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Abstract – Breast cancer stands as a significant global health challenge, ranking as the second leading cause of mortality among 
women. The increasing complexity of timely and accurate remote diagnosis has spurred the need for advanced technological 
solutions. Breast cancer prediction involves utilizing risk assessment models to identify individuals at higher risk, enabling early 
detection and personalized treatment strategies. This research meticulously assesses the effectiveness of various long short-term 
memory (LSTM) classifiers, including simple LSTM, Vanilla LSTM, Stacked LSTM, and Bidirectional LSTM, utilizing a comprehensive 
breast cancer dataset. Among these, the Bidirectional LSTM emerges as the preferred choice based on a thorough evaluation of 
accuracy, precision, recall, and F1-Score metrics. In a strategic move to further enhance precision, the Bidirectional LSTM integrates 
with the variable step-size firefly algorithm (VSSFF). Renowned for dynamically adjusting its step size, VSSFF offers adaptive exploration 
and exploitation capabilities in optimization tasks. The resulting hybrid model, HVSSFFLSTM, showcases superior performance 
in breast cancer prediction, suggesting potential applicability across diverse health conditions. Comparative analyses with other 
models highlight the exceptional accuracy rates of HVSSFFLSTM, achieving 99.78% (training) and 97.37% (testing), precision rates 
of 99.56% (training) and 97.22% (testing), recall rates of 100% (training) and 98.59% (testing), F1 scores of 99.82% (training) and 
97.9% (testing) and specificity of 99.81% (training) and 99.15% (testing). This study not only underscores the adaptability of VSSFF 
as a valuable optimization tool but also emphasizes the promising prospects of the proposed hybrid model in advancing automated 
disease analysis. The results indicate its potential beyond breast cancer, suggesting broader applications in various medical domains.

Keywords: Simple LSTM, Vanilla LSTM, Stacked LSTM, Bidirectional LSTM, Firefly Optimization Algorithm,  
 Variable Step Size Firefly Algorithm

1.  INTRODUCTION

Breast cancer is a major health concern worldwide, 
underscoring the need for accurate risk assessment 
and early detection [1]. Machine learning (ML) and 
deep learning (DL) techniques are pivotal in improving 
detection methods [2]. ML algorithms like support vec-

tor machines (SVM), random forest, logistic regression 
(LR), decision trees (DT-C4.5), and k-nearest neighbours 
(k-NN) [3] aid in feature selection and classification. 
Recurrent neural networks (RNNs) [4], and long short-
term memory (LSTM) [5] networks, excel in analysing 
mammographic images for abnormalities indicative of 
breast cancer [6]. Hybrid models integrating ML and 
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DL components offer a comprehensive approach, aim-
ing to enhance detection accuracy. This study evalu-
ates various LSTM classifiers—simple LSTM [5], Vanilla 
LSTM [7], Stacked LSTM [8], and Bidirectional LSTM [9] 
for breast cancer detection, with Bidirectional LSTM 
showing superior performance. The study introduces 
a hybrid model, VSSFFLSTM, combining Bidirectional 
LSTM with a variable step-size firefly algorithm (VSSFF) 
[10-12] to improve detection accuracy further. Utilizing 
well-established Breast Cancer Wisconsin (diagnostic) 
(WDBC) datasets [13] for training and validation en-
sures model consistency and performance. 

The traditional firefly algorithm (FF) [14] static step-
size hampers search effectiveness, necessitating dy-
namic adjustment. Initial larger step sizes are vital for 
identification and development, but dynamic altera-
tion is needed with increased iterations for optimal 
performance. Whereas, the VSSFF improves upon FF by 
adapting the step size, resulting in better balance, fast-
er convergence, and increased robustness. Integrating 
VSSFF with Bidirectional LSTM enhances breast cancer 
diagnosis by leveraging these improvements in opti-
mization. The investigation introduces a hybrid model 
featuring several key contributions.

1. The hybrid breast cancer prediction model intro-
duces a Bidirectional LSTM, improving predictive 
capabilities and overcoming hidden layer load 
challenges, marking a notable research innovation.

