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AIJstract: The specific heat at constant pressure is calculated on the basis of amodel which includes the following assumptions: 1) the interaction existsonly between the neighbour particles and depends only on their distance; 2) for small distances from the equilibrium position, the interaction is approximately harmonic; 3) the mean value of the particle position does not coincide with its equilibrium position; 4) the change of the particle arrangementis allowed. The specific heat is then given by the following expression: 

( 1 d2 ln r( a) ) Cp = Nk - - a + a2 
----2 da2 

, 

aT = 480. 

The computed values are compared with the experimental results for tungsten. Near the melting point the measured values are greater than thecomputed ones. This indicates that some other effects exist which are notincluded in this simple model. 

1. I ntroduction

Several -important characteristics of the crystal lattice can be ex,plained by 

the unharmonicity of forces acting between the lattice particles, as, for 

example, the thermal expansion, the change of specific heat with pressure 

and temperature, heat conductivity, etc. For this reason the investigation of 

the influence of unharmonicity within the classical temperature range is 

important for better understanding of properties of crystal lattice. Never

theless, in the analysis of these problems in the case of three-dimensional 

lattice, considerable difficulties arise. Therefore, one-dimensional lattices are 

investigated for wich the working models could be more precisely defined 

with the effect that the mathematical treatment becomes, at least in princi

ple, less di.fficult. It is obvious that the ex.tension of these results to the three

dimensional lattice, should be undertaken with certain precaution, because of 

the inherent limitations of any one-dimensional model. But even in the case 

of an one-dimensional model, there are difficulties due to the fact that the 
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analysis is mainly numerical and the mathematical treatment is rather tedious. 
There are certain models of one-dimensional lattice, where only the inter

action between the neighbour particles of the lattice is considered'· 2> which 

are illustrative enough mainly because the results are given in analytical 

form. This is also the pur,pose of the presen t paper. 

2. One-dimensional model

One-dimensional lattice wi.th N + 1 particles of equal mass will be consi

dered, in which the interaction exists only between the neighbour particles 

depending only on their relative distance. Additionally, forces of constant 
intensity P > O are supposed (this corresponds to the pressure in a three

dimensional case), acting in opposite directions on the last two particles. 

If x = { x0, x1 , • • •  , xN } represents the set of all coordinates of the particles 

relative to the coordinate system fixed at an arbitrary point on the line on 

which ali the .particles are lying, the total energy of the system is 

N-1 

+ � [V (X.+1 - Xn) - P (X.+1 - x.)J ,

i=O 

Applying the transformation 

A_[ 
1 1 1 

l
N+l N + 1 N + 1 N + 1 

-1 1 o o 

- i .
o -1 1 o 

. . . .

o o o 1 

new coordinates z = Ax can be introduced. From the transformation it fol
lows that 

Zo 
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is the coordinate of the centre of mass, while z, = Xi+i - Xi (i = 1, 2 ... , N) 
are the relative coordinates. Since det A :j:.. O, the inverse transformation A -i 

is possible, so that x = A-1z. If the last equation is differentiated with 
respect to time and the result jntroduced into the e,cpression for kinetic 
energy, then 

1 . . 1 . . 1 

T = -m (x, x) = -m (A'-1 A-1 z, z) = -m (B z, z) ,
2 2 2 

where B = A'- 1 A- 1 (A' is the transposed matrix). From the last equation 
new impulses may be found: 

where bii are the matrix elements of the symmetdc matrix B. The last 
equation may be written in the following way: 

p = mB z, 

where p = { Po, p1, • • •  , PN }· The total energy may be expressed as 

+ 2: [VH = (p,AA' p) (z,) - Pz,] • 
2m 

f=l 

Since AA' = -- + C, where 
N + 1 

2 -1 o o 

-1 2 -1 o 

C= o -1 2 o 

o o o 2 

taking the origin of the CS to be in the centre of mass, the total energy may 
be expressed as 

N N 

H -
1
-� cop ,pJ + � [V (Zi) - Pzi],

2mLJ LJ 
•. J=l •=l 

where ciJ are the matrix elements of the symmetric matrix C. The statistical 
integral of the system is 

