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Abstract – Parkinson's disease (PD) is a common disease that predominantly impacts the motor scheme of the neural central 
scheme. While the primary symptoms of Parkinson's disease overlap with those of other conditions, an accurate diagnosis typically 
relies on extensive neurological, psychiatric, and physical examinations. Consequently, numerous autonomous diagnostic assistance 
systems, based on machine learning (ML) methodologies, have emerged to assist in evaluating patients with PD. This work proposes 
a novel deep learning-based classification of Parkinson's disease (PD) using voice recordings of people into normal, idiopathic 
Parkinson, and familial Parkinson. The improved jellyfish algorithm (IJFA) is utilized for hyper-parameter selection (HPS) of a 1D 
convolutional neural network (1D-CNN). The proposed technique makes use of the significant elements of 1D-CNN and filter-based 
feature selection models. Because of their strong performance in dealing with noisy data, the filter-based algorithms Relief, mRMR, 
and Fisher Score were chosen as the top choices. Using just 62 characteristics, the combination of deep relief features and deep 
learning was able to discriminate between people. The competence of the proposed 1D-CNN with IJFA method was determined 
through specific network metrics. The proposed 1D-CNN with IJFA method attains a total accuracy of 98.6%, which is comparatively 
better than the existing techniques. The proposed model produced around 9.5% improvements in accuracy, respectively, when 
compared to the data obtained without dimensionality reduction.

Keywords: Parkinson Disease Classification, Convolutional Neural Network, Improved jellyfish algorithm,  
 Filter-based feature selection model

1.  INTRODUCTION

Parkinson Disease (PD) is a condition that touches the 
motor scheme of the dominant nervous organization 
of the human body. Motor symptoms and non-motor 
symptoms are the two categories that may be used to 
describe the symptoms of PD [1]. The motor symptoms 
involve trembling and a lack of energy in the hands 
and legs, constipation, difficulty doing daily tasks, and 
a shuffled gait when walking [2]. Parkinson's disease 
non-motor symptoms include a variety of problems, 
including weariness, constipation, difficulty speaking, 
memory loss, and exhaustion [3]. Studies suggest that 
voice problems arise in about 90 percent of PD cases 
[4]. The Procedure of Diagnosing (PD) using just certain 

qualitative criteria may make the process more difficult 
since other illnesses might also present with similar 
symptoms [5]. 

In recent years, a surge in Parkinson’s disease research 
has leveraged machine learning (ML) for diagnosis [6]. 
Studies have utilized various data, including walking 
tracks, speech recordings, and brain electrical event 
recordings (EEG) [7]. Notably, speech-based diagnostic 
methods have shown promise, as speech difficulties of-
ten manifest early in PD [8]. These algorithms effective-
ly distinguish between individuals with PD and healthy 
subjects using distinctive features extracted from raw 
speech data [9]. PD diagnostic systems employ diverse 
speech signal processing algorithms to extract clinical-
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ly relevant vocal characteristics from voice recordings 
[10]. Essential features extracted from real-world datas-
ets are input into machine learning models for PD diag-
nosis [11]. The performance of these models depends 
on the relevance of features utilized during training 
[12]. To address high dimensionality and sparse data is-
sues, reducing dimensionality is crucial in PD research. 
This process emphasizes relevant characteristics, en-
hancing the success of machine learning models for 
diagnosis [13, 14]. The contribution of this paper is, 

•	 In this work, proposed a novel deep learning-
based classification of Parkinson's disease using 
voice recordings of people into normal, idiopathic 
Parkinson, and familial Parkinson.

•	 Initially, the CNN network is used as a feature ex-
tractor to extract the voice recordings.

•	 Then, the Improved Jellyfish Search Algorithm 
(IJFA) to select the features before the final layers is 
utilized for hyper-parameter selection (HPS) of 1D-
convolutional neural network (1D-CNN).

•	 Finally, a 1D-CNN classifier was trained using the 
generated deep feature representations.

•	 The performance of the Proposed 1D-CNN with 
IJFA method was measured by parameters such as 
Specificity, Accuracy, F1 score, Precision, and Sen-
sitivity.

