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Abstract

Introduction: We compared the quality control efficiency of artificial intelligence-patient-based real-time quality control (AI-PBRTQC) and traditi-
onal PBRTQC in laboratories to create favorable conditions for the broader application of PBRTQC in clinical laboratories. 
Materials and methods: In the present study, the data of patients with total thyroxine (TT4), anti-Müllerian hormone (AMH), alanine aminotran-
sferase (ALT), total cholesterol (TC), urea, and albumin (ALB) over five months were categorized into two groups: AI-PBRTQC group and traditional 
PBRTQC group. The Box-Cox transformation method estimated truncation ranges in the conventional PBRTQC group. In contrast, in the AI-PBRTQC 
group, the PBRTQC software platform intelligently selected the truncation ranges. We developed various validation models by incorporating diffe-
rent weighting factors, denoted as λ. Error detection, false positive rate, false negative rate, average number of the patient sample until error detec-
tion, and area under the curve were employed to evaluate the optimal PBRTQC model in this study. This study provides evidence of the effectiveness 
of AI-PBRTQC in identifying quality risks by analyzing quality risk cases.
Results: The optimal parameter setting scheme for PBRTQC is TT4 (78-186), λ = 0.03; AMH (0.02-2.96), λ = 0.02; ALT (10-25), λ = 0.02; TC (2.84-5.87), 
λ = 0.02; urea (3.5-6.6), λ = 0.02; ALB (43-52), λ = 0.05. 
Conclusions: The AI-PBRTQC group was more efficient in identifying quality risks than the conventional PBRTQC. AI-PBRTQC can also effecti-
vely identify quality risks in a small number of samples. AI-PBRTQC can be used to determine quality risks in both biochemistry and immunology 
analytes. AI-PBRTQC identifies quality risks such as reagent calibration, onboard time, and brand changes.
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Highlights 

•	 Establish optimal patient-based real-time quality control models for different analytes based on patient-based real-time quality control 
real-time intelligent monitoring platform

•	 Clinical application effect of artificial intelligence patient-based real-time quality control real-time intelligent monitoring platform in iden-
tifying real-world quality risks

Introduction

In 1965, Hoffman et al. employed the “average of 
normals” methodology to facilitate the daily quali-
ty monitoring of laboratories, thereby initiating 
the practice of patient-based real-time quality 
control (PBRTQC) in laboratory medicine (1). Sub-

Supplementary material available online for this article.

sequently, the Bull method was widely used for 
quality control of blood cell analysis (2). Patient-
based real-time quality control is an innovative 
laboratory quality control method whose primary 
purpose is to assist internal quality control (IQC) in 
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ensuring the accuracy and reliability of patient test 
results (3). Patient-based real-time quality control 
offers several notable advantages compared to 
IQC. These advantages encompass cost reduction, 
elimination of matrix effects, and continuous mon-
itoring in real-time (4-9). In recent years, PBRTQC 
has witnessed a significant rise in its application 
within clinical laboratory settings. The adoption of 
this approach has gained significant traction ow-
ing to its inherent benefits, such as real-time pro-
cess monitoring and the potential for cost reduc-
tion. The International Federation of Clinical 
Chemistry (IFCC) has proposed six PBRTQC algo-
rithms as recommended guidelines. These algo-
rithms encompass various statistical techniques 
such as the moving average (MA), moving median 
(MM), exponentially weighted moving average 
(EWMA), moving standard deviation (MovSD), and 
moving sum of outlier (MovSO) (10,11).

The achievement of a uniform standard to pro-
mote this complex PBRTQC is challenging. Accord-
ing to Badrick et al., introducing PBRTQC necessi-
tates a shift in the statistical process from empiri-
cal selection to future AI selection (3). These stud-
ies contribute to the expansion of potential appli-
cations for PBRTQC. Therefore, we need to com-
pare the applicability of traditional PBRTQC and 
artificial intelligence (AI) PBRTQC in clinical labora-
tories. 

In this study, we focused on: a) evaluating the abil-
ity of traditional PBRTQC models to identify quali-
ty control risks, b) evaluating the ability of the AI-
PBRTQC model to identify quality risks and moni-
tor its performance as a real-time quality control 
tool; c) comparing the AI-PBRTQC model with the 
traditional PBRTQC model regarding its ability to 
identify quality risks in the real world; 4) evaluat-
ing the application value of AI-PBRTQC and pro-
viding reference and practical experience for the 
application of AI-PBRTQC.

