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The Unmanned Aerial Vehicle (UAV) swarm co-
operative networks across diverse domains present 
significant challenges in management and control to 
maximize collaborative efficiency, particularly in ap-
plications for large-scale and dynamic environments 
where real-time coordination is essential. This chal-
lenge has led to the development of a UAV swarm 
cooperative network flow prediction model, facilitat-
ing the strategic anticipation of network dynamics. A 
novel algorithm for distributed, finite-time cooper-
ative control is introduced, grounded in this model. 
This algorithm optimizes the operational efficiency 
and control precision of UAV systems, while simulta-
neously augmenting the collaborative efficiency and 
stability of the UAV swarms. It marks a significant 
advancement in distributed computing strategies, of-
fering a viable solution for the real-time coordination 
challenges in extensive UAV swarm cooperative net-
works. The proposed approach leverages multi-agent 
technology, integrating spatial-temporal constraints, 
location limitations, and path selection in cooper-
ative behavior for dynamic and effective network 
management. This study not only enhances the un-
derstanding of UAV swarm dynamics but also con-
tributes to the practical application of UAV swarms 
in areas requiring precise coordination and robust 
network stability.
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1. Introduction

The recent shift of UAV swarm cooperative 
networks from theoretical exploration to prac-
tical implementation has manifested consid-
erable potential across diverse sectors [1–4]. 
Such networks have found applications rang-
ing from military reconnaissance and strike 
missions to commercial endeavors like envi-
ronmental monitoring, agricultural spraying, 
and urban delivery, where their unparalleled 
efficiency and benefits are evident [5]. At the 
same time, in the area of operational efficiency 
enhancement, robustness in task execution, and 
resource utilization efficiency, the UAV swarm 
cooperative networks are recognized as playing 
a pivotal role. Additionally, these networks are 
instrumental in fostering technological innova-
tion. The significance of these networks in con-
tributing to the future landscape of intelligence 
and automation is undeniable. As technological 
advancements continue and application sce-
narios broaden, the distinctive value of UAV 
swarm cooperative networks is anticipated to 
be increasingly prominent across diverse fields. 
A pivotal challenge, however, is the effective 
management and control of these UAV swarms 
to maximize collaborative effects, particularly 
in real-time coordination within expansive, dy-
namic environments [6–9]. Consequently, the 
formulation of an efficient distributed comput-
ing optimization strategy has become impera-
tive.
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Research in UAV swarm cooperative networks 
provides robust theoretical underpinnings for 
the extensive deployment of UAV systems, 
thereby enhancing their functionality across 
various fields [10, 11]. These networks bolster 
system redundancy and robustness, ensuring 
stability and reliability even in the event of 
individual UAV failures [12]. Moreover, opti-
mizing distributed computing strategies within 
such networks is fundamental to augmenting 
the execution efficiency and control precision 
of UAV systems, catering to the requirements 
of more complex and advanced scenarios [13].
Current research methodologies in UAV 
swarm cooperative networks often fall short 
in meeting the real-time needs of large-scale 
UAV swarms and intricate dynamic environ-
ments [14-17]. Typically, these methods rely 
on fixed network topologies and predefined 
UAV states, which are subject to continual 
variation in real-world settings [18]. Further-
more, the optimization process frequently de-
mands substantial computational resources, 
rendering it impractical for actual applica-
tions [19–23]. Critically, these methods tend 
to overlook the interactions and collaborative 
behaviors among UAVs, thus constraining the 
practicality and accuracy of optimization out-
comes.
This study examines distributed computing 
optimization strategies within UAV swarm 
cooperative networks. In Section 2, the intro-
duction of a UAV swarm cooperative network 
flow prediction model is detailed. This mod-
el facilitates real-time control over the UAV 
swarm cooperative networks by forecasting 
future network dynamics and assessing the ef-
fects of various candidate decision sequences 
on control. Thereafter, Section 3 delves into the 
application of multi-agent technology. Each 
UAV unit is characterized as an agent within 
this context. The multi-agent model for the 
UAV swarm is then constructed, drawing upon 
the networks' topology and the inter-agent cou-
pling relationships. Subsequently, a distribut-
ed, finite-time cooperative control algorithm is 
designed. This algorithm facilitates distributed 
control during UAV swarm cooperative behav-
ior, significantly improving the collaborative 
efficiency of the UAV swarm. The research 
proposes an efficient, real-time distributed 
computing optimization strategy, targeting 