In Section 2, we provide the work that is relevant to this 
study, and in Section 3, we provide an explanation of the 
suggested model. Sections 4 and 5 each provide a conclu-
sion that summarises the findings of the validation study. 

2. RELATED WORKS

Recent research has presented various deep learn-
ing-based methods for detecting Parkinson's disease. 

In 2022, Sahu et al. [15] suggested an early Parkinson 
disease diagnosis method based on hybrid deep learn-
ing. The combination of two deep learning techniques, 
such as regression analysis (RA) and artificial neural 
networks (ANN), for efficient probability-based illness 
diagnosis. The accuracy of the suggested method is 
93.46%.

In 2022, Vyas et al. [16] developed a method for deep 
learning (DL) that uses convolutional neural networks 
(CNNs) in two and three dimensions. The 2D model at-
tained an accuracy of 72.22% with 0.50 area under the 
curve (AUC), whereas the 3D model features from the 
data were able to categorize the test data with an ac-
curacy of 88.9% with 0.86 AUC.

In 2022, Hosny et al. [17] developed a brand-new 
deep learning model to identify subthalamic nuclei 
(STN) in signals from local field potentials (LFPs). The 
k-Nearest Neighbor (KNN) classifier receives the char-
acteristics as input. According to the findings, KNN 
achieved an accuracy rate of 87.27% on average.

In 2022, Rajanbabu et al. [18] developed transfer 
learning-based deep learning architectures for effec-
tive PD diagnosis using MRI data. Based on the maxi-
mum chance of all the models chosen for PD classifi-
cation, an ensemble model is suggested. The method 
primarily concentrates on providing an accurate PD 
diagnosis. 

In 2022, Moradi et al. [19] offered a microarray datas-
et (GSE22491) that was given by GEO. The Limma pack-
age, which is part of the R program, was used to find 
DEGs and analyze and assess gene expression. Support 
vector machines (SVM) results show that using three 
genes together can lead to an 88% prediction accuracy. 

 In 2022, AlMahadin et al. [20] proposed a series of 
resampling methods to enhance the classification of 
tremor severity in Parkinson's disease. The suggested 
method combines three types of resampling and signal 
processing techniques: hybrid, under, and over-sam-
pling. ANN-MLP, as suggested, has an overall accuracy 
of 93.81%.

In 2024, Canturk et al. [21] suggested utilizing voice 
signals and artificial intelligence to diagnose Parkin-
son's disease. AlexNet, GoogleNet, ResNet50, and the 
majority of voting-based hybrid systems are among 
the first classifiers used. The deep feature fusion meth-
od produced an accuracy of 0.95%.

In 2024, Aldhyani et al. [22] suggested that the public 
dataset PD Spiral Drawings be utilized for PD research 
and diagnosis. The suggested technique made use of 
a common dataset made up of 204 spiral and wave 
drawings made by people with Parkinson's disease. 
With 94% accuracy, pictures were used to train the 
DenseNet201 classifier.

The analysis highlighted earlier emphasizes the con-
straints of current research procedures and models. To 
overcome these limitations, this paper Improved jel-
lyfish algorithm (IJFA) is utilised for hyper-parameter 
selection (HPS) of 1D-convolutional neural network 
(1D-CNN).

3. PROPOSED METHODOLOGY

3.1. DATASET DESCRIPTION

In this proposed method, the Parkinson's disease 
dataset can be used. In this dataset, there are 62 voice 
recordings of people. Also, this dataset consists of three 
class: 50% samples belonging to healthy and 50% sam-
ples belonging to patients. The data in PD dataset take 
from 62 patients with Parkinson Disease (30 men and 
32 women) with ages ranging from 33 to 87. The PD da-
taset with the of 50-50% training and testing partition.

3.2. FEATURES SELECTION

In medical applications, feature selection has been 
the subject of several research, all of which have shown 
that it is both adequate and successful. Because it is a 
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pre-processing method, it is able to single out the most 
important aspect of the issue. Maximum relevance re-
dundant features as feasible (minimum redundancy). 
Maximum relevance seeks to identify the characteris-
tics that it also seeks to give the feature subset compris-
ing fewer and minimal redundant features as feasible.