Materials and methods

Data source

From December 2021 to October 2022, the 
PBRTQC intelligent monitoring platform was in-

stalled and used on the local server of the labora-
tory to automatically collect patient data for total 
thyroxine (TT4), anti-Müllerian hormone (AMH), 
alanine aminotransferase (ALT), total cholesterol 
(TC), urea and albumin (ALB) in Xi’an Regional 
Medical Laboratory Center. The extracted data 
strictly complied with relevant laws and regula-
tions and IFCC recommendations for PBRTQC and 
patient information identification was removed. 
The data did not involve the clinical privacy of pa-
tients and other ethical issues. The analytes select-
ed for this experiment include chemilumines-
cence, rate, and endpoint methods. A wide range 
of biological variability was selected for this exper-
iment. Patient specimens included pathological 
and health examination specimens, and the age of 
patients ranged from 2 to 98 years. The verified 
data ranged from a few hundred to tens of thou-
sands. The selection of analytes and data de-
scribed above ensured the study’s reliability, the 
sample’s diversity, and the results’ broad applica-
bility. The results of the first six months served as a 
practice data set for parameter setting and proce-
dure establishment of the PBRTQC model, and the 
results of the last five months served as a valida-
tion and evaluation data set for this study. All IQC 
results and test times were exported from the lab-
oratory information system. Quality risk cases data 
for the study period were exported directly from 
each analyzer.

Patient-based real-time quality control model

The data for the traditional PBRTQC model need-
ed first to be subjected to the Box-Cox method of 
estimating the truncation range. The Box-Cox 
transform was used to estimate the truncation 
range of the data by the standard maximum likeli-
hood method implemented in the optimal nor-
malization of the R package (MASS) (12,13). Since 
most of the patient data were skewed, they need-
ed to be transformed for Box-Cox data, and trun-
cated ranges selected, but such truncated ranges 
may result in the loss of valuable data.

Artificial intelligence PBRTQC determined the ap-
propriate truncation range based on the values of 
the project’s biological coefficient of variation and 
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raw data. Monitoring used proprietary intelligent 
quality control rules that relyed on AI image rec-
ognition. If the data showed signs of deviating 
from the acceptable range, an alarm was activated 
or went out of control. Utilizing an advanced AI 
monitoring platform is essential for AI-PBRTQC. 
Artificial intelligence image recognition is our ap-
proach to image recognition and deep learning by 
continuously building models and selecting mod-
els with sensitivity and specificity greater than 
96% for monitoring. 

Methods

Two Beckman DXI-800 and one Beckman AU5800 
analyzer (Beckman Coulter, Brea, USA) are imple-
mented in the Xi’an Area Medical Laboratory Cent-
er. Furthermore, we adopted the PBRTQC platform 
from Shanghai Senxu Medical Technology Co. and 
the LTD intelligent monitoring platform. Patient 
results were collected by the laboratory informa-
tion system of Shanghai XingHE Software Co., LTD. 
The outliers of the patient data from the tradition-
al PBRTQC group were truncated by Minitab 20.0 
(State College, Pennsylvania). In the Box-Cox trans-
formation using the R package (MASS), data close 
to the normal distribution were selected as the 
truncation range. The Box-Cox transform was per-
formed using the R package (best normalized), 
and data close to normal distribution was selected 
as the truncated range. Error detection (Ped), false 
positive rate (FPR), false negative rate (FNR), and 
average number of the patient sample until error 
detection (ANPed) data were analyzed using WPS 
Excel 2023 (Xi’an, Shaanxi Province, China). Receiv-
er operating characteristic (ROC) curves were plot-
ted using IBM SPSS Statistics for Windows version 
20.0 (IBM Corp.). Biological variation data were ex-
tracted from the European Federation of Clinical 
Chemistry and Laboratory Medicine (EFLM) bio-
logical variation database (14).

