
Croatian Operational Research Review 75
CRORR 15(2024), 75–88

A genetics algorithms for optimizing a function over the integer
efficient set

Ali Zaidi1,∗, Djamal Chaabane 1, Larbi Asli2, Lamine Idir 3, and Saida
Matoub3

1 Laboratory of Multiple Criteria Decision and Operations Research (AMCD and RO), Faculty of
Mathematics, USTHB University, Algiers, Algeria
E-mail: ⟨a.zaidi@crlca.dz, dchaabane@usthb.dz⟩

2 LaMOS Laboratory, Faculty of Exact Sciences, University of Bejaia, Bejaia, Algeria
E-mail: ⟨larbi.asli@univ-bejaia.dz⟩

3 Centre for Research in Amazigh Language and Culture (CRLCA), Bejaia, Algeria
E-mail: ⟨idir.lamine@ensc.dz, saida.matoub@univ-bejaia.dz⟩

Abstract. In this paper, we propose an algorithm called Directional Exploration Genetic Algorithm
(DEGA) to resolve a function Φ over the efficient set of a multi-objective integer linear programming
problem (MOILP). DEGA algorithm belongs to evolutionary algorithms, which operate on the decision
space by choosing the fastest improving directions that improve the objectives functions and Φ function.
Two variants of this algorithm and a basic version of the genetic algorithm (BVGA) are performed and
implemented in Python. Several benchmarks are carried out to evaluate the algorithm’s performances
and interesting results are obtained and discussed.

Keywords: DEGA Algorithms, efficient set, genetic algorithms, optimization over the efficient set

Received: December 20, 2024; accepted: April 26, 2024; available online: May 27, 2024

DOI: 10.17535/crorr.2024.0007

1. Introduction

Multi-objective optimization is a type of optimization problem, that differs from classical prob-
lems, due to the presence of a set of efficient solutions rather than a single optimal solution.
This multiplicity of solutions can create a real dilemma for the decision maker, who ultimately
has to make his choice among the possible set of ’efficient’ solutions.

To avoid this problem, a modeling approach called optimization of a function over the set
of efficient solutions was proposed in 1972 by Phillip [15]. Since then, numerous works have
been carried out in this field, whether for continuous problems (see [6, 19, 12]) or discrete
problems(see [1, 10, 5, 3, 2]).

The problem of optimizing a function over the set of efficient solutions of a multi-objective
integer linear problem(MOILP) was first addressed by Abbas in 2006 [1] and since then, several
works have followed, such as those of Jesus in 2009 [10], Chaabane in 2010 [5], Brahmi in 2012
[3], Boland in 2017 [2].

This approach has been applied to other problems such as the MOILP-stochastic treated
by Mebarek in 2014 [4], the quadratic optimization over a discrete Pareto set of a multi-
objective linear fractional program addressed by Moulai in 2021 [14], as well as MOILP in a
fuzzy environment by Menni in 2020 [13].

∗Corresponding author.

This is an open access article under the CC BY-NC 4.0 license 75
http://www.hdoi.hr/crorr-journal ©2024 Croatian Operational Research Society, 75–88

76 Zaidi et al.

Although all these previous methods are deterministic, they have limitations in problem size
and CPU time, especially for integer problems. This is why we address in this work the problem
of optimizing a function over the set of efficient solutions of a MOILP using a meta-heuristics.
We adapt a genetic algorithms for this work for its many advantages, including: Efficiency,
they can handle large search spaces and explore a wide diversity of solutions in a relatively
short time. Exploration of the search space, they are capable of efficiently exploring the search
space to find optimal or near-optimal solutions. Parallelism, they can be easily parallelized to
accelerate the search for solutions.

In this article, we present three variants of genetic algorithms. The first is the basic version
of the genetic algorithm (BVGA) based on crossover and mutation operators, using well-known
methods. The second is based on the exploration of the directions of the influential variables
without updating their influence weights, while the third is based on updating the influence
coefficients of the variables. This paper is organized as follows: Following the introduction
in section 2, we present the preliminaries and basics of optimization over the efficient set and
genetic algorithms. Next in section 3, we will propose three algorithms to solve the considered
problem. To illustrate our algorithm DEGA-II, we will unfold the steps of a didactic example
in subsection 3.4. In section 4, we will present the computations results and its discussions.
Finally, in section 5, the paper ended by conclusion.

2. Preliminaries and basic concepts

2.1. Mathematics modeling

A multi-objective integer linear problem (MOILP) embodies a mathematical optimization prob-
lem aimed at improving several objectives simultaneously within the confines of linear con-
straints and integer decision variables. This problem is structured as follows:

(Π)

{
min Zj(x) = c⊤j x, j=1,. . . ,p,
st. x ∈ D .

(1)

Where D ≡ {x ∈ Zn
+|Ax ≤ b} is the feasible set of the problem, with A ∈ Rm×n, b ∈ Rm

and C = (c⊤j , j = 1, . . . , p) is a p × n-matrix defining a number p ≥ 2 of objective functions.
We suppose that the feasible set D is not empty and bounded. As the objective functions are
usually conflicting, generally there does not exist any feasible solution optimizing all the criteria
simultaneously and thus, the concept of an efficient solution is widely used.