2. The VSSFF algorithm dynamically adjusts step size, 
enhancing the training efficiency of the Bidirec-
tional LSTM by optimizing its weights, leading to 
an improved model with predictive accuracy and 
minimized mean square error (MSE) in the network 
output.

3. VSSFF further optimizes the Bidirectional LSTM by 
determining the optimal number of hidden neu-
rons, utilizing initial random values and iterative 
refinement through the Adam optimizer. The inte-
gration of VSSFF with the Bidirectional LSTM forms 
a comprehensive strategy (HVSSFFLSTM).

This article follows a structured approach, begin-
ning with a review of relevant literature in Section 2, 
followed by a comprehensive explanation of the meth-
odologies in Section 3. Section 4 provides an analysis of 
the experiments conducted. Key findings are discussed 
in this section as well. Finally, Section 5 concludes the 
paper by discussing future avenues of research.

2. LITERATURE SURVEY

In Hazra et al. [15], an artificial neural network and 
a DT model are employed to scrutinize early-stage 
breast cancer characteristics, distinguishing between 
malignancy and benign nature. Another investigation 
by Naji et al. [16] analyses the BCWD dataset using five 
ML algorithms, providing valuable insights into their 
performance. A comprehensive evaluation of LSTM 
for breast cancer detection is conducted in a broader 

context by Behera et al. [17], providing insights into its 
capabilities. Mammographic image analysis and classi-
fication into normal, benign, and malignant classes are 
explored using CNN and Bidirectional LSTM architec-
tures. According to Xia et al. [18] Innovative ensemble 
architectures, like the MTW CNN-BLSTM ensemble, 
aim to improve breast cancer prediction. In data min-
ing methodologies, a statistical approach preprocesses 
data followed by a unique PSO framework for improved 
accuracy, sensitivity, and specificity. Multi-objective 
feature selection strategies incorporating ACO and PSO 
are developed for breast cancer diagnosis by Saturi et 
al. [19], enhancing detection probability by selecting 
relevant features. Additionally, a model named BPBRW 
with HKH-ABO mechanism is proposed for early-stage 
breast cancer diagnosis using breast magnetic imaging 
resonance data by Dewangan et al. [20].

The manuscript highlights a significant gap in breast 
cancer prediction research: 

1. The absence of comprehensive comparative analy-
ses among various ML and DL techniques.

2. Moreover, challenges in model interpretabil-
ity, scalability, and generalizability remain unad-
dressed, indicating the need for further explora-
tion.

3. However, there is a need for further exploration 
and development of ensemble techniques to en-
hance model accuracy and robustness.

4. Integrating innovative ensemble architectures, 
such as particle swarm optimization (PSO) and ant 
colony optimization (ACO), alongside emerging 
technologies like MRI data analysis, presents prom-
ising avenues for enhancing early-stage breast 
cancer diagnosis. 

5. Therefore, future research efforts should prioritize 
rigorous comparative evaluations and innovative 
methodological advancements to bridge these criti-
cal gaps in breast cancer prediction and diagnosis.

3. METHODOLOGIES ADOPTED

In this work, simple LSTM and its variants such as; vanilla 
LSTM, stacked LSTM, and Bi-directional LSTM networks 
used. Along with this, the FF algorithm [14] is also used 
to optimize the positions based on fireflies’ attractiveness, 
with intensity decreasing with the distance. Equation (1) 
guides the fireflies towards brighter positions, integrating 
attractiveness, distance, and randomness.