In this experiment, different truncation ranges for 
traditional PBRTQC and AI-PBRTQC were calculat-
ed, as shown in Figure 1. Then parametric models 
with different truncation ranges and weighting co-
efficients were built on the PBRTQC platform to 
monitor the patient data for the same period. The 

AI-PBRTQC and traditional PBRTQC groups identi-
fied real-world quality control risky cases and eval-
uated the optimal PBRTQC scenarios by Ped, FPR, 
FNR, ANPed, and area under the curve (AUC), FNR, 
ANPed, and AUC to assess the optimal PBRTQC 
protocol.

Quality management system

Calibration, IQC, and instrument maintenance 
were performed by the standardized manage-
ment requirements of the ISO 15189 quality man-
agement system. 

Patient-based real-time quality control 
algorithm

The intelligent monitoring platform AI-PBRTQC re-
ceived the test results of laboratory patients from 
the LIS. Patient-based real-time quality control op-
erating program algorithm: EWMA algorithm us-
ing AI-PBRTQC intelligent monitoring platform. 
The calculation model of the EWMA control chart 
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Figure 1. Data processing of the two PBRTQC groups. PBRTQC 
- patient-based real-time quality control. AI - artificial intelli-
gence. ROC - receiver operating characteristic.
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Quality control rules

The IQC utilized Westgard rules 1-2S, 1-3S, 2-2S, 
R-4S, and 10-X. The PBRTQC software incorporat-
ed intelligent quality control rules founded on arti-
ficial intelligence image recognition from the AI-
PBRTQC intelligent monitoring platform and the 
conventional Westgard rules (15,16).

Calibration events

The timing of calibration events was not based on 
the results of IQC or PBRTQC but rather deter-
mined solely by the laboratorian based on the cur-
rent status of the analyzers. A positive calibration 
event is achieved when the IQC warning or loss of 
control occured or when the trend of the EWMA 
curve was reversed after calibration events. Other-
wise, the calibration was considered a negative 
event.

Quality risk cases

Quality risks encompassed a range of potential 
hazards arising from reagent opening times, varia-
tions between reagent bottles, discrepancies in 
batch numbers, expiration of weekly maintenance 
cleaning solutions, and other alterations. Data col-
lected from the PBRTQC software was analyzed 
using quality risk cases as a gold standard bench-
mark. If the EWMA curve exhibited a warning or 
went out of control during a quality risk incident, 
then the warning or out of control was classified as 
a true positive. The time between the occurrence 
of a quality risk event and its correction was called 
the quality risk period. If there were no warnings 
on the PBRTQC platform, this risk event was con-
sidered a false negative. Whenever the EWMA 
curve showed a warning or went out of control de-
spite no quality risk event present, then the warn-
ing or out of control was a false positive. Converse-
ly, when there was no warning, it was correctly 
identified as a true negative.

Corrective measures

When a quality risk arises within a laboratory, it is 
imperative for the laboratory to promptly identify 
the underlying cause and implement appropriate 
measures to rectify the situation. Measures en-
compassed various actions such as calibration, re-
agent replacement, equipment troubleshooting, 
and other related procedures.

The optimal PBRTQC model 

The optimal PBRTQC model was selected by Ped, 
FPR, FNR, ANPed, and AUC for the two sets of data 
from the intelligent monitoring platform. Ped is 
defined as the probability that a quality control 
rule and its combination can effectively detect an 
analytical error when it occurs in routine analysis, 
equivalent to the sensitivity of a clinical diagnostic 
test. The ideal Ped for a quality control method 
should be 1.00; that is, 100% of the analytical batch 
can detect errors. In the actual operation of clinical 
testing quality control, Ped between 90-99% is 
generally considered acceptable. False positive 
rate was defined as the proportion of all true neg-
ative samples incorrectly judged as positive by the 
model. False negative rate was defined as the pro-
portion of all true positive samples which were in-
correctly determined as negative by the model. 
The number of patient sample results required be-
fore error detection was statistically derived from 
the software’s backend data was defined as 
ANPed. The lower the ANPed, the more sensitive 
the PBRTQC model to identify errors. 