We denote by E the set of efficient solutions of (Π) and the problem we want to treat is the
problem (ΠE) defined as:

(ΠE)

{
min Φ(x) = ϕ⊤x,
st. x ∈ E .

(2)

where ϕ denotes n dimensional vector.

Definition 1. A point x ∈ D is considered an efficient solution if and only if there is no x ∈ D
such that Zj(x) ≥ Zj(x) for all j ∈ {1, 2, . . . , p} and Zj(x) > Zj(x) for at least one j [17].

2.2. Genetic Algorithm

The concept of Genetic Algorithm (GA) was developed by Holland in the 1960-1975 [8]. GA is
inspired by the principles of natural selection and genetics. It is widely used in various fields,
including computer science, engineering, biology and artificial intelligence to solve complex
problems. GA operate by evolving a population of potential solutions over multiple generations.

A genetics algorithms for optimizing a function over the integer efficient set 77

Solutions are represented as chromosomes, typically composed of genes that encode specific
parameters or characteristics of the considered problem. During each generation, individuals
are selected based on their fitness, and genetic operations, such as crossover and mutation are
applied to create new offspring. Over time, GA seeks to improve solutions iteratively. The
strength of GA lies in their ability to explore large solution spaces and find solutions in com-
plex non-linear or poorly understood problems. It is a versatile tool for tackling optimization
problems. Schaffer [16] proposed the first multi-objective GA, known as vector-evaluated GA
(VEGA). Several other algorithms were also developed after that, the most significant of these
algorithms are MOGA , NPGA , WBGA , RWGA , NSGA , SPEA , SPEA2 , PAES , PESA-II
, NSGAII , MEA , Micro-GA , RDGA and DMOEA .

The GA is composed of three essential steps : Initial population, is composed of a set of
chromosomes generated. Mating : This step is composed of three operations: The first is the
selection step (tels que split–based selection (SBS)[9]) which consists of choosing a subset of
chromosomes based on the evaluation of a specific function, so-called fitness function to re-
produce the next generation. The second called crossover, is the process of combining two
chromosomes to create new chromosomes of the offspring. the thread the mutation, is the pro-
cess of randomly selecting genes within an individual’s chromosome and applying small changes
to their values.

Survival : is the process of assembling the survival chromosomes of the previous population
and the offspring created.

Figure 1: Genetic algorithm diagram.

3. Algorithms description

To solve the problem considered above, we adapt and introduce three variants of a genetic
algorithm. The first one is called the basic version of the genetic algorithm (BVGA) and the
two others called the Directional Exploration Genetic Algorithm DEGA-I and DEGA-II . They
have some common parameters, such as the initial population P 0, the population size np and
the iteration number T .

78 Zaidi et al.

3.1. BVGA algorithm

BVGA is a general version of a genetic algorithm that uses the basic operators. In selecting
the latter, we have drawn on the analysis carried out in Sourabh Katoch’s article published
in 2021[11]. Given that our problem is in integers, we’ve opted for an integer encoding (value
encoding) of our individuals. For the selection operator, we have chosen Rank Selection and
Uniform Crossover for the crossover operator. For the mutation operator, we have preferred
Simple-Inversion Mutation. It starts by fixing different parameters such as the number of
solutions to select for the crossing θ, the number of genes to cross λ and initializing the iterations
parameter t = 0. We start the process by generating the individuals of the initial population
P 0. Then, we choose the set of solutions to be crossed and mutated, as well as the type of
crossover to be performed. For the mutation process, the variable will be selected randomly.
After the crossover and mutation steps have been performed, we select the np best solutions
from P 0 that optimize the Φ function. Then, we use these solutions to create a new population
P t (The solutions of P t are feasible and not-dominated). We will continue the process until t
equals T . Then among the non-dominated solutions of PT , we choose the one with the best
fitness.

BVGA algorithm
Input:
↓ A(m×n): constraints matrix;
↓ b(m×1): RHS vector;
↓ ϕ(1×n): compromise criterion vector;
↓ C(p×n): objectives matrix;
↓ θ: number of solutions to select for the crossing;
↓ λ: the number of genes to crosses;
↓ np: size population to be generated ;
↓ T : the maximum number of iterations;
Output:
↑ x∗: optimal solution of the problem ΠE ;
↑ Φ(x∗): optimal value of function Φ;
Initialization:
t←− 0;
begin
-Generate the initial population P 0.
While t ≤ T do
-Select θ solutions from P t to cross;
-Crossing θ solutions ;
-Mutate the solutions;
-Create the population P t+1.
-t←− t+ 1;

end while
-Elimination of dominated solutions in PT ;
end.

