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Abstract. In this paper we study three concepts of uniform instabil-

ity in mean for stochastic skew-evolution semiflows: uniform exponential
instability in mean, uniform polynomial instability in mean and uniform

h-instability in mean. These concepts are natural generalizations from the

deterministic case. Connections between these concepts are presented. Ad-
ditionally, some expansion properties, logarithmic criteria and majorization

criteria of these concepts are given, respectively.

1. Introduction

The topic of asymptotic behaviors of dynamical systems on Banach
spaces has been intensively studied for many years. In the last decades,
the results concerning this subject have witnessed significant progress (see
[1–5, 8–11, 17, 28, 30, 31] and the references therein). As a generalization of
classical concepts such as C0-semigroup, evolution family and linear skew-
product semiflow, the notion of linear skew-evolution semiflow (or linear skew-
product three-parameter semiflow) plays an important role in the qualitative
theory of dynamical systems, especially in the deterministic case. The no-
tion of linear skew-evolution semiflow was first introduced by Megan et al.
in [22]. Starting with the work [22], several important papers were pub-
lished regarding the asymptotic properties of skew-evolution semiflows (see
[12,14–16,18,19,21,24–27]).

In recent years, many researchers focused on the exponential/polynomial
stability and dichotomy of stochastic skew-evolution semiflows. For instance,
a Datko type characterization for nonuniform exponential dichotomy in mean
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square of stochastic skew-evolution semiflows were studied by Stoica and
Megan in [29]. In [20], through the usage of Banach function spaces, some dis-
crete and continuous versions of Datko type theorem for uniform polynomial
stability in mean and respectively uniform polynomial instability in mean of
stochastic skew-evolution semiflows in Banach spaces were obtained by Hai.
It is worth to mention that in [13] the authors investigated a general concept
of uniform asymptotic stability in mean, the so-called uniform h-stability in
mean. This concept includes the concepts of uniform exponential stability in
mean and uniform polynomial stability in mean as particular cases.

It is well known that the instability problem has become one of the re-
search hotspots in the field of the asymptotic behavior of dynamical systems.
Motivated by the recent work of Fülöp, Megan and Borlea [13], in this paper,
we introduce the concept of uniform h-instability in mean for stochastic skew-
evolution semiflows which is an extension of concepts of uniform exponential
instability in mean and uniform polynomial instability in mean. Our main
objective is to give some characterizations for uniform exponential instability
in mean, uniform polynomial instability in mean and uniform h-instability in
mean of stochastic skew-evolution semiflows in Banach spaces.

This paper is organized as follows. In Section 2 we introduce some ba-
sic notions and the concept of unform h-instability in mean. Then, connec-
tions between uniform h-instability in mean, uniform exponential instability
in mean and uniform polynomial instability in mean are established. In the
last section we present the main results of our paper. At first we give some
expansion properties for the concepts of uniform exponential instability in
mean, uniform polynomial instability in mean and uniform h-instability in
mean. Then some logarithmic criteria and respectively majorization criteria
are presented for the concepts mentioned above, by extending the techniques
used in the stable case (see [13]) to the unstable case.

2. Notions and preliminaries

In this section, we give some notations, definitions and preliminary facts
which will be used in the sequel. Let (Ω,B,P) be a probability space, X a
Banach space, L(X) the Banach algebra of all bounded linear operators from
X into itself. The norm on X and L(X) will denoted by ∥·∥. We denote by N
the set of natural numbers, by N+ the set of positive integers, by R+ = [0,∞)
and by ∆ =

{
(t, s) ∈ R2

+ : t ≥ s
}
. Let us consider

L1(Ω, X,P)

=

{
f : Ω→ X : f is Bochner measurable and

∫
Ω

∥f(ω)∥ dP(ω) <∞
}
,
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which is a Banach space endowed with the norm

∥f∥1 =

∫
Ω

∥f(ω)∥ dP(ω).

We denote Y = R+ × L1(Ω, X,P) and Z = ∆× L1(Ω, X,P).

Definition 2.1 ([20, 29]). A pair (φ,Φ) is called a stochastic skew-
evolution semiflow on Ω×X, if the measurable random field φ : ∆× Ω→ Ω
(often called as a stochastic evolution semiflow) satisfies

(i) φ(t, t, ω) = ω, ∀(t, ω) ∈ R+ × Ω;
(ii) φ(t, s, ω) = φ(t, r, φ(r, s, ω)), ∀t ≥ r ≥ s ≥ 0, ∀ω ∈ Ω;

and the map Φ : ∆×Ω→ L(X) (often called as a stochastic evolution
cocycle) satisfies

(iii) Φ(t, t, ω) = Id (where Id is the identity operator on X), ∀(t, ω) ∈
R+ × Ω;

(iv) Φ(t, s, ω) = Φ(t, r, φ(r, s, ω))Φ(r, s, ω), ∀t ≥ r ≥ s ≥ 0, ∀ω ∈ Ω;
(v) (t, s, ω) 7→ Φ(t, s, ω)x is Bochner measurable for every x ∈ X.