(1)

3.1. VARIABLE STEP SIzE FIREFLY ALGORITHM 
 (VSSFF)

The VSSFF [11] algorithm is an enhanced version of 
the FF, designed to overcome its limitations and improve 
convergence rates. It emphasizes a balance between 
global exploration and local exploitation to maximize 
benefits. In FF, a constant step size hampers effective 
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searching, necessitating dynamic adjustment for opti-
mal exploration-convergence equilibrium. Initial larger 
step sizes are needed for balanced identification and de-
velopment in the early stages, gradually decreasing over 
iterations to maintain equilibrium. The choice between 
large or small step sizes depends on the optimization tar-
get's definition space. In [10] to sustain equilibrium be-
tween identification and development capabilities, the 
initial step size (α) should be relatively larger, gradually 
decreasing over iterations. In [12] the choice between a 
large or small search step size is contingent on the op-
timization target's definition space; a high-dimensional 
space requires a larger search step size, while a lower-
dimensional space benefits from a smaller search step 
size, optimizing the algorithm's ability to address diverse 
optimization challenges as stated in Equation (2). Here, 
the number of existing iterations max generation = 
maxmber of iterations. The VSSFF operational steps are 
stated in Algorithm 1.

(2)

Algorithm 1. VSSFF operational steps [11]

Step 1:  Initialize each firefly randomly.
Step 2:  Evaluate the fitness function value for the 

 initialized population.
Step-3: Assess the light intensity.
Step 4: Determine the light absorption coefficient γ.
Step 5:  Evaluate the non-constant step size α using 

 Equation (2).
Step 6:  Update the position of a specific firefly 

 towards another attractive firefly based on 
 Equation (1).

Step 7:  Calculate the latest solution and update the 
 light intensity.

Step 8:  Modify the locations of fireflies based on 
  their rank to obtain the current optimal 
 solution.

Step-9:  End if termination conditions are met and 
  select the optimal solution; otherwise,  
 return to Step 2.

3.2. PROPOSED BIDIRECTIONAL LSTM 
 NETwORk wITH VSSFF (HVSSFFLSTM) 
 FOR CLASSIFICATION 

A novel hybrid approach, HVSSFFLSTM, integrates Bi-
directional LSTM with VSSFF to enhance breast cancer 
classification accuracy. VSSFF collaborates with Bidirec-
tional LSTM to optimize architecture and hyperparame-
ters for this purpose. Bidirectional LSTM captures tempo-
ral dependencies, while VSSFF explores hyperparameter 
space for crucial configurations. The potential of this hy-
brid technique can be further realized through meticu-
lous parameter tuning and rigorous model validation 
of Bidirectional LSTM. Prudent adjustment and robust 
validation promise enhanced performance and reliabil-

ity of HVSSFFLSTM, contributing significantly to accurate 
breast cancer classification. In this framework, VSSFF 
optimizes Bidirectional LSTM parameters, particularly 
focusing on weight optimization. The VSSFF algorithm 
systematically assesses the ideal number of hidden neu-
rons within each hidden layer. Initial random values are 
assigned to the primary weights of the network, and 
an Adam optimizer with maximum epoch=100, batch 
size=512, initial learning rate=0.001, grounded in gra-
dient descent principles, is utilized to iteratively refine 
these network weights. Subsequently, the model under-
goes comprehensive testing to gauge its performance 
following the adjustments made by the VSSFF algorithm. 
This approach not only underscores the pivotal role of 
weight optimization in fine-tuning the predictive ca-
pabilities of the Bidirectional LSTM but also highlights 
the significance of determining the optimal number of 
hidden neurons to elevate overall model efficacy. The in-
tegration of the VSSFF algorithm with the Bidirectional 
LSTM reflects a holistic strategy aimed at achieving op-
timal predictive accuracy in the context of breast cancer 
data classification. The workflow of the manuscript is 
presented in Fig.1. A concise mathematical representa-
tion of the hybrid model VSSFF is presented below as 
Equation (3), where let θ denote the set of parameters 
to be optimized, J(θ) represents the objective function 
related to breast cancer classification, and the VSSFF op-
timization process is denoted as by Equation (3).

(3)

Let, w represents the weights of the hidden layers in 
Bidirectional LSTM. The model is denoted as Bidirec-
tional LSTM (w). The optimized parameters θ* from the 
VSSFF algorithm are used to fine-tune the weights of 
the Bidirectional LSTM model. The VSSFFLSTM model 
is represented as (θ*,w*), where w* are the adjusted 
weights. The optimization process involves iteratively 
updating the parameters θ using the VSSFF algorithm 
as stated in Algorithm 2.