to overcome the challenges faced by existing 
methodologies in managing large-scale UAV 
swarm cooperative networks.
A comparative analysis was conducted on the 
performance of various algorithms, encom-
passing deep Q-network (DQN), graph iso-
morphism networks (GIN), graph attention 
networks (GAT), and the novel method pro-
posed in this study. This analysis focused on 
three critical performance indices: simulation 
time, time required for collaborative control, 
and the acceleration ratio in optimization com-
putation. The findings indicated that the algo-
rithm proposed in this research surpassed the 
comparative algorithms across multiple per-
formance evaluation metrics. Notably, in terms 
of the time required for collaborative control 
and the optimization computation acceleration 
ratio, the introduced method demonstrated not 
only heightened efficiency but also enhanced 
stability. These results suggest that the algo-
rithm presented in this research facilitates 
more rapid completion of control tasks and 
more effective acceleration of computation 
processes, thus offering more reliable and effi-
cient performance in practical applications.

2. UAV Swarm Cooperative Network 
Flow Prediction Model

In this research, a comprehensive dynamical 
prediction of future UAV swarm cooperative 
networks was undertaken. This entailed the de-
velopment of theoretical models and the exe-
cution of simulation experiments. The dynam-
ics of UAV motion and the efficiency of task 
execution were scrutinized, with a particular 
emphasis on spatial-temporal constraints and 
the integration of location-based limitations to 
guarantee operations within safe perimeters. 
Furthermore, the study addressed the func-
tionality of dynamic rule updates, enabling 
real-time modification of the UAV swarm's 
state and facilitating prompt UAV responses 
to both environmental shifts and the activities 
of adjacent UAVs. The influence of coopera-
tive behavior, particularly in path selection, 
on the overall efficacy of the group was also 
a key focus. A notable application in disaster 
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 ● Decision generation. Predicting the UAV 
swarm's state for the subsequent moment 
based on the current state and input, and 
generating control decisions in response to 
the predicted state and prevailing environ-
mental conditions. These decisions may 
encompass parameters such as flight path, 
speed, and altitude.

 ● Decision execution. Applying these con-
trol decisions to the UAV swarm at the next 
moment, thereby influencing UAV flight 
control. This stage ensures the smooth pro-
gression of collaborative behavior and task 
execution.

 ● Decision update. Post-execution, the state 
and input of the UAV swarm are updated 
based on actual outcomes and environ-
mental changes, laying the foundation for 
future prediction and decision generation.

 ● Decision optimization. Throughout the 
prediction and decision-making process, 
control decisions are continuously opti-
mized in response to actual outcomes and 
environmental changes, aiming to maxi-
mize collaborative efficiency and task ex-
ecution effectiveness of the UAV swarm.

The UAV swarm cooperative signal adaptive 
control challenge is fundamentally a multi-con-
straint nonlinear optimization issue. This com-
plexity arises from the multitude of constraints 
that govern UAV swarm collaborative behav-
ior, encompassing, but not restricted to, spa-
tial-temporal constraints, location limitations, 
update protocols, and pathways for collabora-
tive actions. The inherent nonlinearity of this 
control problem is a direct consequence of the 
dynamic and intricate nature of UAV swarm be-
havior. The utilization of prediction control is 
particularly beneficial in this context. It consid-
ers future states and environmental shifts within 
a predetermined time frame, which allows for 
more logical and optimized control decisions. 
Importantly, this approach integrates a variety 
of constraint conditions into the optimization 
process, ensuring comprehensive compliance 
with these conditions. Therefore, the prediction 
control of UAV swarm cooperative network 
flow, as proposed in this study, effectively rede-
fines the UAV swarm cooperative signal adap-
tive control challenge into a solvable multi-con-

relief scenarios demonstrated that strategic 
path selection significantly accelerates UAVs' 
deployment to critical areas for search and 
rescue efforts. By examining these facets, the 
research provides a detailed assessment of 
control effectiveness within UAV swarm co-
operative networks, laying a substantial theo-
retical groundwork for prospective implemen-
tations. The consideration of the time window 
and spatial scope is imperative in UAV swarm 
task execution. Spatial-temporal constraints, 
as defined in this model, entail the schedul-
ing and control of the UAV swarm within the 
bounds of these temporal and spatial require-
ments, thereby facilitating more precise pre-
dictions of UAV swarm dynamics.

