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Abstract: Three slow and short-wave aperiodic modes with phase velocities and wavelengths smaller than electron thermal velocity and mean-free-path, respectively, and with the -> -> electric vector of the wave lying in the (k, E0)-plane are considered in a homogeneous and infinite weakly ionized and non-magnetized plasrna placed in a strong external -> -> electric d. c. field E0 • Waves propagating at right.angles to E0 are studied. Modal spectra are determined from kinetic theory using an extended. Margenau-Davydov electron steady-state distribution function. It is shown that under broad assumptions regarding e-n elastic scattering, two finite critical values of electron drift can be specified for one of these modes. If electron drifts lie in this critical range, increasing amplitude waves corresponding to this mode appear; on the contrary, large electron drifts have a stabilizing effect. 

1. Introduction

In an infinite uniform plasma placed in a strong external d. c. electric field � -> -> 
E0 oscillations with the electric vector lying in the (k, E0)-plane can be con-sidered separately 1l, since th,e general dispersion equation10l 

I
w2 -> 

Ik2 �ii - k; ki - c2 e;i(k, w) = 0, (1) 

where e;; are components of the plasma dielectric tensor,- P. D. T., gives rise to two independent equations. The relevant equation is1 • 4) 

( w2 ) w2 k2 - � b;:,; Bzz + � Bxz Bz:,; = 0.
-> -> 

(2) 
The wave vector k is directed along the z-axis, and E0 lies in the xOz-plane. The study of equation (2) based on linear perturbation theory has shown2 , 3, 4, 5) that in a weakly ionized non-magnetized plasma there are three modes des­cribed by this equation, with phase velocities and wavelengths smaller than 
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electron thermal velocity and mean-free-path, respectively. Thus the collision­less kinetic equations can be used for the evaluation of the P. D. T. pertaining to these modes. Their properties depend on collisional factors through the electron steady-state distribution function only. In the papers 2
• 

3• 4l it was assumed that this function possessed a Maxwellian isotropic part, while in the paper5l the Dn.J.yvestein function and a particular type of elastic e-n scattering were considered. In this paper we re-consider these modes without restrictive -assumptions on e-n elastic scattering. Inelastic processes are not taken into account in thepresent theory. To avoid arithmetically ct1mbersome formulae, only waves' --> -propagating at right angles to E0 are considered. 
2. Electron steady-state distribution function_

In the preseiice of an external electric field, the �lectron steady-state dis­tribution function in a weakly_ ionized plasma with predominant elastic colli­sions is a functional of the e-n - elastic scattering cross section; its form was determined on the ground of the Boltzman - kinetic eq_uatiqp 1Jy Margenau and Davydov6l (cf. also8l) to the first order in thedectron drift- tcHhermal velo­city ratio q (which is q "' 'Vml M) in collisional· plasmas. The first order approximation is generally sufficient for longitudinal waves only, whereas in equation (2) terms proportional to q2 are also important. This is readily seen from the general transform�tion properties of P. D. T. components of a virtually collisionless plasma7l. Hence, it is necessary to retain the P2-term in .the expansion of the electron steady-state distribution function in a series of Legendre polynomials. The result is5l 
-+ 8/eOO 

f e° (vl = le°0 (v) - u1 (v) -- cos X +av 
1 a [ u1 (v) af eoo ] +-
3 

u2 (v) v --_--. - (3 cos2 x- I),_ _ av- v - av _ _ 
-4 -> where cos X = (E0 • v)l(E0v), and

'IT 

e E0 Us (v) = --­m Ys (v) 

(S)

(4) 
,,, (v) =- 2n Nn v S CJen (v, {}) [ I - Ps (cos{}) 1 sin{} d{}; (.5) 

0 
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the isotropic part ofthis functi_on is analogous to that of Nlargenau-PgvydoV:6) (cf. also1 • 5• 8l). This res11It was .derived using the fact that. Legend�e polyn9-mials are eigenfunctions of the Boltzmann collision operator8 • 9l.
3. Evaluation of plasma dielectric tensor

Let /� (J) (a = e, i) be _steady state distribution functions of plasma consti-
--> -+ tuents, and '5/ a "' exp (- i w t + i k · r) tlieir perturbations. After some sim-plifications kinetic equations for these perturbations become4• 10>

iea{(- at�)+ ;.fi -(___,. ·a1�-)}-·+. i�n(3fa)1f a = - - - <5E , - _, _, k , _,. i _,. __. • wma av w - k-· v , av w-k, v (6) 
---+ . � with <5E denoting the electric field of perturbation, and / an ( <5/ a) the Boltz-mann collision integr� linearized with respect to '5/ a'. For the modes consider-�d here, one can put I�" . :::::c: 04L According to the usual procedure10l, for the evaluation of P. D. T. compo-

