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SUMMARY

The algorithm for two-dimensional (2D) boundary element method (BEM) analysis of potential Laplace problems
with heterogeneous domain has been presented in this paper. Using double and multiple global node technique, the
correct numerical approximation of the normal flux density at the points with its physically discontinuity has been
made possible. The resulting system of linear equations has been extended by employing an additional set of linear
equations. These equations are obtained by equalizing the potentials at concurrent global nodes. The procedure
accuracy has been additionally increased using the new expressions obtained by analytical integration along the
linear boundary elements. One example with analytical solution illustrates the developed algorithm.

Key words: 2D BEM analysis, potential Laplace problem, analytical integration, multiple global node technique.

1. INTRODUCTION

Application of the BEM to the 2D potential Laplace
problems has some numerical problems. One of them
is accuracy of the numerical integration along the
boundary elements. Therefore, in this paper, for linear
boundary elements, the algorithm for exact analytical
integration is developed. Furthermore the variation of
the characteristics of the medium impose the division
of the domain in several sub-domains. The division of
the domain into sub-domains leads to special numerical
problems at the intersection points of several interfaces
(internal boundaries). Similar problems occur at all
points in which discontinuity of the normal flux density
must be satisfied. Several methods have been
suggested to overcome the numerical problems at the
intersection points [1]. These problems are
successfully solved in this paper.

Advanced numerical procedure has been
successfully applied for numerical analysis of the
influence of the additional substance in the trench on
earthing grid parameters [2].
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2. APPLICATION OF THE BEM TO 2D
POTENTIAL LAPLACE PROBLEM

We assume that heterogeneous domain Ω is divided
into homogeneous and isotropic sub-domains Ωi
(Figure 1). The second assumption is that the unitary
normal vector to the interface between two sub-
domains has direction from sub-domain p to sub-
domain q, where p≤q.

Fig. 1  Heterogeneous domain divided into three
homogeneous sub-domains
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The boundary conditions corresponding to this
problem are of two types:

a) ϕϕ = on Γϕ - Dirichlet boundary condition,
b) qq = on Γq - Neumann boundary condition,

where ϕ is the potential, q is the normal flux density
and Γϕ∪ Γq is the boundary of the whole domain Ω.

2.1 Potential distribution equation

The potential ϕk at the point Pk (xk, yk), which is
located within sub-domain Ωp or on its boundary, is
described by the following expression:
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where Ck is the constant [3] which depends on the
position of the point Pk, NSD is the total number of
sub-domains,
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is fundamental solution of the Poisson equation,
where:
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2
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is the constant which has been introduced to improve
numerical stability of the algorithm, and dmax is the
maximal distance between the nodes of the boundary
element grid.

2.2 Discretization

Linear boundary elements with two local nodes were
used for the discretization of the external and internal
boundaries. In our numerical procedure, all boundaries
(internal and external) are discretized only once.

In intersection points of boundary elements, in
which there is a continuity of the normal flux density,

only one global node is located. However, at the two
boundary elements intersection point in which there is
a discontinuity of the normal flux density, the double
node technique must be used, i.e. two global nodes are
located at such a point.

At the intersection points of several boundary
elements, the correct approximation of the normal flux
density imposes the use of the multiple node technique,
i.e. at the intersection point of n boundary elements, n
global nodes are located.

2.3 Local co-ordinate system of the boundary
element

In this paper, the usual numerical integration along
the single boundary element is totally substituted by
analytical integration. That was the reason to introduce
a boundary element local co-ordinate system (u, v)
according to Figure 2. Local co-ordinates (u, v) of the
point P are computed from its global co-ordinates (x, y)
according to the following equations:
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where l  is the boundary element length, (x1, y1) are
global co-ordinates of the local node 1 and (x2, y2) are
global co-ordinates of the local node 2.
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Fig. 2  Linear boundary element in
the local co-ordinate system

For linear boundary elements, the potential
distribution ϕ and the normal flux density q along the
single boundary element are approximated by:
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where Ni is the shape function joined to the i-th local
node, Φi is the potential at the i-th node and Qi is the
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value of the normal component of the flux density at
the i-th node.

The shape functions are defined in the local co-
ordinate system (u, v) as follows:
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For simplicity, the local nodes of each boundary
element are positioned so that the normal always has
the position as shown in Figure 2.