N 
1 
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� N N J -- � c .. p. Pj f -� � f(Vz;)-Pz;J Z(�)= e 2m ;,i-=.1 '1 ' dP1····dPNt i=l dz1„ dzN, 
where O = l/kT, and the -integration is performed over the whole phase space. Since C represents the nonnegative symmetric matrix apd det C = N + l, it follows that the proper values li are real positive numbers in 
which case II i, = N + 1. With regard that there exists an orthogonal trans, 

i=l formation T which diagonalizes the matrix C, we may use new v�u·i«:t.bles 
P = Tp. Then the integral over the impuls space becomes 

� 
N N J _ - L J.... p2. t (2:rm)2 

e 2m i= I , , dP1 .. . dP N = Jf N -FT 7 ,

and the statistical integral is 
z (") 

N +oo N 1 ( 2nm )2 [ 
I 

- " ( V (z) - PzJ J ,/"-- e dz , 
r N+ 1 � 

-oo

Suppose the potential function has the foliowing form: 
V (z) = Vo [ea(z-d) - a (z-d) - 1] , 

where a, V
0 

and d are positive constants (d is the distance between the neighbour equilibrium positions). F.or z = d .this .function has a minimum value. When developed in seriies around this point, the harmonic approxi ... mation is obtained from its first term. The function increases asymmetrically around the point z = d, indicating that the mean value of the particle position does not coincide with the equilibrium position. If the function V(z) is intrnduced in the statistical integ,ral, one obtains 

1 ( 2:rm V
0 
): [ el3 (t + �) r(«)]

N 

Z�= ---
t 

• V N + 1 a2 13 a + /2 
aV

0 

(I) 

where � = O V
0 

and et = � (1 + --). From Eq. ( 1) it is posisble to 
p 

calculate the specific heat at constant pressure 

N 

- -- - - -
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Cp 1 d2 ln r(a) 
- = - - a + a2 = F(a) ,
Nk 2 da.2 

p
Vo(l +-)

aVo 
a=-----

kT 

d2 ln r(a) 
a

2 
-----� 

da2 

1 + a2 � __ 1 __
L.J (k + a)2 

k=l 

it follows that lim F(a) = 3/2, whHe from 
a�o 

d2 ln r(a) 
a2 ----

da2 1 1
Bm 1 

a + - + (-om-1 -- + o(--) 
2 a2m-1 a2K+l 

ffl=l 

15 

(2) 

where B
m 

are Bernoulli numbers, it comes out lim F(a)
a�+ oo 

1. Between these

values, the function F(a) decreases monotonously with increasing a, i. e. 
the specific heat increases monotonously with ·the temperature, Table 1. 

Table 1 

a o 0,5 1 I 2 4 6 8 10 +oo

Cp/Nk 1,500 1,234 1,145 I 1,080 1,041 1,028 1,020 1,015 1,000 

lf in Eq. (3) the terms including a-3 are retained„ Eq. (2) has approximately 
the. following form: 

Cp = l + _
1 ___ 1_ � 

1 + _: kT _ � (_!!_) 3

1 ( 4) 
Nk 6 ct 30 a3 6 C 30 C 

p 

where C = V0 (1 + --). As it can be seen, no term ,in Eq. (4) is propor
aV

0 

tional to the square of the temperature. 

3. Comparison with the experiment

lt should be noted that so far no approximations have been made. From 
Eq. (1) we can easily evaluate the free energy and calculate the main ,thermo-

00 

K 
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dynamic properties of the linear chain such as compressibility, thermal 
expansion, electrical resistivity, etc. Before starting any systematic study 
based on this model ,it is ,important to establish whether this model can 
account for any of the observed deviations from classical harmonic behavior. 
In order to compare the model with the ex,periment, we have chosen the 
specific heat at constant pressure of tungsten. The second row of the Table 
2 gives the ex.perimental values of the specifilc heat of tungsten3> (in calories 
per mol and per degree). The third row gives the results based on our model 
and the fourth row the results obtained on the basis of the Morse potential 
in the approximation for condensed state 1 >. 