3.2. DEGA-I algorithm

DEGA-I is a genetic algorithm based on the Pareto approach. It is also inspired by Schaffar’s
principle [16], which was used in the VEGA algorithm to separate the Φ function from the multi-
objective problem (MOILP). A subset of size α of a population P t focuses on the optimization
of the Φ function, while the remaining population focuses on the optimization of the MOILP
problem. The two parts are then re-concatenate at each iteration. Firstly we specify the
parameters needed, such as the number of variables to explore by classification of their influence
weights γ. The set of solutions S = ∅ and the iteration index t = 0. After that, we proceed to
the calculation of the influence weights of each coefficient variables by the following formulas:

A genetics algorithms for optimizing a function over the integer efficient set 79

ρZ(xj) =
1
p

p∑
i=1

cij
n∑

k=1

|cik|
and ρΦ(xj) =

ϕj
n∑

k=1

|ϕk|
.

ρZ(xj) and ρΦ(xj) are composed of two parts, the absolute value which gives the weight of
influence and the sign which gives the direction of improvement objectives. The influence
weights will be ranked in decreasing order of their absolute values and selecting the first subset
of variables of size γ to be explored. Then the iterative process is started until the number
of iterations t equals T . In each iteration, we will construct a new population (that will be
explain next). This population will be composed of a set of solutions that satisfy the MOILP’s
constraints. We will apply a filtering process to remove any dominated solutions for the new
population P t of size st. If st > np, we keep only the np solutions that produce the best Φ
function results for the newly created population. Else if st < np, we generate what’s missing
as we did with the initial population. The algorithm stops when t equals T .

DEGA-I algorithm
Input:
↓ A(m×n): matrix of constraints;
↓ b(m×1): second member vector;
↓ ϕ(1×n): compromise criterion vector;
↓ C(p×n): matrix of criteria;
↓ γ: the number of variables to explore;
↓ α: selection parameter;
↓ np: the size of the population to be generated;
↓ T : the maximum number of iterations;
Output:
↑ x∗: optimal solution of the problem ΠE ;
↑ Ψ(x∗) : ↑ Φ(x∗): optimal value of criterion Φ;
Initialization:
t←− 0; S ←− ∅;
-Calculate the influence weights of the coefficients of the variables ρZ(xi) and ρΦ(xi).
-Generate the initial population P 0 which verifies the constraints and is not dominated.
-Rank the population solutions P 0 in increasing order according to the value of Φ(xi).
Select the variables to be explored for Φ and Z.
-st ←− np;
While t ≤ T do
-t←− t+ 1;
-Create the next population P t.
-st ←− size of P t;
If st > np

-Rank the population solutions P t in an increasing order according to the value of Φ(xi);
-P t keeps only the first np solutions;

else if st < np

-rst←− np − st;
-S ←− Generate rst solutions;
-P t ←− P t ∪ S;

end if
end while
-Elimination of dominated solutions in P t;
end.

3.2.1. Major steps of the algorithm

Building new solutions for the new population:
To create the new population P t, we divide our population P t−1 into two distinct subsets: the
first one, with size α contains the solutions that have the best values of the function Φ, while the
second comprises the remaining solutions. Each solution of P t−1 will produce γ new solutions
by exploring the last selected directions individually (to avoid redundancy) and to do this we
increase by +1 each selected decision variable that has a ρΦ(xj) < 0 or ρZ(xj) < 0, and decrease
by −1 for those that have a ρΦ(xj) ≥ 0 or ρZ(xj) ≥ 0.

80 Zaidi et al.

Check the feasibility constraints of the new solutions:
This step aims to ensure that every solution of the new population verifies the constraints.
Check the non-dominance of new solutions:
This is the key step of the algorithm, it replaces the efficiency test used in the different deter-
ministic algorithms quoted in the literature, we use the Pareto dominance, where Z(xi) < Z(xj)
means that Z(xi) dominates Z(xj).

3.3. Algorithm DEGA-II

The DEGA-II algorithm is similar to the DEGA-I algorithm, the only difference consists of
including an additional step of updating the influence weights of the coefficients variables at
each iteration. Indeed, to avoid being trapped in directions that do not improve our solutions.
It is necessary to allow the system to weaken the influence weights of the bad directions.
To achieve this, we use formulas that update the absolute values of these influence weights
| ρZ(xj)(t+ 1) |=| ρZ(xj)(t) | ×(τj)ν and | ρΦ(xj)(t+ 1) |=| ρΦ(xj)(t) | ×(τ̃j)ν . Where 0 ≤ (τj =
ηj
γ
) ≤ 1, 0 ≤ (τ̃j =

η̃j
γ
) ≤ 1. ηj and η̃j are the number of non-dominated solutions which verify

the constraints created by exploring the direction of variable xi and ν > 0 is the update speed
which is related to the number of variables that remain to be explored. In the case ηj = 0 or
η̃j = 0, we include their coefficients in a set named Ω. This set represents a set of directions to
avoid or not to explore. At the end, we re-sort coefficients weights to select the new directions
for the next generation.