2.4 System of linear equations

Since the integration along the boundary curve
Γpr\Pk is equal to sum of the integrals along all
corresponding boundary elements, then, according to
Eqs. (1), (6) and (7), the potential at the point Pk
belonging to the p-th sub-domain is described by:
















⋅















⋅⋅−
















−⋅
















⋅⋅⋅=⋅

∑ ∫

∑ ∑ ∑ ∫

=

= = =

2

1i
i

P\

k
i

NSD

1r

NE

1j

2

1i
i

P\
ik

p
prkk

kprj

kprj

d
n

N

QdN1aC

ΦΓ
∂
∂ψ

Γψ
κ

ϕ

Γ

Γ

(10)

where NE is the total number of boundary elements in
the whole domain Ω and Γprj is a part of the boundary
Γpr belonging to the j-th boundary element.

The expression (10) in matrix notation can be
written as:
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In our numerical procedure, the coefficients *
kjiG

and *
kjiH  are computed by analytical integration

(Appendix A).
Using global nodes notation, the equation (11) can

be written:

( )∑
=

⋅−⋅=⋅
NN

1m
mkmmkmkk HQGC Φϕ (14)

where NN is the total number of global nodes, Φm is the
potential at the m-th global node and Qm is the normal
component of the flux density at the m-th global node.

The unknown potentials and normal densities at the
global nodes can be computed using the point
collocation method. It is useful to assume that the total
number of collocation points is equal to the total
number of unknowns. In other words, one collocation
point per sub-domain is joined to each global node with
at least one unknown.

If at a single point there is only one global node
(single global node case), then the joined collocation
point is located at observed node (Figure 3-a). If at a
single point there are two global nodes (double global
node case) or several global nodes (multiple global node
case), then the joined collocation points are moved from
the observed nodes along the associated boundary
elements by one-quarter of the boundary element length
(Figure 3-b). The system of linear equations obtained
by this algorithm is regular in all cases.
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Fig. 3  Location of the collocation point Pk joined
to the k-th node

Collocation point method, applied to Eq. (14), gives
the next system of linear equations:
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where NU is the total number of unknowns, Φk is k-th
global node potential, Φd is d-th global node potential,
while the values of the αk and βk are: αk=1; βk=0 if
the collocation point is located in the k-th global node;
αk=0.75; βk=0.25 if collocation point Pk is moved
from the k-th node.

The system of linear equations (15) in matrix
notation can be written as:

ΦCΦHQG ⋅=⋅−⋅ (16)

2.5 Additional equations

The system of linear equations (16) is regular.
However, in points with more than one global node,
the potential continuity, which must be satisfied, can
be significantly interrupted. Therefore, from reason of
numerical stability, the new equations have been added
to this system. These additional equations equalize the
potentials of the global nodes located in the same point.
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Fig. 4  Junction point of four sub-domains

2.6 Solution of linear algebric equations

The extended system of linear algebric equations
can be written in the following form:

BXA =⋅ (20)
where X is the vector of unknowns.

By solving the system of linear equations (20), the
unknown normal flux densities and potentials at all
global nodes can be computed. In general case, this is
situation when we wish to find the least-squares
solution to an overdetermined set of linear equations.
Since this set of equations is very close to singular, the
system of equations (20) has been solved using the
algorithm based on singular value decomposition [4].

3. NUMERICAL EXAMPLE

The method presented in this paper is applied to
the stationary electric current field example with an
analytical solution. Computational domain is
heterogeneous and consists of four homogeneous sub-
domains (Figure 5). Electric conductivity of sub-
domains are κ1=κ2=1 S/m and κ3=κ4=4 S/m.
Boundary conditions are: ϕ=ϕa=100 V on the
boundary y=0 m, ϕ=ϕb=0 V on the boundary y=1 m,
q=0 A/m2 on the boundaries x=0 m and x=1 m.

Since κ1=κ2 and κ3=κ4, for the given input data,
the potential distribution is described by the following
analytical expression:
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Fig. 5  Heterogeneous domain divided into four homogeneous
sub-domains

The total number of boundary elements is 12 and
the total number of global nodes is 24. Co-ordinates of
the global nodes are presented in Table 1, the
prescribed values of the potentials and normal flux
densities at the global nodes are presented in Table 2,
and connection matrix is presented in Table 3. For this
numerical example, numerical values of potentials and
normal flux densities computed by developed BEM
algorithm (Table 4) are exact.

