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SUMMARY

Thealgorithmfor two-dimensional (2D) boundary element method (BEM) analysis of potential Laplace problems
with heterogeneous domain has been presented in this paper. Using double and multiple global node technique, the
correct numerical approximation of the normal flux density at the points with its physically discontinuity has been
made possible. The resulting system of linear equations has been extended by employing an additional set of linear
equations. These eguations are obtained by equalizing the potentials at concurrent global nodes. The procedure
accuracy has been additionally increased using the new expressions obtained by analytical integration along the

linear boundary elements. One example with analytical solution illustrates the developed algorithm.

Key words: 2D BEM analysis, potential Laplace problem, analytical integration, multiple global node technique.

1. INTRODUCTION

Application of the BEM to the 2D potential Laplace
problems has some numerical problems. One of them
is accuracy of the numerical integration along the
boundary elements. Therefore, in this paper, for linear
boundary elements, the algorithm for exact analytical
integration is developed. Furthermore the variation of
the characteristics of the medium impose the division
of thedomain in several sub-domains. The division of
the domain into sub-domains|eadsto special numerical
problemsat the intersection points of several interfaces
(internal boundaries). Similar problems occur at all
pointsinwhich discontinuity of the normal flux density
must be satisfied. Several methods have been
suggested to overcome the numerical problems at the
intersection points [1]. These problems are
successfully solved in this paper.

Advanced numerical procedure has been
successfully applied for numerical analysis of the
influence of the additional substance in the trench on
earthing grid parameters [2].

2. APPLICATION OF THE BEM TO 2D
POTENTIAL LAPLACE PROBLEM

We assume that heterogeneous domain Q isdivided
into homogeneous and isotropic sub-domains Q;
(Figure 1). The second assumption is that the unitary
normal vector to the interface between two sub-
domains has direction from sub-domain p to sub-
domain g, where p<q.

Fig. 1 Heterogeneous domain divided into three
homogeneous sub-domains
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The boundary conditions corresponding to this
problem are of two types:

d ¢=¢onrly -Dirichlet boundary condition,

b) g=qon "y - Neumann boundary condition,

where ¢ is the potential, q is the normal flux density
and I"y[1 is the boundary of the whole domain Q.

2.1 Potential distribution equation

The potential ¢, at the point Py (X, Vi), which is
located within sub-domain Q, or on its boundary, is
described by the following expression:

NSD
C [y = Zapr DI HM - ¢ﬂ%}jr (1)

= K on

r=1 rpr\pkH p
where Cy is the constant [3] which depends on the
position of the point P, NSD is the total number of
sub-domains,

El if p<r

ay =00  if thereisnointerface I,
%l if p>r

isthe constant depending on the normal fi, direction
(Figure 1),

isthe flux density along normal vector N , k, and k;
are materia conductivities,
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is fundamental solution of the Poisson equation,
where:
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is the constant which has been introduced to improve
numerical stability of the algorithm, and d,y is the
maximal distance between the nodes of the boundary
element grid.

2.2 Discretization

Linear boundary elementswith two local nodeswere
used for the discretization of the externa and internal
boundaries. In our numerical procedure, al boundaries
(internal and external) are discretized only once.

In intersection points of boundary elements, in
which there is a continuity of the normal flux density,
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only one global node is located. However, at the two
boundary elements intersection point in which thereis
a discontinuity of the normal flux density, the double
node technique must be used, i.e. two global nodes are
located at such a point.

At the intersection points of several boundary
elements, the correct approximation of the normal flux
density imposesthe use of the multiple node technique,
i.e. a the intersection point of n boundary elements, n
global nodes are located.

2.3 Local co-ordinate system of the boundary
element

In this paper, the usual numerical integration along
the single boundary element is totally substituted by
analytical integration. That wasthe reason to introduce
a boundary element local co-ordinate system (u, v)
according to Figure 2. Loca co-ordinates (u, V) of the
point P are computed fromitsglobal co-ordinates (x, y)
according to the following equations:

u=§[ﬁ(x—xw.)E(XZ—XM)+(y—yM)E(yz—yM)] €

v o P+ly-ym P -u? @
XM - Xl';XZ : yl\/l — yl_;yz (5)

where /7 is the boundary element length, (X, y;) are
global co-ordinates of the local node 1 and (x,, y,) are
global co-ordinates of the local node 2.