DEGA-II algorithm
Input:
↓ A(m×n): matrix of constraints;
↓ b(m×1): second member vector;
↓ ϕ(1×n): compromise criterion vector;
↓ C(p×n): matrix of criteria;
↓ γ: the number of variables to explore;
↓ α: selection parameter;
↓ np: the size of the population to be generated;
↓ T : the maximum number of iterations;
Output:
↑ x∗: optimal solution of the problem ΠE ;
↑ Ψ(x∗) : ↑ Φ(x∗): optimal value of criterion Φ;
Initialization:
t←− 0; S ←− ∅; ΩZ = ∅; ‘ΩΦ = ∅;
begin
-Calculate the influence weights of the coefficients variables ρZ(xi) and ρΦ(xi).
-Generate the initial population P 0 which verifies the constraints and is not dominated.
-Rank the solutions of population P 0 in increasing order according to the value of Φ(xi).
-Select the variables to be explored for Φ and Z.
While t ≤ T and (Card(ΩZ) ≤ n) or (Card(ΩΦ) ≤ n) do
t←− t+ 1;
-Create the population P t;
-Update and reclassify influence weights ρZ(xi) and ρΦ(xi);
-st ←− size of P t

If st > np

θ ←− θ − ε;
-Rank the solutions of population P t in an increasing order according to the value of Φ(xi);
-P t keeps only the first np solutions;

else if st < np

-rst←− np − st;
-S ←− Generate rst solutions;
-P t ←− P t ∪ S;

end if
end while
-Elimination of dominated solutions in P t;
end.

A genetics algorithms for optimizing a function over the integer efficient set 81

3.4. Numerical example

To illustrate our algorithm DEGA-II consider the following example (Π) and its graphical
representation (see Figure 2):

(Π)

min Z1(x) = −3x1 + x2

min Z2(x) = 2x1 − 3x2

s.t. (D)

x1 + 2x2 ≤ 8
x1 ≤ 5
x2 ≤ 7
x1 + x2 ≤ 10
x1, x2 ∈ N+

(3)

Let be the compromise problem :

(ΠE)

{
min Φ(x) = x1 + 3x2

s.t. (x1, x2) ∈ E
(4)

Initialization:

Figure 2: Feasible set of solutions.

np = 6, γ = 1, α = 3, ν = 1, T = 10, t = 0, S = ∅, ΩZ = ∅ and ΩΦ = ∅.
We calculate the influence weights of the coefficients of the variables :

ρZ(x1) = −
23

20
, ρZ(x2) = −

7

20
, ρΦ(x1) =

1

4
, ρΦ(x2) =

3

4
.

We have |ρZ(x2)| < |ρZ(x1)| and |ρΦ(x2)| > |ρΦ(x1)|, thus we explore the direction of the
variable x2 for the function Φ and x1 for the objectives.

Generate the initial population : P 0 = {(0, 7), (3, 7), (3, 6), (1, 1), (5, 2), (4, 6)}.
Rank the solutions according to their value of function Φ. Solutions 4 and 5 were identified as
those that optimize Φ, while the other solutions optimize Z1(x) and Z2(x).
Iteration 1: t = 0 (Represented by Fig.3)

Build the new population Ṕ 0 = {(1, 7), (4, 7), (4, 6), (1, 0), (5, 1), (5, 6)}, check its feasibility.
P 1 ←− P 0∪Ṕ 0. After checking its non-dominance, P 1 = {(0, 7), (3, 6), (4, 6), (5, 2), (1, 7), (5, 1)}.

Update the influence weights of the coefficients of the variables : ρZ(x1) = − 23
40 and ρΦ(x2) =

3
8 .

82 Zaidi et al.

Figure 3: Iteration 1.

We still have |ρZ(x2)| < |ρZ(x1)| and |ρΦ(x2)| > |ρΦ(x1)|, thus we will explore the same direc-
tions.
Iteration 2: t = 1 (Represented by Fig.4)

Build the new population Ṕ 1 = {(1, 7), (4, 6), (5, 6), (2, 7), (5, 1), (5, 0)}, Check its feasibility.
P 2 ←− P 1∪Ṕ 1. After checking its non-dominance, P 2 = {(0, 7), (3, 6), (4, 6), (5, 2), (5, 1), (5, 0)}.

Figure 4: Iteration 2.

Update the influence weights of the coefficients of the variables : ρZ(x1) = − 69
320 and ρΦ(x2) =

3
16 .
|ρZ(x2)| > |ρZ(x1)| and |ρΦ(x2)| < |ρΦ(x1)|, thus we change the exploration directions for the

two directions variables. ΩZ = {1}, ΩΦ = {2}.

Iteration 3: t = 2
Build the new population Ṕ 2 = {(0, 8), (3, 7), (5, 3), (4, 7), (4, 1), (4, 0)}, check its feasibility.

A genetics algorithms for optimizing a function over the integer efficient set 83

P 3 ←− P 2∪Ṕ 2. After checking its non-dominance, P 3 = {(0, 7), (3, 6), (5, 2), (5, 1), (5, 0), (5, 3)}.
Update the influence weights of the coefficient variables ρZ(x2) = − 56

320 and ρΦ(x1) = 0.
|ρZ(x2)| < |ρZ(x1)| and |ρΦ(x2)| > |ρΦ(x1)|, thus we change the exploration directions for the

two directions variables, ΩZ = {1, 2}, ΩΦ = {2, 1}. The Card(ΩZ) = 2 and Card(ΩΦ) = 2,
then the algorithm stops.