According to the mRMR, the optimization condition 
ought to be expressed as follows: 

(1)

When c is the target class, xi is the ith feature, and X 
is the entire set of features. The mutual information be-
tween class c and feature xj is represented by xi.

The mRMR method improves classification accuracy 
while simultaneously reducing the number of variables 
used. This is accomplished by minimising the selection 
of duplicate features. Table 1 shows the different as-
pects of the human voice.

Table 1. Different aspects of human voice

Description Voice measure

11-point Amplitude Perturbation Quotient MDVP: APQ

Absolute jitter in microseconds MDVP: Jitter (Abs)

Average vocal fundamental incidence MDVP: F0 (Hz)

Maximum vocal fundamental incidence MDVP: Fhi (Hz)

Relative Amplitude Perturbation MDVP: RAP

Five-point Period Perturbation Quotient MDVP: PPQ

Average absolute difference of differences 
among cycles, divided by the average period Jitter: DDP

Shimmer Local amplitude perturbation MDVP: Shimmer

Local amplitude perturbation MDVP: Shimmer (db)

Average absolute difference among the 
amplitudes of consecutive aeras Shimmer: DDA

Noise-to-Harmonics Relation NHR

Harmonics-to-Noise Relation HNR

Recurrence Period Density Entropy RPDE

Correlation Dimension D2

Fundamental frequency difference Spread1

Fundamental frequency difference Spread2

Pitch retro entropy PPE

(2)

The number of occurrences of a feature is denoted 
by its mean, which is denoted by the symbol l, whereas 
the number of occurrences of a class is denoted by the 
symbol n j. During the process of feature selection using 
Fisher Score, all of the features are sorted in decreasing 
order beginning with the high scores are selected. 

3.2.2. Relief

The significance of the features is computed via relief 
selection, which does this by illuminating the relation-
ships that exist between the features and the class labels. 

The iterative process that was used in order to indicate 
the feature relevances may be seen in the equation (3).

(3)

In the ‘n’ dimensions and records of n different char-
acteristics. While the closest samples of the same class 
and those of different classes are denoted by the terms 
"NearHit" and "NearMiss," respectively.

3.3. 1D-CNN FOR CLASSIFICATION

In convolution neural network (CNN) models are used 
rather often for the purpose of image identification in 
two dimensions. On the other hand, the use of CNN 
models should not be limited to either two-dimension-
al or tasks in order to be utilised. It should come as no 
surprise that the 1D-CNN model has the same qualities 
as previous CNN models. A one-dimensional input sig-
nal, which will be indicated by S, and a kernel variable, 
which will be denoted by W will be used in the follow-
ing description of the convolution procedure.

(4)

A feature map is the term used to refer to the final 
product of the convolution process. Let the limited ma-
trix of the input matrix to the weight matrix be denoted 
by the notation S|W(i,j)n. S|W(i,j)n is a representation of the 
elements of S from n up to the dimension of W(i,j). As 
a result, the output matrix is capable of being charac-
terised by a generic formula, which may be found in 
Equation (5):

(5)

The final part of the CNN model, which usually con-
sists of a neural network layer, handles the classifica-
tion task. This layer is in charge of the final level and is 
referred to as a completely connected layer. The input 
consists of the pre-processed signal segments, each of 
which contains 50% samples. In the first layer of the 
model, the signals are convoluted using 64 x 5 filters 
and three stride ratios in order to build feature maps 
with sizes ranging from 64 x 999 to 64 x 999. The sec-
ond layer of the model is also a convolution layer has 
128 filters by 5 rows. This layer produces brand new 
feature maps by using the results of the previous layer.