--> --> -+ nents, one first determines the perturbation current density, �j(a! = e 0J vr5f a d3v,
. ...... . . . ' . which is a linear fun�tion ·'of-· <5E; · the integration: is ·to .be carried out in accordance with the Landau rule11>: The components of conductivity tensors a('!! (occurring in the relations r5jC�l = a (�! <5E;) and the components of P.D.T.

IJ I IJ are connected by 
(7) 

where. �ii is the Kronecker delta.Using equations (3) and (6), the following results are obtained 
(8) 
(9) 

(10)
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Only components of /Je (f/ pertinent to equation (2) are given. Here, WLe is the electron Langmuir (plasma) frequency, wz. = (4;,i e2 Nelm); (u) and (ve) areelectron drift and thermal velocities, respectively, defined by12• 5) 

00 (2n (ve))3 s a/0
00 (u) =-:- N� ui(v) --y;;dv , 

0 

00 

{ 4n f }-'1• (ve) = N�. /.00 (v) dv 
0 

and C, D, F, G are four functionals of /e00 (v)

(2n (ve))3 C = NO f e00 (0) , • 
00 4 n (ve)2 s a feoo 

D = - N� M u1 (v) v ----;;;- dv,
,, 

00 4 n (v.)2 sF = 3N� (u)2
0 

a [u1 
(v) af 800 ] v3 u (v) - -- -- dv2 av v av ' 

00 (ve) sG = (2 n)'1• N� v /e00 (v) dv. 
0 

(11) 
(12) 

(13) 
(14) 

(15) 

(16) 
For the Maxwellian fe00 (v), aU these coefficients become equal to unity and it is reasonable to expect that they should be of this order of magnitude for any /e00 (v) ; in general F may also be a function of E0

. The drift and heating of ions in an external d. c. field are negligible in linear stability theory, since they are at least M/m times smaller than the corresponding quantities for electrons. It is,-therefore, possible to take a Max-
4 wellian /;0 (v) and express the results of integration in equation (6) in terms of the plasma dispersion function10l 

+oo
z J e-,,•12

d-+ (z) = y'2 - dx
n x-z

-oo 

(17)
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with the integration contour chosen in accordance with the Landau rule11l. The relevant results are 

Je!iJ= 
zz 

Qj �e !i) __ w1; ;;J. ( ""- w2 + k (v;) �e!iJ = !5e !i) = 0 :u zx , 

)

wi; [ ( w ) ] k2 (v;)2 1 - d+ k (v;) ;

(18) 
(19) 
(20) 

WLi is the ion Langmuir (plasma) frequency, and (v;) = (T;/M)'1• is the ion thermal velocity with temperature expressed in ergs. 
4. General discussion of spectra

We first consider very slow modes with phase velocities smaller than the ion thermal velocity ( w/ k 4:, ( v;) 4;, (Ve)). Using an adequate approximation for ;;J. +, as well as obvious inequalities w, k ( u) 4;, ck, the following dispersion equation results from Eq. (2) 
[c2 k2 - i l /� w ( G w 1.. + wi; ) ] ( 1 + wL + w L ) =V 2 , k (Ve) k (v;) k2 (ve)2 k2 (v;)2 w 2 . ( U) 2 [ W 2 ( V;) 2 ]

' = wt k2 (�,I) 2 (Ve) 2 2 F + (2 F - D2 ) wt (Ve) 2 (21) 
Here only the relevant imaginary term in exx has been retained. The ratio (wLelWL1)2 ( (v;)/ (ve))2 in the square brackets on the right-hand side of this equation may be important in isothermal plasma only, as it is of the order of T;/Te. Thus it can be omitted for a plasma in a strong electric field. Furthermore, one usually has wi�lk2 (ve)2 � I, so that the following spectrum is obtained2• 5> 

w = -i V2 c2 k2 k (v;) 
;; wt (v;) + m 

G-· -(ve) M 

1 - 2 F __ _!:!.__ ( 
(u) 2 w 2 ). . (ve)2 c2 k2 

This mode becomes aperiodically unstable for 
(u} 2 1 c2 k2 (ve)2 > 2F wt

(22) 