The optimal solution of ΠE is x∗ = (5, 0) with : Φ(x∗) = 5, Z1(x
∗) = −15 and Z2(x

∗) = 10.

3.5. Graphical bi-objective example

In this subsection, we present the graphic results of an implementing instance of MOILP (p = 2,
n = 10, m = 8) using the algorithm DEGA-II.

(a) Distribution of feasible solutions and the
Pareto front.

(b) Behavior of the Φ solution during iterations
of the DEGA-II algorithm.

Figure 5: Graphical bi-objective example.

In Figure 5a, we graphically represent the distribution of feasible solutions to our problem
(shown in blue), highlighting the Pareto front (marked in red), while the solution to problem
ΠE, optimizing function Φ, is marked in green. This figure highlights the complexity of the
problem and the presence of thousands of feasible solutions. However, in Figure 5b, we can
see the evolution of the Φ-function solution over the iterations. From this figure, we can see
that our DEGA-II algorithm manages to stabilize and reach the optimal solution from the 75th
iteration onwards.

4. Computational study

4.1. Performances measurements

The performance of an algorithm of resolution is one of the important steps in the resolution
process, in our case, we chose three performance metrics: spacing metric (SM), hole relative
size (HRS) for spacing studies and convergence metric (RP) for progression and convergence
results [18].

Spacing metrics :The Spacing metric (SM) allows us to measure the uniformity of the spread
of the points of the solutions set in the (Z1, Z2) plane. It’s defined as :

SM =

√
1

N − 1

N∑
i=1

(d− di)2. Where : di = min
i=1

(|Z1
i (
−→x) − Z1

j (
−→x)| + |Z2

i (
−→x) − Z2

j (
−→x)|),

i, j = 1, . . . , N and i ̸= j.

84 Zaidi et al.

d is the mean value of all the di, and N is the number of elements in the solutions set.

HRS metric : The use of an SM metric (that calculates an average error relative to an
optimal spacing) may obscure significant gaps in the results. To address this issue, a new
metric called HRS (hole relative size) was introduced in [18]. The HRS metric enables us to
measure the magnitude of the largest gap in the points distribution on the trade-off surface.
Its definition is as follows: HRS = max di

d
. Where d and di are equivalent to those defined in

the spacing metric.
Convergence metric: The metric used to evaluate the improvement of the objective function Φ
is as follows:

RP = ln
√

Φmin(0)
Φmin(T) . The term Φmin(T) in the metric refers to the optimal value of the function

Φ achieved at iteration T .

4.2. Computation results and analyses

We implemented our algorithms in Python and ran it on machine characteristics: Intel i7 2.0
GHz, 8 GB of RAM. Since there do not exist any benchmarks in the literature for our problem,
we proceed to randomly generate 100 problems to test the performances of our algorithms as
follows:

The coefficients of each matrix vary: for A, aij ∈ {1, 2, . . . , 29, 30}. For C, cij ∈ {−20,−19,
. . . , 19, 20}. Φ, ϕj ∈ {−20,−19, . . . , 19, 20}, and the vector b, bi ∈ {50, 51, . . . , 149, 150}. The
number of variables n, varies from 15 to 5000, the constraints m, from 10 to 4000 and the
number of objective functions p is 4, 10, 30 or 100 in 5 different classes. For each class, 5 in-
stances are solved. those examples are available in: (see link: https://sites.google.com/view/ali-
zaidi/home).

We initialize the parameters according to the number of variables and objectives, noting
that, when there is a small number of variables the influence of their coefficients is significant
and on the other hand, the influence becomes minimal.
The initial parameters are: α = 0.7, γ = 2, δ = 1, np = 10 , ν = 10 and T varies from 50 till
15000.

The results have been summarized in Tables 1, which display the value of function Φ, the
CPU time (in seconds) and the performance metrics: SM, HRS and RP.

To see more clearly the results from the above Table 1, we have graphically represented each
metric.
Figure 6a: illustrates the variation results of function Φ for each instance of BVGA, DEGA-
I, DEGA-II and we observe that the results of BVGA are significantly worse than the other
methods, indicating that it gets stuck in a local minimum. On the other hand, it is clear that
DEGA-II performs better than DEGA-I in all cases, especially when the size of variables is
important.

Figure 6b: displays the CPU time, where we observe that DEGA-II shows lower CPU times
than DEGA-I.

Figure 7a, 7b and 8 show the performance metrics of our algorithms. The SM diversity
metric in Fig 7a reveals that the distances between the Pareto front points of the DEGA-I and
DEGA-II methods are homogeneously distributed, unaffected by problems size. On the other
hand for BVGA, this distribution is uncertain and depends on problem size.

