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Abstract: The specific heat at constant pressure is calculated on the basis of a
model which includes the following assumptions: 1) the interaction exists
only between the neighbour particles and depends only on their distance;
2) for small distances from the equilibrium position, the interaction is appro-
ximately harmonic; 3) the mean value of the particle position does not coin-
cide with its equilibrium position; 4) the change of the particle arrangement
is allowed. The specific heat is then given by the following expression:
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The computed values are compared with the experimental results for tung-
sten. Near the melting point the measured values are greater than the
computed ones. This indicates that some other eflects exist which are not
included in this simple model.
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1. Introduction

Several important characteristics of the crystal lattice can be explained by
the unharmonicity of forces acling between the lattice particles, as, for
example, the thermal expansion, the change of specific heat with pressure
and temperature, heal conductivity, etc. For this reason the investigation of
the influence of unharmonicity within the classical temperature range is
important for better understanding of properties of crystal lattice. Never-
theless, in the analysis of these problems in the case of three-dimensional
lattice, considerable difficulties arise. Therefore, one-dimensional lattices are
investigated for wich the working models could be more precisely defined
with the effect that the mathematical treatment becomes, at least in princi-
ple, less difficult. It is obvious that the extension of these results to the three-
dimensional lattice, should be undertaken with certain precaution, because of
the inherent limitations of any one-dimensional model. But even in the case
of an one-dimensional model, there are difficulties due to the fact that the
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analysis is mainly numerical and the mathematical treatment is rather tedious.
There are certain models of one-dimensional lattice, where only the inter-
action between the neighbour particles of the lattice is considered!: ? which
are illustrative enough mainly because the results are given in analytical
form. This is also the purpose of the present paper.

2. One-dimensional model

One-dimensional lattice with N 4+ 1 particles of equal mass will be consi-
dered, in which the interaction exists only between the neighbour particles
depending only on their relative distance. Additionally, forces of constant
intensity P > 0 are supposed (this corresponds to the pressure in a three-
dimensional case), acting in opposite directions on the last two particles.
If x = {x, x,,...,%y} represents the set of all coordinates of the particles
relative to the coordinate system fixed at an arbitrary point on the line on
which all the particles are lying, the total energy of the system is

) N N-1 . N
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Applying the transformation

(1 1 1 1)
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0 0 0 ... 1

new coordinates z = Ax can be introduced. From the transformation it fol-
lows that
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is the coordinate of the centre of mass, while zi = xinn—xi (i = 1,2..., N)
are the relative coordinates. Since det A # 0, the inverse transformation A™
is possible, so that x = A™'z. If the last equation is differentiated with
respect to time and the result introduced into the expression for kinetic
energy, then

1 .. 1 . 1 . .
T=—m(xx)=—m (A" 1A 1z,2) =—m (Bz2),
2 2 2

where B = A’"! A7' (A’ is the transposed matrix). From the last equation
new impulses may be found:

pi=——=m by 7,
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where b;; are the matrix elements of the symmetric matrix B. The last
equation may be written in the following way:

p = mB£ ,
where p = { p, p1,--..Px}. The total energy may be expressed as

N
1
H=— (pAAD) + E [V (z) — Pul.
2m
=1
Since AA’ = + C, where
N+1
2 —1 0 0
—1 2 —1 0
0 0 0 2

taking the origin of the CS to be in the centre of mass, the total energy may
be expressed as

1 N N
H = — E cipip; + E (V () — Pzl ,
2m

$, i=1 1=l

where ¢;; are the matrix elements of the symmetric matrix C. The statistical
integral of the system is
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where 0 = 1/kT, and the integration is performed over the whole phase

space. Since C represents the nonnegative symmetric matrix and det
C = N + 1, it follows that the proper values A; are real positive numbers in

N
which case T A, = N 4 1. With regard that there exists an orthogonal trans-

i=1
formation T which diagonalizes the matrix C, we may use new variables
P = Tp. Then the integral over the impuls space becomes

8 g . 9 L4
_— A, P2, m \ 2
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and the statistical integral is

1 2am [ —3[V(@)—Pz] 1"
_ am \2 — 7)— Pz
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Suppose the potential function has the following form:
V(z) = Vo [e*¢")) —a(z—d) —1],

where a, V, and d are positive constants (d is the distance between the
neighbour equilibrium positions). For z = d this function has a minimum
value. When developed in series around this point, the harmonic approxi-
mation is obtained from its first term. The function increases asymmetrically
around the point z = d, indicating that the mean value of the particle
position does not coincide with the equilibrium position. If the function
V(2) is introduced in the statistical integral, one obtains

N (l+ Pd) N
2 v
2= | (E™Ye VT Vo @ , m
yNFI\ @ gt
aV,

where §f = 8V, and a = 8 (1 + ). From Eq. (1) it is posisble to

calculate the specific heat at constant pressure
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it follows that lim F(a) = 3/2, while from
a—0
K
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where B,, are Bernoulli numbers, it comes out lim F(a) = 1. Between these
. a=—> + oo

values, the function F(a) decreases monotonously with increasing a, i. e.
the specific heat increases monotonously with the temperature, Table 1.