Table 1 Co-ordinates of the global nodes

So, for illustrative example presented in Figure 4, at
the junction point of four sub-domains, the additional
equations are:

ϕ100=ϕ120 (17)
ϕ100=ϕ140 (18)
ϕ100=ϕ150 (19)
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x
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[m]

1 0 0 13 1 0.5
2 0.5 0 14 0.5 0.5
3 0.5 0 15 1 0.5
4 0.5 0.5 16 1 1
5 0.5 0.5 17 1 1
6 0 0.5 18 0.5 1
7 0 0.5 19 0.5 1
8 0 0 20 0.5 0.5
9 0.5 0 21 0.5 1

10 1 0 22 0 1
11 1 0 23 0 1
12 1 0.5 24 0 0.5

Table 2 Prescribed potentials and normal flux densities

Prescribed potentials Prescribed normal flux
densities

Global node ϕ [V] Global node Q [A/m2]
1 100 7 0
2 100 8 0
9 100 11 0

10 100 12 0
17 0 15 0
18 0 16 0
21 0 23 0
22 0 24 0



S. Vujević, V. Srzentić-Gazzari, S. Gazzari: Two-dimensional BEM for analysis of potential Laplace problems

ENGINEERING MODELLING 15 (2002) 1-4, 45-50 49

4. CONCLUSIONS

The algorithm developed for 2D BEM analysis of
potential Laplace problems has several advances. The
first of them is the numerical integration along the
linear boundary elements replaced by analytical
integration. The second important advance is that
singularity of the system of linear equations, which can
be caused by the use of the double and multiple global
node technique, has been avoided. It has been solved
in such a way that the joined collocation points are
moved from the points with more than one global node
along the associated boundary elements by one-quarter
of the boundary element length. Using double and
multiple global node technique, the correct numerical
approximation of the normal flux density at the points
with its physically discontinuity has been made
possible. However, the numerical approximation of the
potential is correct if potential continuity at all points
is satisfied. For this reason, a new set of linear
equations has been added to the regular system of

linear equations. These additional equations equalize
the potentials of the global nodes located in the same
point. However, for real problems, the both basic and
extended systems of linear equations are very close to
singular due to ill-conditioned matrices. Therefore, the
extended system of equations has been solved using the
algorithm based on singular value decomposition [4].

5. APPENDIX A

The exact analytical expressions for coefficients
*
kjiG and *

kjiH , described by Eqs. (12) and (13), have
been obtained by analytical integration along boundary
element using its local co-ordinate system (Figure 2).
Regarding the collocation point location there are five
possibilities:

a) The collocation point does not belong to the j-th
boundary element:
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Boundary
Element

Local
node 1

 Local
node 2

The first
sub-domain

The second
sub-domain

1 1 2 1 0
2 3 4 1 2
3 5 6 1 4
4 7 8 1 0
5 9 10 2 0
6 11 12 2 0
7 13 14 2 3
8 15 16 3 0
9 17 18 3 0

10 19 20 3 4
11 21 22 4 0
12 23 24 4 0

Table 3 Connection matrix

Table 4 Output data

Global node ϕ [V] Q [A/m2]
1 100 160
2 100 160
3 100 0
4 20 0
5 20 -160
6 20 -160
7 20 0
8 100 0
9 100 160

10 100 160
11 100 0
12 20 0
13 20 -160
14 20 -160
15 20 0
16 0 0
17 0 -160
18 0 -160
19 0 0
20 20 0
21 0 -160
22 0 -160
23 0 0
24 20 0
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while (xk, yk) are global co-ordinates of the collocation
point Pk; (x1, y1) are global co-ordinates of the local node
1 and (x2, y2) are global co-ordinates of the local node 2.

b) Pk is located in the local node 1 of the j-th
boundary element:
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c) Pk is located in the local node 2 of the j-th
boundary element:
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d) Pk is moved from the local node 1 along the j-th
boundary element:
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DVODIMENZIONALNI PRORAČUN RASPODJELE POTENCIJALA OPISANIH
LAPLACE-OVOM JEDNAD�BOM METODOM RUBNIH ELEMENATA

SA�ETAK

U radu je opisan algoritam za proračun raspodjele potencijala u ravnini (2D) metodom rubnih elemenata
(BEM) i to za probleme opisane Laplace-ovom jednad�bom, dok je područje proračuna heterogeno. Uporabom
tehnike dvostrukih i vi�estrukih globalnih čvorova, moguće je dobiti fizikalno ispravno rje�enje za normalnu
komponentu gustoće toka i u točkama u kojima postoji njen diskontinuitet. Osim toga, osnovni sustav linearnih
jednad�bi je nadopunjen novim skupom linearnih jednad�bi koje izjednačavaju potencijale globalnih čvorova
smje�tenih u istoj točki. Točnost proračuna je dodatno povećana uporabom novih izraza dobivenih analitičkom
integracijom du� linearnih graničnih elemenata. Uporabom razvijenog numeričkog algoritma rije�en je pokazani
primjer koji ima poznato analitičko rje�enje.

Ključne riječi: 2D BEM analiza, Laplace-ova jednad�ba, analitička integracija, tehnika vi�estrukih globalnih
čvorova.

0HH *
2kj

*
1kj == (A20)

e) Pk is moved from the local node 2 along the j-th
boundary element:
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