The HRS(see Figure 7b) index indicates that DEGA-II points are evenly distributed across
the entire Pareto front, while DEGA-I solutions show a slight concentration towards a particular
objective. On the other hand, the RP(see Figure 8) convergence index shows that the DEGA-II
method converges significantly better than the other methods.

A genetics algorithms for optimizing a function over the integer efficient set 85

P
=
4

B
V
G
A

D
E
G
A
-I

D
E
G
A
-I
I

m
×
n

ϕ
∗

C
P
U

S
M

H
R
S

R
P

ϕ
∗

C
P
U

S
M

H
R
S

R
P

ϕ
∗

C
P
U

S
M

H
R

R
P

10
×

15
-7
3.
4

15
.3

8.
7

2.
7
4

0
.0
4

-1
12

.2
49

.4
9

10
.6
8

3.
31

0
.1
88

-1
09

13
.7
7

7
.5
8

3
.6

0.
16

8
50
×

80
-1
22

.4
93

.1
4

27
2.
3
9

0
.1
14

-1
88

.4
82

.3
9

32
.4
1

6.
39

0
.2
56

-3
78

.2
20

.7
1

1.
88

3.
39

0.
62

10
0
×

15
0

-2
63

.6
13

4
.5
1

39
.1
6

2.
5
6

0
.0
3
8

-5
5
2

64
.1
58

53
.9
6

1
3.
9

0.
43

-8
84

28
.6
6

8.
00

5
3
.1
1

0.
63

8
30

0
×

50
0

-4
49

26
9.
68

73
.8
6

2
.3

0
.8
6

-1
64

2.
2

50
7.
5

7
9.
86

6
.8
5

0
.6
4

-3
3
41

.6
12

4
.3

8.
6

4
.3
5

1
.0
5

80
0
×

10
00

-8
41

.6
14

6.
2

89
.2
6

2.
2

0
.0
4

-3
03

6.
4

4
37

.9
5

11
8.
95

1
1.
0
4

0
.6
2

-5
7
66

.2
19

3
.9
6

7.
9

3
.2
8

0
.9
6

P
=
10

B
V
G
A

D
E
G
A
-I

D
E
G
A
-I
I

m
×
n

ϕ
∗

C
P
U

S
M

H
R
S

R
P

ϕ
∗

C
P
U

S
M

H
R
S

R
P

ϕ
∗

C
P
U

S
M

H
R

R
P

10
0
×

20
0

-2
63

.2
12

.7
0
2

76
.2
7

1.
6

0
.0
4
6

-1
05

6.
4

5.
57

1
5.
5

2
.8
4

0
.7
2

-1
3
67

.4
98

.0
62

1
2.
74

2.
3

0
.8
5

30
0
×

50
0

-5
55

30
.9
8

13
1.
15

1.
7

0
.0
1
6

-2
38

6
1
55

.3
4

1
5.
19

2.
6
5

0
.7
48

-3
2
78

.2
23

4
.7
8

1
0.
78

1
.9
1

0
.9
2

80
0
×

10
00

-9
40

.4
49

.8
2

17
5.
5

1
.5
8

0
.0
1
2

-4
26

3.
6

3
23

.9
2

5
4.
39

1
6.
3

0
.7
8

-6
3
50

.4
36

5
.3
5

1
3.
23

2
.0
78

0
.9
8

1
80

0
×

20
00

-1
72

9.
8

26
9.
9

23
9
.2
3

1.
6

0
.0
0
2

-8
53

5.
8

1
64

0.
1

1
9.
85

2
.8
6

0.
8

-1
22

8
3.
6

12
93

.5
6

13
.1
36

2.
23

4
0.
98

4
00

0
×

50
00

-3
23

5.
2

3
44

7.
15

40
4
.1
5

1.
6
4

0
-2
0
00

2.
2

1
73

50
.2

42
.0
3

4.
07

0.
92

-3
0
17

.8
11

94
5.
94

1
2.
5

2
.0
5

0
.9
2

P
=
30

B
V
G
A

D
E
G
A
-I

D
E
G
A
-I
I

m
×
n

ϕ
∗

C
P
U

S
M

H
R
S

R
P

ϕ
∗

C
P
U

S
M

H
R
S

R
P

ϕ
∗

C
P
U

S
M

H
R

R
P

10
0
×

20
06

.3
-2
71

.8
12

.2
7
8

19
7.
09

1
.2
7
2

0
.0
2
8

-9
88

.4
58

.4
96

16
.4
5

1.
57

6
0
.7
04

-1
25

2
96

.5
7

30
.5
04

1.
90

8
0.
7
62

30
0
×

50
0

-4
98

23
.4
9

25
8.
03

1
.3
8

0
.0
2

-2
26

4.
8

1
52

.4
7

2
1.
34

1
.6
4

0
.7
6

-2
9
16

.6
18

1
.5
8

3
3.
89

2
.1
7

0
.8
7

80
0
×

10
00

-1
09

0.
4

51
.7

36
8.
84

1.
2
9
8

0
.0
0
6

-4
57

8.
2

3
74

.4
6

2
9.
02

2
.3
04

0.
71

6
-6
2
08

.6
39

4
.6

2
5.
22

1
.7
4

0
.8
7

1
80

0
×

20
00

-1
48

7.
25

27
2
.3
2

-5
19

1
.2
9

0
.0
0
5

-8
45

6
1
68

1.
65

3
9.
79

2
.8
6

0
.8
7

-1
14

3
0.
9

13
14

.9
4

39
.2
2

2
.7
6

1
.0
2

4
00

0
×

50
00

-3
4
14

23
84

.2
83

6.
02

1.
3

0
.2
1

-2
0
30

6.
4

1
18

95
.4

48
.3
4

2.
99

0.
9

-2
72

4
8.
4

8
30

7.
8

22
.2
2

1.
6
1

1.
0
4

P
=
1
00

B
V
G
A

D
E
G
A
-I

D
E
G
A
-I
I

m
×
n

ϕ
∗

C
P
U

S
M

H
R
S

R
P

ϕ
∗

C
P
U

S
M

H
R
S

R
P

ϕ
∗

C
P
U