Furthermore, environmental and terrain fac-
tors often impose location restrictions on UAV 
swarms. Such restrictions, when integrated into 
the prediction model, refine the accuracy of 
UAV swarm dynamics forecasts. The dynamic 
nature of interactions and collaborative behav-
iors in UAV swarm cooperative networks ne-
cessitates real-time updates and adjustments. 
Update rules, as established in this model, 
manage the UAV swarm by accommodating 
these dynamic changes, which are integrated 
into the prediction model to ensure greater ac-
curacy in forecasting UAV swarm dynamics. 
Path selection in collaborative behavior, a crit-
ical aspect influencing collaborative effective-
ness, involves strategic scheduling and control 
of the UAV swarm to optimize collaborative 
outcomes.

Rolling prediction, a pivotal technique em-
ployed in this model, involves forecasting the 
next moment's state based on current state and 
input, followed by the generation and applica-
tion of corresponding control decisions. This 
iterative process continues until all predic-
tions and decisions are completed. Analysis of 
these aspects highlights rolling prediction as a 
crucial method within the UAV swarm coop-
erative network flow prediction model, facil-
itating real-time control of UAV swarm coop-
erative behavior. Control decisions within the 
rolling prediction time domain include:
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straint nonlinear optimization problem within a 
finite time domain. This transformation facili-
tates efficient and real-time cooperative control 
of UAV swarms.
To optimize collaborative efficiency, enhance 
system stability and reliability, and minimize 
energy consumption while ensuring quality and 
timely completion of collaborative tasks, key 
factors influencing optimization objectives are 
identified. These encompass UAV performance 
attributes like flight speed, altitude, payload ca-
pacity, and endurance, all of which impact the 
UAV swarm's collaborative efficiency and en-
ergy consumption. Environmental factors such 
as terrain, weather, and air currents influence 
the UAVs' flight path and speed, affecting both 
collaborative efficiency and energy consump-
tion. Task requirements, comprising urgency, 
complexity, and spatial distribution, impact the 
scheduling and control of the UAV swarm, thus 
influencing collaborative efficiency and task 
completion quality. Additionally, cooperative 
strategies involving UAVs' collaborative be-
havior patterns and path selection affect both 
the collaborative efficiency and system stability 
of the UAV swarm.
In the prediction model, the current control 
step is denoted by jv, and the predicted coop-
erative state of the UAV swarm, including po-
sition and speed, is represented by â( jv). The 
predicted control input sequence is indicated by 
î(  jv). At the j + m moment within the prediction 
time domain, this is represented by Lu( j + m). 
In scenarios of emergency tasks, the number of 
UAVs on the u-th flight path is considered, with 
the flight path count in the cooperative network 
denoted by W. The duration of an emergency 
task at the j-th moment under the k-th cooper-
ative mode on the u-th path is represented by 
hu, k, j, with the lower and upper limits of this 
emergency task time being hMIN

u and hMAX
u, 

respectively. The task cycle is represented by 
Vu, and the task scheduling loss time is denoted 
by Mu. The number of cooperative modes on 
the u-th flight path is indicated by Bu, and the 
efficiency difference of the cooperative mode at 
the j-th moment on the u-th path is denoted by 
ϕu, j. The sequence of cooperative modes on the 
u-th flight path is represented by Pu, with the 
k-th cooperative mode on this path denoted by 
ogu, k. Consequently, within the prediction time 