The Max Pool layer combines the two output vectors' 
maximum values in two-unit areas into a single value. 
This value is the result of the condensing process. 
These steps are repeated in a similar way in each of the 
model's subsequent layers, but each time, a range of 
distinct filter sizes are used. Dropout layers are built 
into the model to reduce the issue of overfitting. The 
dimensions determined in the flattened layer must 
be changed to fit the thick layers. The final layer, the 
softmax layer, is where the input signals are mapped 
onto the output signals. Therefore, the sum of classes 
(nb class) and the sum of units (nb unit) in this layer 
are equal to one another. In CNN network at the end 
of the last convolution, they apply the Jellyfish Search 
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Algorithm to select the features before the final layers. 
Table 2 contains comprehensive parameter representa-

tions of all of the model's layers. The Proposed 1D-CNN 
model is shown in Fig. 1.

Table 2. Particulars of layers and strictures in the projected 1D-CNN perfect

Layer Name Sum of Filter× Kernel Size Sum of Trainable Parameters Layer Parameters Region/Unit Size Output Scope
1D Conv 64 × 5 384 ReLU, S = 3 - 64 × 999

1D Conv 128 × 5 24,704 ReLU, Stride = 1 - 128 × 997

MaxPool - 0 S = 2 2 128 × 489

Dropout - 0 Rate = 0.2 - 128 × 498

1D Conv 128 × 13 213,120 ReLU, S = 1 - 128 × 346

1D Conv 256 × 7 229,632 ReLU, S = 1 - 256 × 480

MaxPool - 0 Stride = 2 2 256 × 240

1D Conv 256 × 7 262,272 ReLU, S = 1 - 128 × 322

1D Conv 64 × 4 32,832 ReLU, S = 1 - 64 × 230

MaxPool - 0 Stride = 2 2 64 × 54

1D Conv 8 × 5 2568 ReLU, S = 1 - 8 × 50

1D Conv 8 × 2 136 ReLU, S = 1 - 8 × 49

MaxPool - 0 Stride = 2 2 8 × 42

Flatten - 0 - - 1 × 192

Dense - 12,352 ReLU, Drop = 0.2 64 1 × 64

Dense - 195 Softmax nb_class 1 × nb_class

Fig. 1. The Architecture of the proposed 1D-CNN model

3.3.1. Jellyfish Search Algorithm

The search-feeding behaviour and drive designs of 
jellyfish in the water served as an inspiration for the 
development of the algorithm. The following is a run-
down of the three rules that are a part of the JS algo-
rithm:

Rule 1: Jellyfish are able to move in two different 
ways: one is to follow the currents of the ocean, and 
the other is to move about within their own popula-
tion. The transition between these two different forms 
of drive is accomplished via a time- process.

Rule 2: Jellyfish habit, and when they are looking for 
food in the water, they are drawn to areas that have a 
greater concentration of food for them to consume.

Rule 3: stipulates that the quantity of food that jel-
lyfish look for is reliant on the geographical location of 
the food as well as the goal purpose of the reaction. 
This model includes mechanisms for group movement, 
movement in response to time, and movement of jel-
lyfish that follow the movement of ocean currents.

(1) Following ocean current movement 

The term "trend" is used to describe the direction in 
which the current is moving.
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(6)

where, npop is the present optimum position, and the 
equation that specifies its relationship is as follows:

(7)
where X* represents the equation is derived by iterat-
ing over the previous equation until the desired result 
is achieved:

(8)

where m is the average location of all of the jellyfish. DF 
is represented as shadows:

(9)
The following is what you get when you plug Equation 

(9) into the equation that describes the ideal position:

(10)

The distribution of Jellyfish in the ocean is shown is 
Fig. 2. Where σ is the standard deviation of the normal 
distribution, and β signifies the distribution coeffi-
cient, which set to 3 in the algorithm. The range of ±βσ 
around the mean position μ contains the probability of 
all jellyfish positions.

Fig. 2. Normal distribution of jellyfish in the ocean

A relative investigation demonstration that ec can be 
uttered as shadows:

(11)

Following is the equation that was acquired in order 
to derive the equation

(12)

where X i (t) represents the location of the Jellyfish at 
the instant in time when its position is being updated, 
and X i (t+1) represents the position of the jellyfish 

(2) Movements made in groups

The jellyfish moves in a circle around its current posi-
tion to indicate class A movement, and the following 
equation is used to update the jellyfish's position

(13)

where g is the jellyfish's mobility coefficient, Lb is the low-
er bound, and Ub is the upper limit of the search space. 