S
M

H
R

R
P

10
0
×

20
0

-3
2
26

9.
53

2
32

8.
05

1.
1
4

0
.0
2

-1
15

2.
4

57
.5

7
5.
92

1.
8

0
.6
3

-1
2
11

.8
62

.5
6

8
6.
92

1
.6
9

0
.6
6

30
0
×

50
0

-5
41

25
.8
6

51
0.
6

1
.2
2

0
.0
2

-2
30

0
1
62

.2
8

6
4.
46

1.
5
1

0
.7
5

-2
92

4
17

7.
4
3

11
4
.9
9

2.
02

0.
99

80
0
×

10
00

-8
18

.6
60

.7
9

73
4.
41

1
.1
3
6

0
.0
0
8

-4
20

8.
6

4
33

.3
1
4

69
.0
08

1
.7
7
2

0
.8
4

-5
97

7
40

5.
8
2

75
.0
5

1.
75

1
.0
16

1
80

0
×

20
00

-1
46

5.
6

37
1

10
16

.5
4

1.
13

0
.0
4

-8
33

5.
4

2
08

2.
4
9

7
1.
26

1
.5
7

0
.8
7

-1
13

3
1.
2

17
15

.7
3

8
9.
7

1
.9
1

1.
02

4
4
00

0
×

50
00

-3
46

5.
6

3
76

4.
89

16
11

.3
2

1
.2
6

0
.0
1

-1
2
58

7.
8

1
81

71
.5

1
24

.9
5

2.
08

0.
9

-2
66

9
0.
8

1
29

12
.4
6

97
.1
5

1.
7
9

1.
02

4

T
ab
le

1:
C
o
m
p
u
ta
ti
o
n
re
su
lt
s.

86 Zaidi et al.

(a) Φ results for examples. (b) CPU time for examples.

Figure 6: Φ results and CPU time for examples.

(a) Diversity metric for examples. (b) Hole relative size for examples.

Figure 7: Diversity metric and Hole relative size for examples.

Figure 8: Convergence metrics for examples.

5. Conclusion

In this work, we studied the problem of optimizing the function over the efficient set of a
multi-objective integer linear programming problem (MOILP). For this, we have adapted and
proposed three variants of algorithms inspired by genetic algorithms: the first one called BVGA
adapted to our problem and is based on the basic architecture of Genetic Algorithm, where the
two last algorithms so-called DEGA-I and DEGA-II are obtained by removing the crossover
operator in genetic algorithm and adapting the mutation operator. For DEGA-I the explored

A genetics algorithms for optimizing a function over the integer efficient set 87

directions are determined from the first iteration and do not change; however, the explored
directions of DEGA-II change at each iteration.

A numerical study was carried out by implementing those algorithms on the machine using
Python. Examples of different sizes are designed and tested, and a comparison between those
algorithms considering Φ value, CPU Time, SM, HRS and RP are performed. The results show
that the DEGA-II obtained the best results nearly for all metrics.
From this work, several interesting ideas can be investigated, like adapting DEGA-II to resolve
other kind of multi-objective problems (TSP, KP, . . .) and applying it to other multi-objective
non-linear problems.

References

[1] Abbas, M. and Chaabane, D. (2006). Optimizing a linear function over an integer efficient set.
European Journal of Operational Research, 174(2), 1140–1161. doi: 10.1016/j.ejor.2005.02.072

[2] Boland, N., Charkhgard, H. and Savelsbergh, M. (2017). A New Method for Optimizing a Lin-
ear Function over the Efficient Set of a Multiobjective Integer Program. European Journal of
Operational Research, 260(3), 904–919. doi: 10.1016/j.ejor.2016.02.037

[3] Chaabane, D., Brahmi, B. and Remdani, Z. (2012). The augmented weighted Tchebychev
norm for optimizing alinear function over an integer efficient set of a multicriteria linear pro-
gram. International Transactions in Operational Research, 19(4), 531–545. doi: 10.1111/j.1475-
3995.2012.00851.x