Algorithm 2. The proposed HVSSFFLSTM algorithm

Step 1: Let D represent the breast cancer dataset,  
 with corresponding class labels (benign: y = 0, 
 malignant: y = 1) and split D into training 
 (DTrain ) and testing (DTest) sets.

Step 2:  Initialize a population P of fireflies with 
 random hyperparameters.

Step 3:  Define the Bidirectional LSTM model 
 architecture, specifying parameters such as 
 the number of LSTM layers, units, and 
 dropout rates.

Step 4:  Train the Bidirectional LSTM model on 
 DTrain to obtain initial weights winitial 
 Evaluate the model's performance on the 
 DTrain and DTest using binary cross-entropy.

Step 5:  Develop the VSSFF approach to optimize 
 the hyperparameters of the Bidirectional 
 LSTM model.
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Step 6:  Define the hyperparameter space Θ, 
 including the number of LSTM layers, units, 
 dropout rates, etc.

Step 7:  Create a firefly population F, where each 
  firefly fi is represented by a set of 
 hyperparameters θi∈Θ.

Step 8:  Define the fitness function J(θi, DTrain) based 
 on the training dataset.

Step 9: Implement the variable step size method, 
 adjusting the step size based on firefly  
 brightness.

Step 10: Select the hyperparameters θ* from the 
 firefly population F based on the highest 
 brightness, optimizing the Bidirectional 
 LSTM model.

Step 11: Train the Bidirectional LSTM model using 
 the optimized hyperparameters θ*, 
 resulting in final weights wfinal. Evaluate the 
  final model's performance on the DTest.

Fig. 1. Schematic layout of the proposed strategy 
for breast cancer prediction

3.3. DATASET AND MISSING VALUE 
 IMPUTATION

The manuscript utilizes the WDBC dataset from the 
UCI ML repository [13], comprising 569 records with 
a distribution of 62.7% benign and 37.3% malignant 
breast cancer cases. Each record includes an ID number, 
diagnostic label (B for benign, M for malignant), and 30 
real-valued input features representing significant cell 
nuclei characteristics such as radius, texture, perimeter, 
etc. Missing values in the dataset are imputed with 0 or 
1 based on their respective values <50 or >=50. 80% 
of the dataset is used for training the model, while the 
remaining 20% is reserved for evaluating the model's 
performance.

4. EXPERIMENTAL ANALYSIS

In this section, we conduct comprehensive experi-
mental analyses to assess the performance of our pro-
posed model. We compare our results with various 
models using diverse performance metrics to gain in-
sights into the effectiveness and superiority of our ap-
proach. The LSTM classifier is trained with 100 epochs, 

a batch size 512, and the Adam optimizer for optimi-
zation. The experiments were executed on a system 
equipped with a 1.80 GHz Intel(R) Core (TM) i5-8265U 
processor and 8.00 GB RAM, running on the Windows 
10 operating system. All ML approaches discussed in 
this study were implemented using the Scikit-learn li-
brary and the Python programming language.

4.1. PARAMETERS USED

The training parameters used in this manuscript are 
outlined in Table 1, and Table 2 provides the parameter 
settings for the discussed hybrid models.

Table 1. Training Parameters

Optimizer Maximum 
Epoch Batch Size Initial 

Learning Rate

Adam 100 512 0.001

Table 2. Parameter setting for hybrid models

Hybrid Models Population 
Size Iteration Upper 

Bound
Lower 
Bound

HFFLSTM 50 200 5 -5

HVSSFFLSTM 50 200 5 -5

4.2. RESULTS ANALYSIS

This research follows a structured experimental ap-
proach consisting of two phases. Initially, four vari-
ants of LSTM networks are thoroughly explored, with 
Bi-directional LSTM showing superior performance 
across various evaluation metrics. The Bi-directional 
LSTM likely achieved the highest values for all metrics 
due to its ability to capture bidirectional contextual 
information, generate comprehensive feature repre-
sentations, reduce information loss, effectively handle 
temporal dependencies, and maintain robustness to 
input variability, which collectively contribute to its su-
perior performance compared to other LSTM variants. 
Encouraged by these results, the research progresses 
to the second phase, focusing on optimizing Bidirec-
tional LSTM with FF and VSSFF algorithms. This transi-
tion marks a strategic progression, aiming to uncover 
and capitalize on the most effective configurations for 
robust performance in breast cancer prediction.