domain BO, the optimization objective function 
of the model's prediction control is defined:
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Figure 1 presents a schematic diagram illus-
trating the rolling time domain definition uti-
lized in the prediction model developed for this 
study. This dynamic timeframe, known as the 
rolling time domain, spans from the present 
moment to a pre-set future moment. The UAV 
swarm's future cooperative state is predicted 
based on its current state and input, taking into 
account the dynamic behavior patterns of the 
swarm, collaborative task requirements, and 
environmental influences. These predictions 
form the foundation for subsequent control de-
cisions. Within the prediction time domain Bo, 
the future cooperative state of the UAV swarm 
is denoted by â( jv), while the control input is 
represented by î( jv):
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To maintain continuity and stability in control, 
it is essential that decision variables outside the 
control time domain Bv(Bv < Bo) mirror the con-
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trol variables of the preceding moment, as de-
lineated in the model. This is critical to prevent 
significant instantaneous changes in the flight 
state of UAVs, such as position, speed, and di-
rection, which could pose risks of damage or 
danger. The decision variables for the current 
moment, therefore, should not substantially de-
viate from those of the previous moment:

( ) ( )ˆ ˆ 1 ,
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The following formula redefines these control 
variables:
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By resolving this model, the optimal control 
sequence î( jv) is ascertained. This sequence 
delineates the coordinated actions the UAV 
swarm should undertake over a future period 
to meet predefined task objectives. This pro-
cess involves considering the collaborative re-
lationships among the UAV swarm members, 
alongside the constraints imposed by task re-

quirements on UAV behavior. Building upon 
the optimal control sequence generated, its 
first element i*( jv | jv), representing the optimal 
control decision for the current moment, is ap-
plied to the UAV swarm. It is crucial to ensure 
that control instructions are transmitted to each 
UAV in a timely and accurate manner, and that 
each UAV operates in compliance with these 
instructions.
Following the execution of control decisions, 
new state information of the UAV swarm is 
gathered through sensors and other devices. 
This information is crucial as it forms the initial 
state for the subsequent prediction cycle. In this 
iterative process, the consideration of environ-
mental changes is imperative, as these may sig-
nificantly impact the state of the UAVs. Thus, 
the real-time updating of state information be-
comes a necessity. The prediction time domain 
is methodically advanced, maintaining the con-
tinuity and stability of the prediction to avoid 
any discontinuities. The methodology outlined 
in Figure 2 represents a dynamic, iterative pro-
cess, necessitating continual adjustment of con-
trol strategies based on the latest state informa-
tion. This approach is essential for optimizing 
the collaborative behavior of the UAV swarm, 
ensuring the effective execution of the task at 
hand.

Figure 1. Definition of the rolling time domain.
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3. Distributed Finite-time Cooperative 
Control of UAV Swarms

In this study, a distributed finite-time coop-
erative control method for UAV swarms is 
proposed to augment their adaptability and 
robustness, particularly in complex and vari-
able environments and task requirements. This 
method conceptualizes each UAV unit as an 

agent within a multi-agent model, enabling dis-
tributed control. Consequently, each UAV is 
capable of making autonomous decisions based 
on its state and the states of proximate UAVs, 
obviating the necessity for centralized control 
by a central node. Such a distributed approach 
significantly enhances the UAV swarm's adapt-
ability and robustness, equipping it to adeptly 
manage diverse and dynamic environmental 

Figure 2. Flowchart of UAV swarm cooperative network flow prediction.
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and task challenges. Furthermore, this method's 
control process is confined to a finite timeframe, 
rather than an indefinite duration, ensuring that 
objectives are attained within a specified peri-
od. This attribute is particularly beneficial for 
tasks where time is a critical factor.

In the developed multi-agent model for UAV 
swarms, each UAV is regarded as an autono-
mous agent, collectively constituting a sophis-
ticated network system. Nodes in this network 
symbolize individual UAVs, while edges rep-
resent interactions between them, mirroring 
the UAV swarm's cooperative network topolo-
gy. The interaction relationships among UAVs 
are inherently dynamic; alterations in the net-
work's structure occur as UAVs either complete 
their tasks and depart from the group or as new 
UAVs are integrated. This dynamic nature en-
ables the UAV swarm to more effectively adapt 
to changes in environmental conditions and 
task requirements. It is defined that when UAV 
unit u is coupled with UAV unit k, the value of 
Ŝuk is set to 1; otherwise, it remains 0. Simulta-
neously, the parameters îu = iu /lu, ĵu = ju /lu, and 
f̂u = fu / lu are introduced, leading to the formu-
lation of the following expression for the multi-
agent model:
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Figure 3 illustrates the UAV-based wireless sen-
sor device system utilized in the study. During 
collaborative behavior, the UAV swarm gathers 
state information from all UAV units through 
wireless sensor devices. The system constructs 
a speed-distance curve from this data, which is 
essential for ensuring the safety and precision 
of the UAV swarm's collaborative maneuvers. 
The expression for this curve is as follows:

( ) ( )e ez y c y=                      (11)

Additionally, the distance and speed differences 
between each UAV unit, denoted as u, and the 
curve are defined, enhancing the model's accu-
racy in depicting UAV dynamics:
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Figure 3. UAV-based wireless sensor device system.
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The distributed finite-time cooperative control 
method for UAV swarms, developed in this 
study, primarily aims to establish a finite-time 
control law îu( y) for each UAV unit. This law 
is based on information from neighboring UAV 
units, and its key objectives are twofold.
First, it ensures that the speed of all UAV units 
becomes uniform within a finite period. Uni-
form speed across all units is fundamental for 
effective group cooperative behavior. When all 
UAVs operate at a consistent speed, the swarm 
can move coherently along the predetermined 
route and speed, which is vital for avoiding dis-
array and inefficiency in group behavior. Rapid 
response capability in the control algorithm is 
crucial for promptly aligning the velocities of 
all UAVs, thereby enhancing task execution ef-
ficiency.
Second, the method aims to maintain opti-
mal safe distances between consecutive UAV 
units. This is critical for ensuring the safety of 
UAVs during task operations. The model de-
fines a range of safe distances, represented by 
(-g2, g1), within which the UAVs must oper-
ate. Balancing these distances is essential for 
maximizing the UAV swarm's coverage and 
operational efficiency while preventing colli-
sions and maintaining effective internal com-
munication and collaborative behavior. Precise 
control is required to achieve this balance, with 
the initial distance between adjacent UAV units 
within the safe range forming the basis for the 
swarm's control objectives:
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To realize the control objectives previously de-
lineated, this study defines o1, o2, ω1, and ω2 as 
positive constants. The variable sup is assigned 
a value of 1 when u equals 1, and 0 in other 
instances. Subsequently, a finite-time distribut-
ed control law, aligned with the stated control 
objectives, is formulated:
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The parameters σ1 and σ2 are set within the 
ranges of (0, g1) and (0, g2), respectively. In 
scenarios where ck belongs to Bu, the value of 
suk is assigned 0. Alternatively, suk is defined as 
follows in other circumstances:
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Employing the aforementioned finite-time dis-
tributed control law facilitates the realization 
of efficient collaborative behavior within the 
UAV swarm. By achieving uniformity in speed 
across all UAV units and maintaining specified 
maximum and minimum safe distances, the 
group's overall efficiency and safety are signifi-
cantly enhanced. This approach underscores the 
importance of finely tuned control mechanisms 
in optimizing the collaborative dynamics of 
UAV swarms.

4. Experimental Results and Analysis

Figure 4 presents a comparative analysis of the 
number of UAVs per flight path at each con-
trol time step. This figure is instrumental in 
evaluating the performance of the UAV swarm 
cooperative network flow prediction model, a 
cornerstone of this study. The model's ability 
to predict future network dynamics and assess 
the efficacy of potential decision sequences fa-
cilitates real-time control over the UAV swarm 
cooperative network. The data, as illustrated in 
Figure 4, reveal that the number of UAVs in-
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creases over time across all algorithms, albeit 
with varying rates and degrees of stability. Ini-
tial simulation results show comparable perfor-
mance among the four algorithms. However, as 
the simulation progresses, a discernible diver-
gence emerges, with the approach of this study 
(represented by the black line) demonstrating 
a clear lead over the other methods. The DQN 
algorithm (dark gray line), GIN algorithm 
(light gray line), GAT algorithm (gray line) 
exhibit fluctuations but generally trail behind 
the method proposed in this study. The analysis 
underscores the superiority of the model devel-
oped in this study, particularly in its capacity 
to manage increasing numbers of UAVs and 
maintain stability, thereby affirming its effec-
tiveness in real-time network control.
Figure 5 offers a comparative analysis of the 
number of UAVs on each flight path across four 
distinct algorithms. Represented are the DQN 
algorithm (dark gray line), GIN algorithm 
(light gray line), GAT algorithm (gray line), 
and the method developed in this study (black 
line). The analysis reveals that the method of 
this study, as indicated by the black line, con-