[4] Chaabane, D. and Mebrek, F. (2014). Optimization of a linear function over the setof stochastic
efficient solutions. Computational Management Science. 11, 157–178. doi: 10.1007/s10287-012-
0155-1

[5] Chaabane, D. and Pirlot, M. (2010). A method for optimizing over the efficient set. Journal of
Industrial and Management Optimization, 6(4), 811–823. doi: 10.3934/jimo.2010.6.811

[6] Ecker, J. G. and Song, H. G. (1994). Optimizing a Linear Function over an Efficient Set. Journal
of Optimization Theory and Applications, 83(3), 541–563. doi: 10.1007/BF02207641

[7] Fonseca, C.M. and Fleming, P.J. (1993). Multiobjective genetic algorithms. Genetic Algorithms
for Control Systems Engineering, IEEE, 83–90. Retrieved from: eden.dei.uc.pt

[8] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press.
[9] Hussain, A. and Cheema, S. A. (2020). A new selection operator for genetic algorithms that

balances between premature convergence and population diversity. Croatian Operational Research
Review, 11(1), 107–119. doi: 10.17535/crorr.2020.0009

[10] Jorge, M. J. (2009). An algorithm for optimizing a linear function over an integer efficient set.
European Journal of Operational Research, 195(1), 98—103. doi: 10.1016/j.ejor.2008.02.005

[11] Katoch, S., Chauhan, S. and Kumar, V. (2021). A review on genetic algorithm: past, present, and
future. Multimedia Tools and Applications, 80, 8091-–8126. doi: 10.1007/s11042-020-10139-6

[12] Liu, Z. and Ehrgott, M. (2018). Primal and Dual Algorithms for Optimization over the Effi-
cient Set. A Journal of Mathematical Programming and Operations Research, 67(10), 1–26. doi:
10.1080/02331934.2018.1484922

[13] Menni, A. and Chaabane, D. (2020), A possibilistic optimization over an integer efficient set within
a fuzzy environment. RAIRO Operations Research, 54(5), 1437–1452. doi: 10.1051/ro/2019077

[14] Moulai, M. and Mekhilef, A. (2021), Quadratic optimization over a discrete pareto set of a multi-
objective linear fractional program. A Journal of Mathematical Programming and Operations
Research, 70(7), 1425–1442. doi: 10.1080/02331934.2020.1730834

[15] Philip, J. (1972). Algorithms for the vector maximization problem. Mathematical Programing, 2,
207–229. doi: 10.1007/BF01584543

[16] Schaffer, J. D. (1985). Multiple Objective Optimization with Vector Evaluated Genetic Algo-
rithms. In Grefenstette, J.J., et al. (Eds.) Genetic Algorithms and Their Applications, Proceedings
of the 1st International Conference on Genetic Algorithms, 93–100, Lawrence Erlbaum, Mahwah.

[17] Teghem, J. and Kunsch, P. (1986). A survey of techniques for finding efficient solutions to multi-
objective integer linear programming. Asia Pacific Journal of Operations Research, 3(2), 95–108.

https://doi.org/10.1016/j.ejor.2005.02.072
https://doi.org/10.1016/j.ejor.2016.02.037
https://doi.org/10.1111/j.1475-3995.2012.00851.x
https://doi.org/10.1111/j.1475-3995.2012.00851.x
https://doi.org/10.1007/s10287-012-0155-1
https://doi.org/10.1007/s10287-012-0155-1
https://doi.org/10.3934/jimo.2010.6.811
https://doi.org/10.1007/BF02207641
https://eden.dei.uc.pt/~cmfonsec/fonseca-ga93-reprint.pdf
https://doi.org/10.17535/crorr.2020.0009
http://dx.doi.org/10.1016/j.ejor.2008.02.005
https://doi.org/10.1007/s11042-020-10139-6
http://dx.doi.org/10.1080/02331934.2018.1484922
http://dx.doi.org/10.1080/02331934.2018.1484922
https://doi.org/10.1051/ro/2019077
https://doi.org/10.1080/02331934.2020.1730834
https://doi.org/10.1007/BF01584543

88 Zaidi et al.

[18] Van Veldhuizen, D. A. (1999). Multiobjective Evolutionary Algorithms: Classifications, Analyses
and New Innovations. Graduate School of Engineering. Air Force Institute of Technology, Wright
Patterson AFB, Ohio, PhD thesis.

[19] Yamamoto, Y. (2004). Optimization over the Efficient Set: Overview. Journal of Global Opti-
mization, 22, 285–317. doi: 10.1023/A:1013875600711

http://dx.doi.org/10.1023/A:1013875600711

	Introduction
	Preliminaries and basic concepts
	Mathematics modeling
	Genetic Algorithm

	Algorithms description
	 BVGA algorithm
	DEGA-I algorithm
	Major steps of the algorithm

	Algorithm DEGA-II
	Numerical example
	Graphical bi-objective example

	Computational study
	Performances measurements
	Computation results and analyses

	H