Table 2 

T I 400 I 600 I 800 I 1200 I 1600 I 2400 I 2600 I 3600 

Cp (exp) 6,70 6,87 6,92 7,33 7,68 8,30 9,00 14,70 

Cp (th) 6,70 6,98 7,20 7,53 7,76 8,05 - -

Cp (Morse) 6,70 7,08 7,44 8,19 8,95 10,44 - -

Since the experimental errors may amount up to 3%, the computed values 
are in very good agreement with the experimental ones in the temperature 
interval from 600 °K to 2400 °K. At 2600 °K the ex,perimental value of the 
specific heat reaches already the maxsimum value obtained from Eq. (2).

Further increase of the speci.fic heat with temperature indicates that some 
other effects exist which in this simple model were not taken into account. 
Some of the recent measurements3> indicate that the formation of the lacu
nae, the concentration of which in the vioinity of the point of fusion of 
tungsten amounts up to 2,42%, is the main reason for this discrepancy. 

I t should be mentioned here that the exiperimental value of the specif.ic 
heat at 400 °K was used for the determiination of the only undetermined para
meter in Eq. (2) (as well as in the cal�ulation based on the Morse potential, 
where, 1n addition, the depth of the ,potential bas 1been taken to be 203 Cal.4l. 
In this way the relation between the parameter a and the temperature is 
found to be 

aT = 480. 

The essential points of our model are its mathematical simplicity and its 
capability to reproduce some experimental results. These facts determined 
the choice of the potential function. In order to establish the full vaLidity of 
the model it will be necessary to carry out the calculations of the thermo
dynamic properties other than the s.pecific heat and far some elements other 
than tungsten. It is our feeling that the model could explain some other 
deviations from the classical harmonic behavior of the crystal lattice. 
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UTICAJ NEHARMONIJSKIH EFEKATA NA SPECIFICNU TOPLOTU 

V. ROGLić

Prirodno-matematički fakultet, Beograd 

Sa d r ž a j

U radu je izvršeno ,izračunavanje specifične toplote ,pri konstantnom pri

tisku uz pomoć modela zasnovanog na ovim pretpostavkama: 1) i,nterakcija 

postoji samo između susednih čestica i zavisi samo o njihovom međusobnom 

rastojanju; 2) za mala rastojanja čestica od položaja ravnoteže, .interakcija 

je približno harmonijska; 3) srednje vrednosti položaja čestica ne poklapaju 

se s njihovim položajima ravnoteže; 4) dozvoljena je izmena poretka čestica. 

Pored spomenutih osobina, interakcija mora biti tako odabrana, da se rezul

tati mogu dobiti u zatvorenom analitičkom obliku. Posmatrani model je 

jednodimenzion i njegovo :upoređenje s eksperimentalnim rezultatima izvr

šeno je uz dodatnu pretpostavku, da se -kretanje svake čestice u tr.i dimen

zije može razložiti na tri međusobno nezavisne komponente, ,pri čemu se 

svaka komponenta kreće u potencijalnom ,polju definisanim tim modelom. 

Izračunavanje statističkog integrala u si,stemu centra masa svodi se na 

integraciju po impulsnom delu prostora i na N integrala sa istim podintegral

nim funkcijama od samo jedne promenljive - relativne koordinate. Prvi 

integral se ortogonalnom transformacijom, koja uvek postoji, može svesti na 

Poissonov integral dok se druga integracija može svesti na integral, koji je 

već poznat u matematičkoj literaturi. 

Jedn. ( 1) daje rešenje statističkog integrala odakle se može izvesti jedn. (2) 

koja daje specifičnu toplotu pri konstantnom pritisku. Izračunate vrednosti 

. upoređene su s merenjima specifične toplote volframa pri konstantnom pri-
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tisku3> i modelom, koji se zasniva na Morzeovom potencijalu 1 l. Drugi red 

u Tablici 2 daje eksperimentalne rezultate, treći daje rezultate, koji se dobi

vaju na osnovu opisanog modela, dok poslednji red daje vrednosti izraču

nate po modelu, u čijoj osnovi stoji Morzeov potencijal. Kao što se iz tablice 

vidi, u intervalu između 600 °K i 2400 °K slaganje je dobro jer eksperimen

talni rezultati dozvoljavaju grešku do 3°/0• U blizini tačke topljenja volframa 

merene vrednosti su iznad izračunatih, što se objašnjava stvaranjem lakuna, 

koji efekt nije obuhvaćen modelom. 