Vv

P(u,v)

Py (Ui, Vi)

Fig. 2 Linear boundary element in
the local co-ordinate system

For linear boundary elements, the potential
distribution ¢ and the normal flux density g along the
single boundary element are approximated by:

2
<D:;Ni [, (6)

2

Q=) Ni @ ()
where N,; is the shape function joined to the i-th local
node, @, isthe potential at the i-th node and Q; is the
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value of the normal component of the flux density at
the i-th node.

The shape functions are defined in the local co-
ordinate system (u, v) asfollows:

_f-2u

= 8

157, (8)
/+2u

N, = 9

25—, 9)

For simplicity, the local nodes of each boundary
element are positioned so that the normal always has
the position as shown in Figure 2.

2.4 System of linear equations

Since the integration along the boundary curve
[or\Py is equal to sum of the integrals along all
corresponding boundary elements, then, according to
Egs. (1), (6) and (7), the potential at the point P,
belonging to the p-th sub-domain is described by:

NEDZ E‘:Q
Ckgﬁk—zapr D— ‘l/kEN EFB

r=1 1 —1 p rp”\p
- (10

]
Niadﬂmrg@i
J, e 5%

where NE is the total number of boundary elementsin
thewhole domain Q and I",,; isapart of the boundary
I belonging to the j-th boundary element.

The expression (10) in matrix notation can be
written as.

NSDNE 2

CB=3 3 S G -Hy @) @
r=1j=11=1
where:
Gyji = apy GKLD Iwk [N, e (12)

I i \R

Hii = ap DJ' N, Gd%kmr (13)

I i \R

In our numerical procedure, the coefficients G];ji
and H*kji are computed by analytical integration
(Appendix A).

Using global nodes notation, the equation (11) can
be written:

NN
Z (ka [Qm — Hym |]Dm) (14)
m=1

where NN isthetotal number of global nodes, @,,,isthe
potential at the m-th global node and Qy, is the normal
component of the flux density at the m-th global node.

Cy [y =

The unknown potentials and normal densities at the
global nodes can be computed using the point
collocation method. It is useful to assume that the total
number of collocation points is equal to the total
number of unknowns. In other words, one collocation
point per sub-domainisjoined to each global node with
at least one unknown.

If at a single point there is only one global node
(single global node case), then the joined collocation
point is located at observed node (Figure 3-a). If a a
single point there are two globa nodes (double global
node case) or severa global nodes (multiple global node
case), then thejoined collocation points are moved from
the observed nodes along the associated boundary
elementsby one-quarter of the boundary element length
(Figure 3-b). The system of linear equations obtained
by this algorithm is regular in al cases.

~
Qe

b)  k

Qe

(14

Fig. 3 Location of the collocation point P joined
to the k-th node

Coallocation point method, applied to Eq. (14), gives
the next system of linear equations:

NN
Cy Moy @ + By [@y) = Z(ka @y = Hym @)
m=1 (15)
k=1,2,.., NU

where NU isthe total number of unknowns, @, isk-th
global node potential, @ is d-th global node potential,
while the values of the ay and B, are: o, =1; B =0 if
the collocation point islocated in the k-th global node;
a,=0.75; 3,=0.25 if collocation point Py is moved
from the k-th node.

The system of linear equations (15) in matrix
notation can be written as:

GO-H®=C® (16)

2.5 Additional equations

The system of linear equations (16) is regular.
However, in points with more than one global node,
the potential continuity, which must be satisfied, can
be significantly interrupted. Therefore, from reason of
numerical stability, the new equations have been added
to this system. These additional equations equalize the
potentia s of the global nodes located in the same point.
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So, for illustrative example presented in Figure 4, at
the junction point of four sub-domains, the additional
equations are;

$100= D120 (17)
$100= P140 (18)
$100= D150 (19)

Fig. 4 Junction point of four sub-domains

2.6 Solution of linear algebric equations

The extended system of linear algebric equations

can be written in the following form:
AX =B

where X is the vector of unknowns.