Optimal PBRTQC models for different analytes 
based on the PBRTQC real-time intelligent moni-
toring platform were established. The choice of 
PBRTQC parameters should meet both the high 
error detection rate and the low false rejection 
rate. Generally, the general clinical laboratory re-
quires the error detection rate to be > 90%, while 
the false rejection rate is < 5%. This study used the 
ROC curve to evaluate the performance of the arti-
ficial intelligence PBRTQC model and traditional 
PBRTQC model procedures. Graph used FPR as ab-
scissa and true positive rate (TPR) as ordinate. Dif-
ferent models generated different points at differ-
ent thresholds, which were connected to form 
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ROC curves. The AUC was used as the leading indi-
cator to evaluate the performance of different 
methods, and the best performance in quality 
control was judged by determining and compar-
ing the AUC values of different methods. The eval-
uation criteria were as follows: AUC > 0.9 indicated 
excellent method performance and significant di-
agnostic efficiency in identifying quality risks (17-
20). This study combined the AUC and the above 
indicators to select the optimal model. The AUC 
can observe the quality control efficiency of the 
model.

Results

Patient-based real-time quality control 
parameters

Six routine analytes were evaluated in the present 
study, encompassing diverse biological variants, 
distinct methodologies, and varying quantities of 
data. Supplementary Figure 1 shows the resultant 
graphs of the EWMA algorithm for the PBRTQC 
model with different weighting factors. Supple-
mentary Figure 2 shows the ROC curve graphs for 
identifying quality risks with different weighting 
factors. The results of the analysis of the two sets 
of PBRTQC models with different weighting coeffi-
cients are shown in Table 1. According to Table 1, 
the optimal models for PBRTQC are all those that 
have been identified in bold and are all in the AI-
PBRTQC group. The between-subject biological 
variation (CVg) and within-subject biological varia-
tion (CVi) for TT4 and ALB are relatively small, and 
the weighting coefficients of their optimal PBRTQC 
models for all other analytes are 0.05. The weight-
ing coefficients for all other analytes are 0.02.

The quality risks are listed in Table 2, resulting in 
the findings presented in Table 1. This study 
PBRTQC identified nine quality risks, six of which 
occur quality risks due to calibration. As depicted 
in Figure 2, the validation of the TT4 case demon-
strates that the positive calibration event signifi-
cantly impacts the test results. Figure 2 shows the 
change in PBRTQC for TT4 due to calibration 
events versus IQC events. As shown in Figure 3, TC 
suggested a significant bias in IQC on September 

22, while an alarm had occurred on the PBRTQC in-
telligent monitoring platform on September 19. 
This indicates that PBRTQC is more sensitive than 
IQC. After field verification, due to the reduced 
sample volume in the laboratory, this reagent was 
opened on September 22 and has been used for 
23 days. After changing the new reagent, the 
PBRTQC platform returned to normal on October 
31. Figure 3 shows the change in PBRTQC versus 
IQC due to the calibration event of the TC. 

As shown in Figure 4, the laboratory began contin-
gency planning on September 21 to use a substi-
tute brand of reagent because the logistics of the 
original brand of ALT reagent did not arrive in 
time. The laboratory continued to use the original 
brand of reagents after the supply was restored on 
September 27. On October 9, a departmental dis-
cussion led to the decision to use the alternative 
reagents as a long-term replacement for the origi-
nal reagents. Figure 4 illustrates the change in 
PBRTQC from September 21 to October 31 for ALT 
on the quality risks that may result from changing 
reagents.

Discussion

In this study, we aimed to compare the efficiency 
of AI-PBRTQC and conventional PBRTQC for quali-
ty control in laboratories and assessed its potential 
role in daily work. Artificial intelligence PBRTQC 
can be used as an effective tool for monitoring the 
quality control of laboratory tests. 

According to our results, the optimal models for 
PBRTQC were all in the AI-PBRTQC group, which 
proves that the models built by the AI-PBRTQC are 
more suitable for these analytes. The reason may 
be that the algorithm of the AI-PBRTQC group can 
intelligently select the appropriate range of trun-
cation based on the biological variability value of 
the analyte and the reference range data, which is 
more suitable for the nature of the patient data. 
We found that selections with considerable bio-
logical variation have a smaller weighting factor 
and use the weighting factor as a smoothing fac-
tor to reduce the effect of variation. However, of 
course, more cases are still needed to support this. 

file:///D:/BM%20casopis%20broj%2034-2/AOP2/javascript:;
https://www.biochemia-medica.com/assets/images/upload/Clanci/34/Supplementary_files_34-2/020707_Supplement.pdf
https://www.biochemia-medica.com/assets/images/upload/Clanci/34/Supplementary_files_34-2/020707_Supplement.pdf
https://www.biochemia-medica.com/assets/images/upload/Clanci/34/Supplementary_files_34-2/020707_Supplement.pdf
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TT4 June IQC chart

TT4 August IQC chart

Figure 2. The PBRTQC and IQC chart of TT4. EWMA graphs in dark gray for no quality risk and light gray for detected quality risk. IQC 
graphs in black for low-level IQC and gray lines for high-level IQC. IQC – internal quality control. PBRTQC - patient-based real-time 
quality control. EWMA - exponentially weighted moving average. TT4 - total thyroxine.