The initial experimentation phase, detailed in Table 
3, meticulously analyses various LSTM model variants 
across training and testing datasets. Results highlight 
the Bidirectional LSTM's distinct superiority, demon-
strating exceptional performance in both phases. In 
training, it achieves 96.70% accuracy, 97.90% precision, 
96.89% recall, 97.40% F1-Score, and 97.79% specificity. 
In testing, the Bidirectional LSTM outperforms alterna-
tive variants with 96.49% accuracy, 97.18% precision, 
97.18% recall, 97.18% F1-Score, and 97.18% specificity.
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Table 3. Performance of different variants of LSTM

Execution 
Stages

Performance 
Metrics  
(in %)

Simple 
LSTM

Vanilla 
LSTM

Stacked 
LSTM

Bi-
directional 

LSTM

Training

Accuracy 95.16 96.04 96.48 96.70

Precision 94.59 98.22 97.56 97.90

Recall 97.90 95.51 96.89 96.89

F1-Score 96.21 96.58 97.23 97.40

Specificity 94.78 94.97 95.86 97.79

Testing

Accuracy 95.61 94.73 92.10 96.49

Precision 96.96 95.52 95.31 97.18

Recall 95.52 95.52 91.04 97.18

F1-Score 96.24 95.52 93.12 97.18

Specificity 95.88 95.93 95.11 97.18

Table 4. Performance of HFFLSTM and HVSSFFLSTM 
models

Execution 
Stages

Performance 
Metrics (in %) HFFLSTM HVSSFFLSTM

Training

Accuracy 99.34 99.78

Precision 98.96 99.56

Recall 1.00 1.00

F1-Score 99.47 99.82

Specificity 98.85 99.81

Testing

Accuracy 96.49 97.37

Precision 98.55 97.22

Recall 95.77 98.59

F1-Score 97.14 97.9

Specificity 97.12 99.15

The empirical findings strongly support the Bidirec-
tional LSTM as the most promising variant, leading 
to its strategic selection for optimization. The VSSFF 
algorithm is then employed to enhance its predictive 
capabilities further. The optimization aims to fine-tune 
and improve key performance metrics like accuracy, 
precision, recall, and F1-Score in breast cancer predic-
tion, contributing to more reliable outcomes in medi-
cal diagnostics. The exploration extends to hybridized 
forms of Bidirectional LSTM, including HFFLSTM and 
HVSSFFLSTM. In HFFLSTM, the FF algorithm integrates 
seamlessly with Bi-directional LSTM, optimizing hyper-
parameters to enhance pattern recognition capabilities 
by fine-tuning parameters such as layer numbers, units, 
and dropout rates. Conversely, HVSSFFLSTM combines 
the VSSFF algorithm with Bi-directional LSTM, intro-
ducing dynamic step-size adjustment for efficient hy-
perparameter exploration. The FF algorithm optimizes 
hyperparameters, while VSSFF introduces dynamic 
step-size adjustment, facilitating more efficient explo-
ration of the hyperparameter space. The experimental 
evaluations include accuracy plot analyses and com-
prehensive performance metrics. These assessments 
highlight the superior predictive capabilities of HVSSF-
FLSTM, showcasing its potential to advance breast can-
cer prediction models compared to HFFLSTM and oth-
er existing approaches. Subsequent sections provide a 

detailed exploration of this experimentation phase, of-
fering insights into the optimization process intricacies 
and innovative strides toward enhancing breast cancer 
prediction models.