By solving the system of linear equations (20), the
unknown normal flux densities and potentials at all
global nodes can be computed. In general case, thisis
situation when we wish to find the least-squares
solution to an overdetermined set of linear equations.
Sincethis set of equationsisvery closeto singular, the
system of equations (20) has been solved using the
algorithm based on singular value decomposition [4].

(20)

3. NUMERICAL EXAMPLE

The method presented in this paper is applied to
the stationary electric current field example with an
analytical solution. Computational domain is
heterogeneous and consists of four homogeneous sub-
domains (Figure 5). Electric conductivity of sub-
domains are kK;=k,=1 S/m and kz=kK,=4 Sm.
Boundary conditions are: ¢=¢,=100 V on the
boundary y=0 m, ¢=¢,=0 V on the boundary y=1 m,
g=0 A/n?? on the boundaries x=0 mand x=1 m.

Since k1=K, and k3= Ky, for the given input data,
the potentia distribution is described by the following
analytical expression:

E]lOO—lGOEy [V] if Om<y<05m
¢=0 (21)
Ha40qi-y) [V] if 05ms<y<im
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Fig. 5 Heterogeneous domain divided into four homogeneous
sub-domains

The total number of boundary elements is 12 and
the total number of global nodesis 24. Co-ordinates of
the global nodes are presented in Table 1, the
prescribed values of the potentials and normal flux
densities at the global nodes are presented in Table 2,
and connection matrix is presented in Table 3. For this
numerical example, numerical values of potentialsand
normal flux densities computed by developed BEM

algorithm (Table 4) are exact.

Table1l Co-ordinates of the global nodes

Key X y Key X y
No. [m] [m] No. [m] [m]
1 0 0 13 1 0.5
2 0.5 0 14 0.5 0.5
3 0.5 0 15 1 0.5
4 0.5 0.5 16 1 1
5 0.5 0.5 17 1 1
6 0 0.5 18 0.5 1
7 0 0.5 19 0.5 1
8 0 0 20 0.5 0.5
9 0.5 0 21 0.5 1
10 1 0 22 0 1
11 1 0 23 0 1
12 1 0.5 24 0 0.5

Table 2 Prescribed potentials and normal flux densities

Prescribed potentials Pr&”ged normal flux
ensities

Global node 0V Global node | Q[A/NT]
1 100 7 0
2 100 8 0
9 100 11 0
10 100 12 0
17 0 15 0
18 0 16 0
21 0 23 0
22 0 24 0




S. Vijevié, V. Srzenti¢-Gazzari, S. Gazzari: Two-dimensional BEM for analysis of potential Laplace problems

Table 3 Connection matrix

Boundary Local Local Thefirst | The second
Element node 1 node 2 |sub-domain|sub-domain
1 1 2 1 0
2 3 4 1 2
3 5 6 1 4
4 7 8 1 0
5 9 10 2 0
6 11 12 2 0
7 13 14 2 3
8 15 16 3 0
9 17 18 3 0
10 19 20 3 4
11 21 22 4 0
12 23 24 4 0
Table4 Output data

Global node ¢V Q[ANY]

