ds
=

|B′|︷ ︸︸ ︷
cs + cuus

|B|
=

(−) + (+)(+)

(+)
≷ 0

depending on the marginal rate of substitution between us and cs, if

us
cs
> cu

then the above is negative, and vice versa. The effect of stringency on unemployment is

du

ds
=
us + uccs

|B|
=

(+) + (+)(−)

(+)
≷ 0

again depending on the ratio of us/cs. If this is greater than uc, then the effect is negative, and

positive otherwise. And repeat the exercise for mobility.
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