The traditional PBRTQC model selects the trunca-
tion range by performing a Box-Cox transforma-
tion on the data. According to our results, using 
the truncation range of the traditional PBRTQC 
group produces many false positives, which is one 

of the main reasons why PBRTQC has not been 
widely used before. Rossum et al. also mentioned 
an alarm rate of 1% for PBRTQC, resulting in 30 un-
manageable daily alarms (9). 

DXI800 TT4 78-186 EWMA chart (AI-PBRTQC λ: 0.05)
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Analyte CVg CVi Truncation  
range

Number 
of 

PBRTQC 
platform 

alarms

Data 
volume

Weighting 
coefficient 

(λ)

False 
detected 

alarm 
data

Ped 
(%)

FPR 
(%)

FNR
(%) ANPed AUC

TT4 
(nmol/L)*

11.8 6.4

78-186 336 1315

0.02 0 0 0 100 - 0.911

0.03 0 80.95 0 19.05 8 0.913

0.05 26 92.26 2.6 7.74 3 0.921

TT4 
(nmol/L)† 82.15-200.19 334 1431

0.02 0 0 0 100 - 0.843

0.03 0 0 0 100 - 0.839

0.05 117 69.16 10.67 30.84 5 0.834

AMH (ng/
mL)*

/ 19.2

0.02-2.96 314 734

0.02 0 96.82 0 3.18 2 0.887

0.03 199 66.56 47.38 33.44 35 0.837

0.05 82 28.03 19.52 71.97 40 0.759

AMH (ng/
mL)† 0.02-10.14 501 1125

0.02 97 41.52 15.54 58.48 68 0.418

0.03 6 41.32 0.96 58.68 71 0.419

0.05 221 39.52 35.42 60.48 80 0.436

ALT (U/L)*

29.3 10.1

10-25 1856 11343

0.02 173 96.98 1.82 3.02 6 0.916

0.03 178 77.75 1.88 22.25 8 0.882

0.05 954 72.14 10.06 27.86 0 0.834

ALT (U/L)† 6-29 2185 12284

0.02 1520 90.94 15.05 9.06 0 0.894

0.03 3394 32.72 33.61 67.28 0 0.859

0.05 3819 48.88 37.82 51.12 0 0.817

TC 
(mmol/L)*

16.7 5.3

2.84-5.87 2143 2697

0.02 0 90.85 0 9.15 24 0.957

0.03 0 72.52 0 27.48 32 0.947

0.05 50 59.4 9.03 40.60 44 0.948

TC 
(mmol/L)† 2.79-6.4 2345 2929

0.02 129 80.94 22.09 19.06 0 0.894

0.03 179 76.67 30.65 23.33 0 0.859

0.05 243 63.8 41.61 36.20 0 0.817

UREA 
(mmol/L)*

21.0 13.9

3.5-6.6 246 3083

0.02 0 92.28 0 7.72 5 0.744

0.03 135 76.02 4.76 23.98 0 0.735

0.05 350 71.54 12.34 28.46 0 0.719

UREA 
(mmol/L)† 2.3-7.68 210 3116

0.02 2258 61.9 77.7 38.10 0 0.322

0.03 1019 13.81 35.07 86.19 0 0.370

0.05 882 48.1 30.35 51.90 0 0.412

ALB (g/L)*

4.9 2.5

43-52 717 10071

0.02 0 0 0 100.00 - 0.723

0.03 0 0 0 100.00 - 0.734

0.05 0 90.66 0 9.34 12 0.745

ALB (g/L)† 41.9-53.1 717 11468

0.02 1454 0 13.5 100.00 - 0.715

0.03 3197 69.18 0 30.82 0 0.726

0.05 1872 43.51 17.41 56.49 0 0.727

*The artificial intelligence patient-based real-time quality control (AI-PBRTQC) group. †Traditional patient-based real-time quality 
control (PBRTQC) group. CVg - between-subject biological variation. CVi - within-subject biological variation. λ - weighting 
coefficient of the exponentially weighted moving average (EWMA) method. Ped - number of alarms detected/number of PBRTQC 
platform alarms. FPR - false positive ratio (FP) / (FP + true negative (TN)). FNR - false negative ratio (FN) / (true positive (TP) + FN)). The 
optimal PBRTQC model is presented as bolded. TT4 - total thyroxine. AMH - anti-Müllerian hormone. ALT - alanine aminotransferase. 
TC - total cholesterol. ALB – albumin.

Table 1. Quality control parameters of the patient-based real-time quality control in the two groups
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Analyte
quality risk

Cause Date of 
occurrence Date of closure Corrective measure

TT4 (nmol/L) Periodic calibration June 16 August 4 Calibration