1 100 160

2 100 160

3 100 0

4 20 0

5 20 -160

6 20 -160

7 20 0

8 100 0

9 100 160

10 100 160

11 100 0

12 20 0

13 20 -160

14 20 -160

15 20 0

16 0 0

17 0 -160

18 0 -160

19 0 0

20 20 0

21 0 -160

22 0 -160

23 0 0

24 20 0

4. CONCLUSIONS

The agorithm developed for 2D BEM analysis of
potential Laplace problems has severa advances. The
first of them is the numerical integration along the
linear boundary elements replaced by analytical
integration. The second important advance is that
singularity of the system of linear equations, which can
be caused by the use of the double and multiple global
node technique, has been avoided. It has been solved
in such a way that the joined collocation points are
moved from the points with more than one global node
along the associated boundary elements by one-quarter
of the boundary element length. Using double and
multiple global node technique, the correct numerical
approximation of the normal flux density at the points
with its physically discontinuity has been made
possible. However, the numerical approximation of the
potential is correct if potential continuity at al points
is satisfied. For this reason, a new set of linear
equations has been added to the regular system of

linear equations. These additional equations equalize
the potentias of the globa nodes located in the same
point. However, for real problems, the both basic and
extended systems of linear equations are very close to
singular due to ill-conditioned matrices. Therefore, the
extended system of equations has been solved using the
algorithm based on singular value decomposition [4].

5. APPENDIX A

The exact analytical expressions for coefficients
Gyii and Hy;;, described by Egs. (12) and (13), have
been obtained by analytical integration along boundary
element using its local co-ordinate system (Figure 2).
Regarding the collocation point location there are five
possibilities:

a) The collocation point does not belong to the j-th

boundary element:
!
-1 +—
1@” 2 %*

47TK ﬂ %Bj
e Dl LB BB g AP
oo 20 0 2 2K

p

20 2 K o
* Vi V4
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1 I ( k) (A5)
:tD]n(t2+v|f) - 20 + 20 @rctgvL
k
|2:It[nn(t2+v|§)mt:
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2 * *
I :Itlntdt :%mlnt—%) (A10) Hig1 =Hyj2 =0 (A20)
. B B e) Py is moved from the local node 2 along the j-th
p=sign[(4 —x)tly2 ~y1)+ (A11) boundary element:
(= ya) e = %)) 1
while (% Yi) ae global co-ordi nates of the collocation Gyjr =~ _2m<p I} (A21)
point Py; (X4, Y1) areglobal co-ordinates of theloca node
1 and (%o, y,) are global co-ordinates of thelocal node 2. 1 PE B L B 1 BB 1 B iDADf
o4n0 4 O 040 ™

b) Py is located in the local node 1 of the j-th

boundary element:
o 1

1 = - 1 Gyj2 =~ o
T fie(r) — cOs(e)] + 5, M (A1) 2mK 0 (A22)
G 1 oo ! o % 40 37 > |6D:§+|6%%+%mg
== /Yy + ——
K2 2y 6(?) 2, (A13)
Hyip = Hijo =0 (A14) Higr =Hyj2 =0 (A23)
¢) Py is located in the local node 2 of the j-th
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DVODIMENZIONALNI PRORACUN RASPODJELE POTENCIJALA OPISANIH
LAPLACE-OVOM JEDNADZBOM METODOM RUBNIH ELEMENATA

SAZETAK

U radu je opisan algoritam za proracun raspodjele potencijala u ravnini (2D) metodom rubnih elemenata
(BEM) i to za probleme opisane Laplace-ovom jednadzbom, dok je podrucje proracuna heterogeno. Uporabom
tehnike dvostrukih i visestrukih globalnih cvorova, moguce je dobiti fizikalno ispravno rjesenje za normalnu
komponentu gustoce toka i u tockama u kojima postoji njen diskontinuitet. Osim toga, osnovni sustav linearnih
Jjednadzbi je nadopunjen novim skupom linearnih jednadzbi koje izjednacavaju potencijale globalnih c¢vorova
smjestenih u istoj tocki. Tocnost proracuna je dodatno povecana uporabom novih izraza dobivenih analitickom
integracijom duz linearnih granicnih elemenata. Uporabom razvijenog numerickog algoritma rijeSen je pokazani
primjer koji ima poznato analiticko rjesenje.

Kljuéne rijeci: 2D BEM analiza, Laplace-ova jednadzba, analiticka integracija, tehnika visestrukih globalnih
c¢vorova.

50 ENGINEERING MODELLING 15 (2002) 1-4, 45-50