sistently achieves higher flight distances across 
most control strategies while maintaining an 
optimal number of UAVs. This performance 
suggests that the UAV swarm cooperative net-
work flow prediction model proposed herein 
effectively balances extended flight distances 
with the management of UAV numbers, align-
ing with the objectives of cooperative swarm 
behavior. Furthermore, minimal fluctuations 
in the black line on the z-axis, indicative of 
the number of UAVs per flight path, signify a 
stable UAV count under varying control strate-
gies. This stability is a testament to the robust-
ness of the control strategies and the predic-
tive accuracy of the model. Thus, it is inferred 
that the model excels not only in facilitating 
extended flight distances but also in ensuring 
stability and reliability in UAV number man-
agement. These attributes affirm the suitability 
of this study's model for UAV swarm coopera-
tive network flow prediction and management, 
offering effective and real-time control for fu-
ture network dynamics.

Figure 4. Comparative analysis of the number of UAVs per flight path at each control time step.
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for cooperative control compared to the other 
algorithms. This gap in efficiency widens as 
the simulation advances, indicating a sustained 
period of stability. These observations suggest 
that the method developed in this study not only 
excels in the efficiency of cooperative control 
but also maintains this efficiency consistently 
over time.
Figure 8 provides an analysis of the optimiza-
tion computation speedup ratios across various 
algorithms at differing points in the simulation 
timeline. Here, the DQN algorithm is represent-
ed by light gray bars, the GIN algorithm by dark 
grey bars, and this study's method by gray bars. 
The speedup ratio is a critical metric for assess-
ing algorithmic optimization performance, with 
higher ratios indicating substantial gains in 
computational speed relative to a given bench-
mark. The figure clearly shows that the meth-
od developed in this study consistently exhibits 
the highest speedup ratios at every simulation 
point, markedly surpassing both the DQN and 
GIN algorithms. This data strongly suggests 
that the prediction model of this study signifi-
cantly excels in computational optimization, 
offering enhanced speeds that facilitate more 
efficient cooperative control in UAV swarm op-
erations, especially under demanding real-time 
conditions. The effectiveness of this method, as 
depicted, plays a pivotal role in enabling UAV 
swarms to perform tasks rapidly and accurately 
in complex environments, highlighting the su-
periority and practical applicability of the pro-
posed model.

Figure 6 presents a comparative assessment of 
the degree of improvement achieved by the al-
gorithm developed in this study relative to oth-
er algorithms. The horizontal axis indicates the 
range of improvement degrees, while the verti-
cal axis reflects the level of enhancement over 
the DQN and GAT algorithms. The improve-
ment of this study's algorithm over the DQN al-
gorithm is represented by the light gray bar, and 
its enhancement relative to the GAT algorithm 
is depicted by the dark gray bar. The data clear-
ly demonstrate that the method proposed in this 
study exhibits substantial advancements over 
both the DQN and GAT algorithms across vari-
ous improvement ranges. Notably, in scenarios 
with improvements of 60% or higher, this study's 
method distinctly surpasses the DQN algorithm. 
Similarly, in the 30%-60% improvement range, 
it achieves a greater level of enhancement com-
pared to the GAT algorithm. Collectively, these 
results affirm that, in most instances, the algo-
rithm introduced in this study realizes signifi-
cant improvements over both the DQN and GAT 
algorithms. This highlights the substantial effi-
cacy of the prediction model introduced in this 
study, particularly in scenarios requiring higher 
degrees of improvement, thereby demonstrating 
its superior performance capabilities.
Figure 7 illustrates the time efficiency in coop-
erative control among different algorithms, in-
cluding the DQN, GIN, GAT, and the method 
proposed in this study. As simulation time pro-
gresses, the black line, representing this study's 
method, consistently manifests a lower duration 

Figure 5. Comparative analysis of the number of UAVs on each flight path.
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Figure 6. Comparison of the improvement degree achieved by the proposed 
algorithm relative to other algorithms.