TT4 (nmol/L) Reagent replacement batch number August 13 August 19 Calibration

AMH (ng/mL) Reagent replacement batch number June 6 July 28 Calibration

ALT (U/L) Replace the new reagent brand September 21 September 27 Use old brand reagents

ALT (U/L) Replace the new reagent brand October 9 October 31 Uncorrected, re-verify the data

TC (mmol/L) Change calibrator batch number August 3 August 25 Replace the calibrator and the 
sample back test

TC (mmol/L) Reagent has a long bottle opening 
time September 22 October 31 Replacement reagent

UREA (mmol/L) Reagent replacement batch number June 1 June 10 Calibration

ALB (g/L) Reagent replacement batch number June 27 June 30 Calibration

TT4 - total thyroxine. AMH - anti-Müllerian hormone. ALT - alanine aminotransferase. TC - total cholesterol. ALB – albumin.

Table 2. The patient-based real-time quality control checklist for identifying quality risks

Figure 3. September IQC and PBRTQC EWMA chart for TC. EWMA graphs in dark gray for no quality risk and light gray for detected 
quality risk. IQC graphs in black for low-level IQC and gray lines for high-level IQC. IQC – internal quality control. PBRTQC - patient-
based real-time quality control. EWMA - exponentially weighted moving average. TC – total cholesterol. 

AU5800 CHOL 2.84-5.87 EWMA chart (AI-PBRTQC λ: 0.02)
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Figure 4. PBRTQC EWMA chart for ALT. EWMA graphs in dark gray for no quality risk and in light gray for detected quality risk. 
PBRTQC - patient-based real-time quality control. EWMA - exponentially weighted moving average. ALT - alanine aminotransferase.

The analytes selected in this study include bio-
chemical and immunological analytes, which can 
effectively warn of quality risks. It proved that bio-
chemical or immunological analytes can use the 
AI-PBRTQC software platform. Song et al. demon-
strated that PBRTQC can monitor biochemical and 
immunoassay analytes (9,21,22).

The patient data for the analyte in this study 
ranged from 734 to 11,343. We proved that AI-
PBRTQC is also effective in identifying quality risk 
in a small number of samples. Small sample size 
cases are less reported at this time.

Several studies have described methods to opti-
mize PBRTQC models for implementing PBRTQC in 
routine clinical settings (6,8,10,23). Others have 
demonstrated the utility of PBRTQC for detecting 
temporary instrument failures in case reports, 
long-term assay stability issues, or interchangea-
bility and lot-to-lot variability issues (24-28).

The validation of the TT4 case showed that the 
positive calibration event significantly affected the 
test results. However, after the calibration on 13 
August 2022, we could only observe a relatively 
small change in the IQC. This insensitive change 
may be due to the limitations of the IQC, which 
only measures at the beginning of the analysis 
batch in the IQC and is related to the adjustment 
of the target value or SD of the IQC chart. This is 
why IQC used in the laboratory is not sensitive to 
calibration events. In contrast, PBRTQC is much 
less influenced by the laboratory than IQC and is 

more realistic. Our study is consistent with the 
findings of Song et al., showing that PBRTQC 
shows greater sensitivity to bias in test results due 
to calibration events or analytical trends (29). 