Within Table 4, we meticulously conduct a compara-
tive analysis, delving into the nuanced distinctions 
between HFFLSTM and HVSSFFLSTM. The outcomes 
of this detailed examination underscore the consis-
tent superiority of HVSSFFLSTM over HFFLSTM dur-
ing the training phase, boasting remarkable metrics 
such as accuracy (99.78%), precision (99.56%), recall 
(100%), F1-Sscore (99.82%) and specificity (99.81%). 
In the testing phase, HVSSFFLSTM continues to excel, 
demonstrating impressive performance in accuracy 
(97.37%), recall (98.59%), F1-Sscore (97.9%), and speci-
ficity (99.15%). Albeit with a marginally lower precision 
(97.22%) when juxtaposed with the HFFLSTM model, 
which registers at (98.55%). This minor discrepancy is 
deemed manageable, affirming the overall robustness 
of HVSSFFLSTM.

Fig. 2. illustrates confusion matrices for Bidirectional 
LSTM, HFFLSTM, and VSSFFLSTM models in breast can-
cer prediction across training and testing phases. VSSF-
FLSTM stands out with significantly elevated accuracy 
compared to Bidirectional LSTM and HFFLSTM, indicat-
ing its superior performance. Subsequent meticulous 
assessment of classification performance, considering 

Fig. 2. Confusion matrix for training and 
testing with Bidirectional LSTM, HFFLSTM, and 

HVSSFFLSTM
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metrics like accuracy, precision, recall, and F1-Score, 
unveils the nuanced advantages of HVSSFFLSTM over 
its counterparts. This analysis showcases HVSSFFLSTM's 
ability to deliver accurate and reliable predictions in 
breast cancer prediction. Visualization of confusion ma-
trices and detailed performance analysis not only quan-
titatively evaluates models but also highlights HVSSFFL-
STM's strengths and capabilities. This empirical evidence 
substantiates the efficacy and potential superiority of 
the proposed model, emphasizing its significance in ad-
vancing breast cancer prediction methodologies.

Fig. 3. illustrates the graphical ROC analysis for Bi-
directional LSTM, HFFLSTM, and VSSFFLSTM in breast 
cancer prediction, showcasing the true positive rate 
(TPR) versus false positive rate (FPR) for both training 
and testing datasets. Specifically, the ROC values for 
Bidirectional LSTM are 99% for training and 99.67% 
for testing, while HFFLSTM achieves 99.75% for train-
ing and 99.54% for testing. Notably, the ROC curve val-
ues for the proposed HVSSFFLSTM algorithm stand at 
100% for training and 99.57% for testing. These results 
highlight the exceptional discriminative performance 
of the HVSSFFLSTM model in effectively distinguishing 
between TP and FP during breast cancer prediction.

Fig. 4. presents graphical representations showing the 
dynamic fluctuations in accuracy across epochs during 
both training and testing phases for Bidirectional LSTM, 
HFFLSTM, and HVSSFFLSTM models in breast cancer pre-
diction. These visuals offer insights into the evolution of 
accuracy for each model throughout the training and 
testing processes, aiding in understanding the learning 

Fig. 3. ROC curve results for training and 
testing with Bidirectional LSTM, HFFLSTM, and 

HVSSFFLSTM

trajectories and performance trends. The fluctuations in 
accuracy over epochs enable observation of how each 
model adapts and refines its predictive capabilities with 
iterative learning, which is crucial for evaluating stability, 
convergence, and overall learning efficiency. Fig. 4. serves 
as a visual narrative, providing a comprehensive overview 
of the learning dynamics exhibited by the models during 
breast cancer prediction, enhancing understanding of 
temporal aspects of model performance, and identifying 
key epochs influencing predictive power.

Fig. 4. Comparison of accuracy achieved for 
training and testing with Bidirectional LSTM, 

HFFLSTM, and HVSSFFLSTM

The efficacy of the VSSFF algorithm lies in its adap-
tive step size, dynamically balancing exploration and 
exploitation. This addresses the limitations of a fixed 
step size, preventing suboptimal results. The algorithm 
enables more effective navigation through intricate op-
timization landscapes and contributes to faster conver-
gence toward optimal solutions by refining its explora-
tion strategy through iterations. Its robustness across 
various optimization problems provides flexibility to 
adapt exploration strategies based on landscape char-
acteristics. These features render the VSSFF algorithm 
more effective than the FF algorithm. Consequently, 
this research proposes a more robust model HVSSFFL-
STM for breast cancer data classification, leveraging the 
enhanced capabilities of the VSSFF algorithm.