(23)
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It should he kept in· mind that :in some cases" F may· be a function of tlie . 
applied field £0, so that Eq. (23) defines the critical 'drift only impiicitly: 

For modes with larger phase velocities but still not exceeding the thermal 
velocity of electrons ((vi) � w/k(� ("Oe) ) ,  Eq. (2) yields 

+ 2 _u_ · ·OJLi._ ·· . - Le _ ( ) 2 [ 2 ·· · w2 ] 
wLe (ve)2 i F w2 (2 F- I) k2 (ve)2 - 0. (24) 

Irrelevant imaginary. terms have a·gain been omitted. This equation -describes 
two dynamically (aperiodically) unstable modes. 

One of these modes is in the low-frequency region, and exists for 
w � (wdwie)2 k(ve). Its spectrum is3 • 5l 

: w2 

.
. 
,
= w 1; ( 1 - 2. F. ( u) 2 wL ) . 

·(v )2' c2 k2 + w2." e . L, 
�.(25) 

The a'periodically gr��ing instability of this mode sets on for drifts de.te�� 
mined by Eq. (23). If Eq. (23) does not hold, the mode is kinetic and always 
stable4l. 

The other mode 'lies in the region oLhigh frequencies, w!k (ve) �- wi;/OJLe, 
c2 k2/w 1e ; the spectrum is4• 5) 

W = i 1
. 
{i � 2 F - l ( U) 2

k (Ve) .. V ; G (ve)2 

I� this case the aperiodicai instability sets on for F >_ 112.

(26) 

In a very strong external electric field, the average· kinetic energy ofelec� · 
trons is much' larger than that of heavy particles, so that one can put Tn = 0 
in the Margenau-Davydov function6l. Hence, we approximately have 

I 

[. -s 3 d rr,,2 vi2 (v) v · ]
1.00 (v) = A exp 2 e2 El dv ' 

0 

(27) 

where A is a normalization factor, and d = 2m/M): It has been shown by 
Gurevich14l that from a large variety of functions given by this equation for 
various cross sections ae11 , only two functions can be actually encountered. 
For strong fields below some �riticaL value f •00 will always be Maxwellian, 
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and above this critical value always Druyvesteinian13• 8l. This is a consequence
of scarce e-e collisions taken into account in the Gurevich theory by an ite­
ration process. These two particular distribution functions are formally ob­
tained from Eq. (27) by letting i11 (v) = i110' ,  and Y1 (v) = Y10 • v ,  respectively,
where the latter case corresponds to the »billiard-ball« model ; i,10 is a constant
in both cases. 

4. Plasma with the Druyvestein distribution
Inserting ,,1 (v) = Y10 • v into Eq. (27), one obtains13• 8)

NeO 
( v4 

)/eoo (v) = n van I' (0.75) exp - v4D 
(28) 

Here, vD = (8e2 El/3m2 b Y i0 ) 1/4 is the characteristic velocity of the distri­
bution. The normalization factor is expressed in terms of the I'-function.

For this /e00 (v), equations (1 1 )-(16) yield

(ve)  = vD [I' (0.75)/I' (0.25)] 112 � 0.57 Vn ,

� eE0 eE 
(u )  = 2 'V2n [I' (0.75)/I'(0.25)) 312 . � 0.96 ° ,

• . m '1'10 v'D m Y10 v D 

c = 2 'V2n [I' (0.75)/I' (0.25)] 312 r-1 (0.75) � o.78 ,

2
D == V2n [I' (0.25)/I' (0.75)] 312 r-1 (0.25) � 1 . 10 '

G = V J
n 

[I' (0.25)/I' (0.75)] 112 I' (0.5) � 1 .05 .