According to our results, if a low specimen volume 
caused the reagent to sit on the instrument for an 
extended period, the PBRTQC would raise the 
alarm, but the IQC just to one side. Reagents gen-
erally state an open box expiration date and a 
shelf life. The expiration date of chemical reagents 
varies significantly with the chemical nature. Gen-
erally speaking, the longer the shelf life of a chemi-
cally stable substance, the simpler the storage 
conditions. More factors, such as air, temperature, 
light, impurities, etc., also affect reagents. Unstable 
reagents like disproportionation polymerization, 
decomposition, or precipitation may change after 
long-term storage. In the validity period of the liq-
uid, if we find the reagents have delamination, tur-
bidity, discoloration, mold, and other abnormali-
ties, it should be a timely replacement of reagents.

We also demonstrated that PBRTQC can actively 
identify potential quality risks in reagent replace-
ments. This case reminds us that reagent replace-
ment requires performance validation and feed-
back from the clinical department.

Traditional PBRTQC has some advantages. It does 
not need a professional analytical platform, and 
even some laboratories use EXCEL for the con-
struction of traditional PBRTQC model. Further-
more, traditional PBRTQC can achieve the quality 

AU5800 ALT 10-25 EWMA chart (AI-PBRTQC λ: 0.02)
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of the whole process of monitoring. The disadvan-
tages are the high rate of false positives, small 
specimen volume of the test items cannot be 
used, the model is more cumbersome to build. 
The advantages of AIPBRTQC are that it can realize 
the quality monitoring of the whole process; low 
false-positive rate, small specimen volume of test 
items can be used, items with sizeable biological 
variability can be used, and the model building is 
intelligent. The disadvantages are that the AI 
needs to be allowed to learn more cases to opti-
mize the model in the early stage, and a profes-
sional monitoring platform is required. 

The limitations of our investigation are as follows. 
The data obtained from PBRTQC extraction results 
is influenced by a multitude of factors to which pa-
tient specimens are routinely exposed to (24). 
These factors encompass a range of variables, 
such as atypical outcomes, samples obtained from 
diverse populations, a limited timeframe for data 
retrieval, varying clinical interventions, seasonal 
variations, specimen collection, transportation, 
and pre-processing, among other considerations. 
For example, the traditional PBRTQC had a trun-
cated upper limit of 10.14. Although it was very 
high, it had a mean of 2.45, proving that most val-
ues were close to 2.45. Artificial intelligence 
PBRTQC has a much smaller amount of data than 
traditional PBRTQC, which may have something to 
do with excluding many results. During the analy-
sis, we found that the data for AMH were heavily 
skewed to one side, which may be related to the 
fact that AI-PBRTQC discarded a large portion of 
the data. 

There is currently a lack of consensus regarding 
the standardization of research on PBRTQC. This 
field encompasses a range of aspects, including 
simulation calculation methods, parameter opti-
mization, evaluation indices, and validation meth-
ods. Hence, the absence of a comprehensive re-
search framework presents challenges for re-
searchers when it comes to comparing new meth-

ods with existing ones and facilitating compari-
sons among different researchers. When a re-
searcher introduces a novel method, there is a 
dearth of a comprehensive research framework for 
conducting a comparative analysis with existing 
methods. Consequently, the credibility of the per-
formance enhancement achieved by the new 
method cannot be assessed by other researchers. 
The scientific community has yet to achieve a 
comprehensive understanding of the perfor-
mance enhancement associated with the new 
method (25). Difficulties in the application of 
PBRTQC arise from the complexity of simulating 
and optimizing parameters. These tasks require re-
searchers with a strong background in computer 
science to complete them. Furthermore, the ex-
tension of PBRTQC to practical applications neces-
sitates the support of inspection experts. Addi-
tionally, it should be noted that the optimized pa-
rameters of PBRTQC are not fixed and may vary 
across different laboratories. Furthermore, the in-
troduction of a new testing system may necessi-
tate the determination of new model parameters, 
thereby further complicating the maintenance of 
the PBRTQC system (25). 

In conclusion, the AI-PBRTQC group was more ef-
ficient in identifying quality risks than the conven-
tional PBRTQC. Artificial intelligence PBRTQC can 
also effectively identify quality risks in a small 
number of samples. AI-PBRTQC can be used in bi-
ochemistry and also in immunology. Quality risks 
such as reagent calibration, reagent machine time, 
and reagent brand replacement can be identified.
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