Remark 2.2. We note that stochastic cocycles introduced in [2,3,6,10,28]
are particular cases of stochastic skew-evolution semiflows. Some illustrative
examples of stochastic skew-evolution semiflows are given by Hai in [20].

Definition 2.3 ([23]). A function h : R+ → [1,∞) is said to be a growth
rate if it is nondecreasing and bijective.

In what follows, we suppose that h : R+ → [1,∞) is a growth rate.

Definition 2.4. A stochastic skew-evolution semiflow (φ,Φ) has uniform
h-decay in mean (u.h.d.m.) if there exist K > 1 and α > 0 such that
(2.1)

Kh(t)α
∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω) ≥ h(s)α
∫
Ω

∥x(ω)∥ dP(ω), ∀(t, s, x) ∈ Z.

An example of a stochastic skew-evolution semiflow with uniform h-decay
in mean is given in the following example.

Example 2.5. Let X be a real separable Hilbert space. Ω is the space
of all continuous applications ω : R+ → X such that ω(0) = 0 with the
compact open topology. Let Bt, for t ≥ 0, be the σ-algebra generated by the
set {ω → ω(s) ∈ X : s ≤ t} and let B be the associated Borel σ-algebra to Ω.
Thus, (Ω,B,Bt,P) is a filtered probability space for a Wiener measure P on
Ω (see [28, Example 2.1]). Then

φ : ∆× Ω→ Ω, φ(t, s, ω)(τ) =
h(t)

h(s)
ω(τ)

is a stochastic evolution semiflow and

Φ : ∆× Ω→ L(X), Φ(t, s, ω)x =
h(s)

h(t)
x
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is a stochastic evolution cocycle associated to the stochastic evolution semiflow
φ. For any K > 1 and (t, s, x) ∈ Z, we have

Kh(t)

∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω) = Kh(s)

∫
Ω

∥x(ω)∥ dP(ω)

≥ h(s)
∫
Ω

∥x(ω)∥ dP(ω),

which means that the stochastic skew-evolution semiflow (φ,Φ) satisfies Def-
inition 2.4 for α = 1 and for all K > 1. Hence, (φ,Φ) has uniform h-decay in
mean.

Remark 2.6. As particular cases of Definition 2.4, we have the following.
(i) If h(t) = et, then we say that a stochastic skew-evolution semiflow

(φ,Φ) has uniform exponential decay in mean (u.e.d.m.).
(ii) If h(t) = t+ 1, then we say that a stochastic skew-evolution semiflow

(φ,Φ) has uniform polynomial decay in mean (u.p.d.m.).

Definition 2.7. A stochastic skew-evolution semiflow (φ,Φ) is said to
be uniformly h-unstable in mean (u.h.us.m.) if there are N > 1 and v > 0
such that
(2.2)

Nh(s)v
∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω) ≥ h(t)v
∫
Ω

∥x(ω)∥ dP(ω), ∀(t, s, x) ∈ Z.

Example 2.8. Let φ : ∆ × Ω → Ω be the stochastic evolution semiflow
in Example 2.5. It is easy to check that the map Φ : ∆ × Ω → L(X) de-

fined by Φ(t, s, ω)x = h(t)
h(s)x is a stochastic evolution cocycle associated to the

stochastic evolution semiflow φ. For any N > 1 and (t, s, x) ∈ Z, we have

Nh(s)

∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω) = Nh(t)

∫
Ω

∥x(ω)∥ dP(ω)

≥ h(t)
∫
Ω

∥x(ω)∥ dP(ω),

which gives that (φ,Φ) is uniformly h-unstable in mean.

Remark 2.9. As particular cases of Definition 2.7, we give the following.
(i) If h(t) = et, then we say that a stochastic skew-evolution semiflow

(φ,Φ) is uniformly exponentially unstable in mean (u.e.us.m.).
(ii) If h(t) = t+ 1, then we say that a stochastic skew-evolution semiflow

(φ,Φ) is uniformly polynomially unstable in mean (u.p.us.m.).

Remark 2.10. One can easily see that if a stochastic skew-evolution
semiflow (φ,Φ) is u.h.us.m., then it has u.h.d.m. The converse implication
is not necessarily valid. In addition, the relationships between the concepts
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of instability in mean and the concepts of decay in mean are given by the
following diagram:

u.e.us.m. ⇒ u.p.us.m.

⇓ ⇓
u.e.d.m. ⇐ u.p.d.m.