The evaluation of F , Eq. ( 15) ,  requires a more detailed knowledge of the
scattering process. Unfortunately, reliable data on absolute differential cross
sections are practically unavailable at present. It is, however, physically ad­
missible ,to represent the cross section in a serie§ of Legendre polynomials

Oen (v, #) = L a(r) (v) Pr (cos#) ; (29) 
.r=O 

the coefficients of this expansion are restricted only by the requirement that
the integrals
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7T 211: J Oen (v, {}) sin{}d{} 
0 
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7T and 211: J Oen (v, {}) { l  - cos{}) sin{}d{} 
0 

be positive, since they have an immediate physical meaning as total and mo­mentum transfer cross sections. From Eqs. (5) and (29) one deduces 
1 v1 (v) = fa Nn v [o<0J (v) - 3 a(ll (v)] , (30) 

1 v2 (v) = 411: Nn v [o<0J (v) - 5 a<2l (v)] (31) 
For the Druyvestein distribution, o<0l and o(IJ ought to be constants. Further­more, o<0J is necessarily positive, whereas 0<1J can be negative as well and is restricted by o(ll/o<0J < 3 only. As for a<2J (v) , we shall assume it in the form o/2l/vS, 0 < s < 2. We re-write Eq. (31) as

v2 (v) = 411: Nn v o<0) (1 - y/v•) , (32) 
where r = 00<2l/5o<0l can be both positive and negative. Inserting Eq. (32) into Eq. (15), one obtains 

_ 2 1 / I' (0.25) ( 1 o(I) ) 
s 

;•+2 d _ , F
- - 3 11:  V I'(0.75) l - 3 a<0l ;' - (y/v'v) d� (;e f} d;

0 

(33) 

Let us first consider the case s =/=- 0. For very strong electric fields one has 
y/v' D I �  1, so that with first-order terms we obtain

( 1 0<1J )  [ r ] F = 0.18 1 - 3 o(o) 
1 + V'v . A (s) , (34) 

where A(s) = (1 - s/2) I' (0. 75 - s/4) r-1 (0.75). The correction in the square brackets is important for the mode given 'by Eq. (26) only. The instability sets on if F > 1/2 or
r . .  1 + -,- A (s) >

V D  

2,79 (35) 
A detailed analysis of this condition shows that the obtained inequality can hold with 0<1 J < 0 only. For r < 0, inequality (35) is possible only if 

I 0<1J I / o<0J > 5.3 7 ,  and is equivalent to
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3 + ( I a<IJ I / a<oJ )V'v > l r l ,  l r l A (s) _ 5,37 + ( J a<Il l / a(O) (36) 
If, however, r > 0 and 3 < io< 1J I /  a<0J < 5.37 one obtains

3 + ( I a(I) I / a(o) ) 
r < v' D < r A (s) 5.37 - ( I a(ll I /  a(O) ) (37) 

Hence, if the conditions leading to inequality (36) are fulfilled, the instability corresponding to the mode considered takes place for E0' s or, alternatively, for electron drifts above some critical value. On the contrary, if the conditions leading to inequality (37) are valid, a gradual increase of Eo first destabilizes the mode since the lower limit in (37) is attained, and then again stabilizes the mode for Eo' s and drifts above the value given by the upper limit. Which of the mentioned conditions will be fulfilled depends on the nature of collisions. 
For s = 0, Eq. (33) yields simply 

_ 0.22 .( !_.�)F - I - r I - 3 a<oJ (38) 
Since F is independent of E0, the mode will be either stable or unstable for any drift. From Eq. (38) and the requirement F > 1/2, one easily deduces the conditions under which these alternatives take place. 
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STABILIZACIJA JEDNE DINAMICKE MODE 
SLABO JONIZOV ANE PLAZME S VELIKIM VREDNOSTIMA 

ELEKTRONSKOG DRIFTA 

B. MILIC

lnstitut za fiziku, Beograd

S a d r z a j 

Razmotrene su tri spore kratkotalasne aperiodicne mode, sa faznim brzinama 
i talasnim duzinama manjim od termalne brzine i srednje slobodne putanje 

-+ 4 

elektrona respektiv,no, i sa elektricnim vektorom talasa u (k, E0) -ravni, kod
homogene i beskonacne, slabojonizovane i netnagnetoaktivne plazme koja je 

-+ 
smestena u jako spoljasnje konstantno elektricno polje E0 • Njihovi spektri
SU odredeni na osnovu kineticke teorije, uz koriscenje generalisane Margenau­
Davydov-ljeve distribucije za elektrone u stacionarnom stanju. Pokazano je da 
pod vrlo opstim fizickim predpostavkama u pogledu elasticnog e-n rasejanja 
u plazmi, za jednu od ovih moda se mogu odrediti dve konacne kriticne vred­
nosti drifta. Talasi rastuce amplitude-k-0ji odgovaraju ovoj modi nastaju sarrio 
ako elektronski drift lezi u tom kriticnom irttervalu; velike vrednosti drifta 
ih stabiliziraju. 