Table 1

a 0 0,5 1 2 4 6 8 10 + o0 ‘

|
Co/Nk 1,500 | 1,234 { 1,145 [ 1,080 | 1,041 | 1,028 | 1,020 | 1,015 1,000‘

If in Eq. (3) the terms including a™® are retained, Eq. (2) has approximately
the.following form:

c

=l+—— = + —_———

Nk 6a 30a? 6 C 30
P

Co 1 1 . 1 kT 1 kT \3
( ) ) (4)

where C =V, (1 +

). As it can be seen, no term in Eq. (4) is propor-
aV,

o

tional to the square of the temperature.

3. Comparison with the experiment

It should be noted that so far no approximations have been made. From
Eq. (1) we can easily evaluate the free energy and calculate the main thermo-
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dynamic properties of the linear chain such as compressibility, thermal
expansion, electrical resistivity, etc. Before starting any systematic study
based on this model it is important to establish whether this model can
account for any of the observed deviations from classical harmonic behavior.
In order to compare the model with the experiment, we have chosen the
specific heat at constant pressure of tungsten. The second row of the Table
2 gives the experimental values of the specific heat of tungsten® (in calories
per mol and per degree). The third row gives the results based on our model
and the fourth row the results obtained on the basis of the Morse potential
in the approximation for condensed state,

Table 2
T 400 600 800 1200 | 1600 | 2400 | 2600 | 3600
Cp (exp) 6,70 6,87 6,92 7,33 7,68 8,30 9,00 | 14,70
Cp (th) 6,70 6,98 7,20 7,53 1,76 8,05 - -
Cp (Morse) 6,70 7,08 7,44 8,19 895 | 10,44 —_ -

Since the experimental errors may amount up to 3%, the computed values
are in very good agreement with the experimental ones in the temperature
interval from 600 "K to 2400 °K. At 2600 °K the experimental value of the
specific heat reaches already the maximum value obtained from Eq. (2).
Further increase of the specific heat with temperature indicates that some
other effects exist which in this simple model were not taken into account.
Some of the recent measurements® indicate that the formation of the lacu-
nae, the concentration of which in the vicinity of the point of fusion of
tungsten amounts up to 2,429, is the main reason for this discrepancy.

It should be mentioned here that the experimental value of the specific
heat at 400 °K was used for the determination of the only undetermined para-
meter in Eq. (2) (as well as in the calculation based on the Morse potential,
where, in addition, the depth of the potential has been taken to be 203 Cal.h.

In this way the relation between the parameter a and the temperature is
found to be
aT = 480.

The essential points of our model are its mathematical simplicity and its
capability to reproduce some experimental results. These facts determined
the choice of the potential function. In order to establish the full validity of
the model it will be necessary to carry out the calculations of thre thermo-
dynamic properties other than the specific heat and for some elements other
than tungsten. It is our feeling that the model could explain some other
deviations from the classical harmonic behavior of the crystal lattice.
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UTICAJ NEHARMONIJSKIH EFEKATA NA SPECIFICNU TOPLOTU

V. ROGLIC

Prirodno-matematicki fakultet, Beograd
Sadrzaj

U radu je izvr$eno izracunavanje specificne toplote pri konstantnom pri-
tisku uz pomo¢ modela zasnovanog na ovim pretpostavkama: 1) interakcija
postoji samo izmedu susednih éestica i zavisi samo o njihovom medusobnom
rastojanju; 2) za mala rastojanja Cestica od poloZaja ravnoteZe, interakcija
je priblizno harmonijska; 3) srednje vrednosti poloZaja ¢estica ne poklapaju
se s njihovim poloZajima ravnoteze; 4) dozvoijena je izmena poretka cestica.
Pored spomenutih osobina, interakcija mora biti tako odabrana, da se rezul-
tati mogu dobiti u zatvorenom analitickom obliku. Posmatrani model je
jednodimenzion i njegovo uporedenje s eksperimentalnim rezultatima izvr-
$eno je uz dodatnu pretpostavku, da se kretanje svake Cestice u tri dimen-
zije moze razloziti na tri medusobno nezavisne komponente, pri ¢emu se
svaka komponenta krece u potencijalnom polju definisanim tim modelom.
Izracunavanje statistickog integrala u sistemu centra masa svodi se na
integraciju po impulsnom delu prostora i na N integrala sa istim podintegral-
nim funkcijama od samo jedne promenljive — relativhe koordinate. Prvi
integral se ortogonalnom transformacijom, koja uvek postoji, moze svesti na
Poissonov integral dok se druga integracija moZe svesti na integral, koji je
ve¢ poznat u matematickoj literaturi.

Jedn. (1) daje resenje statisti¢kog integrala odakle se moZe izvesti jedn. (2)
koja daje specifi¢nu toplotu pri konstantnom pritisku. Izracunate vrednosti
-uporedene su s merenjima specificne toplote volframa pri konstantnom pri-
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tisku® i modelom, koji se zasniva na Morzeovom potencijalu!. Drugi red
u Tablici 2 daje eksperimentalne rezultate, treci daje rezultate, koji se dobi-
vaju na osnovu opisanog modela, dok poslednji red daje vrednosti izradu-
nate po modelu, u ¢éijoj osnovi stoji Morzeov potencijal. Kao $to se iz tablice
vidi, u intervalu izmedu 600 °K i 2400 °K slaganje je dobro jer eksperimen-
talni rezultati dozvoljavaju gresku do 3%,. U blizini tacke topljenja volframa
merene vrednosti su iznad izraéunatih, Sto se objasnjava stvaranjem lakuna,
koji efekt nije obuhvacen modelom.