4.3 STATISTICAL VALIDATION AND 
 EXECUTION TIME COMPARISON 

Table 5 displays the McNemar test [21] results com-
paring HFFLSTM vs. Bidirectional LSTM and HVSSF-
FLSTM vs. HFFLSTM models in training and testing 
phases, revealing significant performance differences. 
HVSSFFLSTM demonstrates the shortest training and 
testing times, outperforming other models. 
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Table 5. McNemar’s test results

Execution 
Stages

Tests and 
p-values

HFFLSTM vs. 
Bidirectional 

LSTM

HVSSFFLSTM 
vs. HFFLSTM

Training

McNemar Test 
Statistic 5.21 7.78 

p-value 0.022 0.005

Testing

McNemar Test 
Statistic 5.68 4.89

p-value 0.0171 0.026

Fig. 5 compares execution times (in milliseconds) for 
Bidirectional LSTM, HFFLSTM, and HVSSFFLSTM models. 
HVSSFFLSTM demonstrates the shortest training time at 
2.87 ms, followed by HFFLSTM at 3.46 ms and Bidirec-
tional LSTM at 4 ms. In testing, HVSSFFLSTM also shows 
the fastest execution time at 2.11 ms, outperforming HF-
FLSTM (3.44 ms) and Bidirectional LSTM (3.55 ms). These 
results underscore HVSSFFLSTM's superior efficiency in 
both the training and testing phases.

Fig. 5. The recorded performance in terms of 
execution time

4.4. PRINCIPAL INSIGHTS AND DISCUSSIONS

This section provides a detailed analysis of LSTM net-
works for breast cancer prediction in two phases. Four 
LSTM variants are initially explored, with Bidirectional 
LSTM identified as the most promising. Bidirectional 
LSTM is then optimized using FF and VSSFF algorithms 
to enhance predictive capabilities, leading to hybrid 
forms like HFFLSTM and HVSSFFLSTM. Experimental 
evaluations highlight HVSSFFLSTM's superior predic-
tive capabilities, confirmed by accuracy plots, ROC 
analyses, and comprehensive metrics. Comparative 
analysis consistently favors HVSSFFLSTM, with statisti-
cal validation confirming its significance. HVSSFFLSTM 
also demonstrates computational efficiency, position-
ing it as a promising candidate for resource optimiza-
tion. These findings contribute to a deeper understand-
ing of model efficacy and computational efficiency in 
breast cancer prediction.

The proposed classification models consistently exhib-
it robust performance across training and testing phas-

es, with HVSSFFLSTM showing superior performance. 
During training, HVSSFFLSTM achieves exceptional 
results with 99.78% accuracy, 99.56% precision, 100% 
recall, 99.82% F1 Score, and 99.81% specificity. Testing 
also demonstrates strong performance with 99.37% ac-
curacy, 97.22% precision, 98.59% F1 Score, and 99.15% 
specificity. Statistical validation and execution time 
performance solidify HVSSFFLSTM as a noteworthy ad-
vancement in breast cancer detection research, show-
casing its precision and reliability in classification.

5. CONCLUSION AND FUTURE SCOPE

This study thoroughly examines four LSTM algorithms 
and two hybrid models for breast cancer classification. 
Results consistently show the superiority of the pro-
posed hybrid model. HVSSFFLSTM, HFFLSTM, and Bidi-
rectional LSTM are ranked as the top three models. The 
study suggests avenues for future exploration, including 
additional hybrid models and diverse datasets. The pro-
posed predictive methods demonstrate versatility, with 
potential applications in various medical conditions be-
yond breast cancer. This research sets the stage for con-
tinued innovation in medical predictive modelling.
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