Figure 7. Time efficiency in cooperative control among different algorithms.
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Figure 9 focuses on the speed-distance curves 
under different task scenarios, showcasing the 
performance of the distributed finite-time coop-
erative control algorithm devised in this study. 
The curves exhibit a notable jump in speed, sta-
bilizing thereafter, indicative of a strategic shift 
in cooperative control, such as adjusting speed 
near target points. Throughout most of the tra-
jectory, the speed remains consistent, suggest-
ing that the UAV swarm maintains stable task 
execution post-initial adjustments, a hallmark 
of effective cooperative control. Minimal vari-
ations in speed across different curve segments 
imply the algorithm's capability to uphold uni-
form speed during UAV progression, thereby 
sustaining cooperative efficiency, even under 
finite-time stability constraints. The efficacy of 
the proposed cooperative control algorithm is 
evident across various tasks, maintaining stable 
speed and task execution, thereby underscoring 
its rapid response and robust control character-
istics essential for efficient and reliable UAV 
swarm operations.

5. Conclusion

This study has focused on addressing the chal-
lenges in managing and controlling the flow 
of UAV swarm cooperative networks, with the 
objective of achieving efficient cooperative 
control of UAV swarms. A UAV swarm coop-
erative network flow prediction model was de-
veloped, grounded in the real-world demands 
of UAV cooperative behavior. Utilizing multi-
agent technology, each UAV unit was concep-
tualized as an intelligent agent. By considering 
the topology and coupling relationships within 
the UAV swarm cooperative network, a com-
prehensive multi-agent model was constructed. 
Subsequently, a novel distributed finite-time 
cooperative control algorithm was formulat-
ed based on this model. The prediction model, 
designed in this study, endeavors to anticipate 
future network dynamics and assess the effec-
tiveness of control decisions. This approach 
facilitates real-time governance of the UAV 
swarm cooperative network. It efficiently re-
solves control decisions within a dynamic pre-

Figure 8. Comparison of optimization computation speedup ratios for cooperative control.
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diction time domain, accounting for variables 
such as spatial-temporal constraints, location 
limitations, and choices in cooperative behav-
ior pathways. Additionally, the cooperative 
control algorithm, underpinned by multi-agent 
technology, enables distributed control amidst 
UAV swarm cooperative behavior, markedly 
improving the swarm's collaborative efficiency.
A thorough experimental analysis was conduct-
ed, comparing various algorithms, including 

DQN, GIN, GAT, and the approach introduced 
in this study, across different metrics such as 
simulation time, cooperative control duration, 
and optimization computation speedup ratios. 
The findings revealed that the method proposed 
in this study outshined in multiple evaluation 
aspects, especially in terms of cooperative con-
trol efficiency and computational optimization, 
when benchmarked against other algorithms.

Figure 9. Speed-distance curves under different task scenarios.

(a) Task 1.

(b) Task 2.



216 W. Luo, X. Zhang, F. Zhang, Z. Shi and H. Liu

In conclusion, the UAV swarm cooperative net-
work flow prediction model and the distributed 
finite-time cooperative control algorithm pro-
posed in this study demonstrate not only the-
oretical innovation but also practical efficacy, 
as evidenced in experimental validations. These 
advancements hold substantial promise for en-
hancing the intelligent management and control 
of UAV swarm cooperative behavior, with po-
tential applications extending to military, mon-
itoring, rescue operations, and other relevant 
domains.
In this study, the proposed algorithm's contri-
bution to enhancing the real-time collabora-
tive control efficiency of UAV swarms is rec-
ognized. However, it is acknowledged that the 
research encompasses certain limitations. The 
model, potentially idealized, may not fully en-
compass the myriad uncertainties prevalent in 
complex environments, such as climate varia-
tions and signal interference. Furthermore, the 
scalability and robustness of the algorithm in 
expansive UAV networks necessitate addition-
al validation. Prospective research endeavors 
could focus on refining the model for greater re-
alism in dynamic, complex environments. This 
entails optimizing the algorithm for augmented 
efficacy in larger-scale networks and bolstering 
its resilience to uncertainties and potential mal-
functions. Additionally, the exploration of more 
sophisticated distributed computing frame-
works is warranted, aiming to manage the ex-
tensive data and high computational demands 
characteristic of collaborative tasks involving 
UAV swarms more efficiently.
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