The following formula can be used to update the 
location of jellyfish participating in Class B drive: jelly-
fish that gather with the intention of consuming food 
when there is more food around:

(14)

where, step→ signifies the step length of jellyfish 

defines step→ and is uttered as follows:

(15)

where, D→ shows the direction in which the jellyfish 
are swimming i. The following is an expression of the 
formula that may be used to determine the direction 
of motion:

(16)

where Xi (t) signifies the current location of jellyfish I, 
Xj (t) represents tof jellyfish j, function f represents the 
objective function with regard to X, and X signifies the 
collection of all jellyfish. 

(3) A strategy for managing time

A temporal control system had to be conceived of, 
developed, and put into operation in order to success-
fully reproduce and materialise the switching that jel-
lyfish are capable of doing between their three differ-
ent modes of motion. The mechanism in question was 
described as a time control function denoted by the 
letter c. (t).

This is an expression of the formula that defines the 
variable c as follows: (t):

(17

where t is the current number of iterations, T is the num-
ber of iterations, and c(t) is a value that is randomly gener-
ated between 0 and 1 for each iteration. It was found that 
the range of values that controlled the jellyfish's move-
ment in reaction to ocean currents was c(t) 0.5.

3.3.2. Improved Jellyfish Search Procedure

The (IJS) algorithm is presented in this section, and 
a thorough explanation of it can be found as follows:

(1) Development of a better technique for the ini-
tialization of population placement

Both the Sobol arrangement and the chaotic map-
ping starting strategy were used in order to create 
fifty percent of the total population. Under the illness 
that the search range limitation is satisfied, the Sobol 
sequence has the potential to create the beginning lo-
cation of the jellyfish population in a more consistent 
manner. The functional representation of tent mapping 
may be described as follows:

(18)

where x t is the created chaotic sequence, t2 is a se-
ries of numbers from 1 to n, n is the sum that has to be 
initialised, and an is an adjustment parameter with a 
value of 0.5.
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(2) A sinusoidal component in the dynamic adapta-
tion

A sinusoidal was included into the artificial jellyfish 
search algorithm in order to enhance its capacity for 
doing local searches. The expression of this factor may 
be expressed as follows:

(19)

where S stands for the sinusoidal lively adaptation fac-
tor, T for the maximum iterations, and t for the itera-
tions that are currently being performed.

(3) The functioning of the population difference

As the following explains, the addition of the ran-
dom variation operation to the artificial jellyfish search 
method aimed to enhance the capacity to do world-
wide searches and broaden the population's diversity:

Operation 1: After the jellyfish had finished migrating 
in accordance with the position update formula and had 
computed their respective fitness values, a particular 
jellyfish from the existing population was selected and 
given the name Xk. This particular jellyfish was picked at 
random. Next, three different jellyfish individuals were 
selected at random, and their relative fitness values were 
ranked from best to worst in order to determine Xa, Xb, 
and Xc. These individuals' fitness values are represented 
by the letters f a, f b, and f c, respectively. Finally, the fol-
lowing is an expression of the formula that may be used 
to calculate the new location of Xk:

(20)

where d represents the variational operator, and the 
formula for it may be written as follows:

(21)

where δu and dl represent the top and lower boundar-
ies of variability, with 0.9 and 0.1 being the values used, 
respectively.

4. EXPERIMENTAL RESULTS AND DISCUSSION

The overall performance of the Proposed 1D-CNN 
with IJFA method was evaluated built on the specific 
parameters viz., Accuracy, Precision, F1 score, Sensitiv-
ity, and Specificity.

(22)

(23)

(24)

(25)

(26)

False positives and true negatives of the MRI images 
are designated as TP and FP, respectively, whereas 

false positives and true negatives are designated as TN 
and FN, respectively. Table 2 shows the parameters for 
PD classes that are used to determine the proposed 
model's performance analysis.

Table 3. The overall Performance analysis of the 
Proposed model

Class Accuracy Precision Sensitivity F1-
score Specificity

Normal 97.54 96.32 94.08 93.69 92.58

Idiopathic 95.09 94.28 93.75 92.07 91.19

Familial 96.46 95.32 94.66 93.97 93.33

Table 1 illustrations the classification of various classes 
of Parkinson disease with specific metrics. The average 
Specificity, F1 score, Accuracy, Sensitivity, and Precision of 
the proposed 1D-CNN with IJFA method with the specific 
metrics. The proposed 1D-CNN with IJFA method has an 
average precision, sensitivity, F1score, and specificity of 
95.3%, 94.16%, 93.24%, and 92.36%, respectively. Fig. 3 
shown the performance parameters for three classes.

Fig. 3. The overall performance analysis of the 
proposed model

4.1. FEATURES SELECTION RESULTS

Maximum relevance minimal redundancy: selected 
the traits that were the most significant to us by using 
the mRMR, which stands for minimum redundancy (22 
features). The PPE is the single most important variable 
in predicting the result. There is a noticeable difference 
between the first feature and the rest of the features 
combined because the first feature has a significantly 
lower score. The algorithm is positive; it has selected 
the most significant predictor because of the notable 
drop in the value of the relevant variable. Other re-
search has demonstrated that, in contrast to earlier 
evaluations, PPE is resistant to the effects of noisy audi-
tory environments and is also sensitive to changes in 
PD speech. Subsequently, the entropy is computed us-
ing the probability distribution of the semitone varia-
tions to define the PPE measure. Converting a speech 
pitch pattern into a logarithmic semitone measure is 
the first step in creating the probability distribution. 
Fig. 4 illustrates a sampling of the findings from this cri-
terion selection. Fig. 5 displays the 22 characteristics in 
the feature ranking discovered by Relief.
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Fig. 4. Samples of the Feature findings

The degree of relevance weights of all characteristics 
is figured out with the help of the bar plot. The Perfor-
mance Analysis for Classifier is shown in Table 3. Fig. 
6 provides the graphical analysis of proposed model 
with existing techniques.

Fig. 5. The 22 characteristics of feature Ranking for 
Relief

Fig. 6. Comparative Analysis of Proposed Model

Authors Methods Accuracy

Sahu [15] ANN-RA 93.46%

Vyas [16] 2D-CNN 88.9%

Hosny [17] CNN-KNN 87.27%

AlMahadin [20] ANN-MLP 93.81%

Proposed 1D-CNN with IJFA 98.6%

Table. 4. Comparison of the proposed and the 
existing models

From Table 4, the comparison of several deep learning 
techniques based on their accuracy in the PD signals. 

Model Accuracy Precision Sensitivity F1-
score Specificity

RF 93.11 93.4 93.11 93.09 93.16

DT 93.85 94.08 93.85 93.84 93.91

NB 94.18 94.31 94.18 94.17 94.21

SVB 94.55 94.74 94.55 94.54 94.59

Auto-
encoder 95.07 95.27 95.07 95.07 95.14

1D-CNN 96.47 96.62 96.47 96.47 96.51

1D-CNN 
with IJFA 98.6 98.57 98.56 98.56 98.54

Table 5. Performance Analysis for Classifier

5. CONCLUSION

This paper presents a novel deep learning-based 
classification of Parkinson's disease using voice record-
ings of people into normal, idiopathic Parkinson, and 
familial Parkinson. The improved jellyfish algorithm 
(IJFA) is utilized for hyper-parameter selection (HPS) of 
a 1D convolutional neural network (1D-CNN). To differ-
entiate Parkinson's patients from healthy individuals at 
an early stage, the 1D-CNN method, coupled with IJFA 
approaches, was employed. The proposed technique 
takes use of the significant elements of 1D-CNN and 
filter-based feature selection models. In comparison 
between the other techniques the proposed 1D-CNN 
with IJFA methods with the accuracy of 98.6%. In the 
future, deep feature representations will be extracted 
from various kinds of data sources collected from wear-
able sensors, and then these data sources will be com-
bined with various multi-modal techniques. 
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