Definition 2.11. A stochastic skew-evolution semiflow (φ,Φ) is said to
be uniformly h-unstable (in the classical sense) if there are N > 1 and v > 0
such that

Nh(s)v ∥Φ(t, s, ω)x∥ ≥ h(t)v ∥x∥ ,
for all (t, s) ∈ ∆ and all (ω, x) ∈ Ω×X.

It is obvious that each uniformly h-unstable stochastic skew-evolution
semiflow admits a uniform h-instability in mean with respect to any probabil-
ity measure P on Ω, but the converse is not valid. To show this, we consider
the following example.

Example 2.12. Consider a partition Ω =
⋃ℓ
i=0 Ωi of Ω (Ω0 ̸= ∅, ℓ may

be finite or infinite) with P(Ω0) = 0 and numbers N > 1 and v0 = 0 and
vi > 0 for i ∈ N+ with infi∈N+ vi > 0. We assume that

N

∫
Ωi

∥Φ(t, s, ω)x(ω)∥ dP(ω) ≥
(
h(t)

h(s)

)vi ∫
Ωi

∥x(ω)∥ dP(ω)

for all (t, s, x) ∈ Z and i ∈ N ∩ [0, ℓ]. Based on this assumption we have that
there exists v = infi∈N+

vi such that the relation (2.2) holds for all (t, s, x) ∈ Z.
Therefore, (φ,Φ) is uniformly h-unstable in mean. Since v0 = 0, Ω0 ̸= ∅, and
P(Ω0) = 0, (φ,Φ) is not uniformly h-unstable.

The next proposition gives a connection between the concept of uniform
h-instability in mean and the concept of uniform exponential instability in
mean.

Proposition 2.13. Let (φ,Φ) be a stochastic skew-evolution semiflow.
Then it is uniformly h-unstable in mean if and only if the stochastic skew-
evolution semiflow (φh,Φh) (see [13, Theorem 1]) is uniformly exponentially
unstable in mean, where

φh : ∆× Ω→ Ω, φh(t, s, ω) := φ(h−1(et), h−1(es), ω)

and

Φh : ∆× Ω→ L(X), Φh(t, s, ω) := Φ(h−1(et), h−1(es), ω).

Proof. Necessity. If (φ,Φ) is u.h.us.m., then by Definition 2.7, there are
two constants N > 1 and v > 0 such that relation (2.2) holds. It follows from
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(2.2) that

Nevs
∫
Ω

∥Φh(t, s, ω)x(ω)∥ dP(ω)

= Nevs
∫
Ω

∥∥Φ(h−1(et), h−1(es), ω)x(ω)∥∥ dP(ω)

≥ evs
(
h(h−1(et))

h(h−1(es))

)v ∫
Ω

∥x(ω)∥ dP(ω)

= evt
∫
Ω

∥x(ω)∥ dP(ω),

which means that (φh,Φh) is u.e.us.m.
Sufficiency. If (φh,Φh) is u.e.us.m., then it follows that there are N > 1

and v > 0 such that for all (t, s, x) ∈ Z we have

Nh(s)v
∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω)

= Nh(s)v
∫
Ω

∥∥Φ(h−1(h(t)), h−1(h(s)), ω)x(ω)∥∥ dP(ω)

= Nh(s)v
∫
Ω

∥∥∥Φ(h−1(elnh(t)), h−1(elnh(s)), ω)x(ω)∥∥∥ dP(ω)

= Nh(s)v
∫
Ω

∥Φh(lnh(t), lnh(s), ω)x(ω)∥ dP(ω)

≥ h(s)vev(lnh(t)−lnh(s))
∫
Ω

∥x(ω)∥ dP(ω)

= h(t)v
∫
Ω

∥x(ω)∥ dP(ω).

Hence (φ,Φ) is u.h.us.m.

As a direct consequence of Proposition 2.13, we obtain the following result.

Corollary 2.14. Let (φ,Φ) be a stochastic skew-evolution semiflow.
Then it is uniformly polynomially unstable in mean if and only if the sto-
chastic skew-evolution semiflow (φ1,Φ1) is uniformly exponentially unstable
in mean, where

φ1 : ∆× Ω→ Ω, φ1(t, s, ω) := φ(et − 1, es − 1, ω)

and

Φ1 : ∆× Ω→ L(X), Φ1(t, s, ω) := Φ(et − 1, es − 1, ω).

In a similar manner to Proposition 2.13, below we give a connection be-
tween the concept of uniform h-decay in mean and the concept of uniform
exponential decay in mean.
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Proposition 2.15. Let (φ,Φ) be a stochastic skew-evolution semiflow.
Then it has uniform h-decay in mean if and only if the stochastic skew-
evolution semiflow (φh,Φh) (see [13, Theorem 1]) has uniform exponential
decay in mean, where

φh : ∆× Ω→ Ω, φh(t, s, ω) := φ(h−1(et), h−1(es), ω)

and

Φh : ∆× Ω→ L(X), Φh(t, s, ω) := Φ(h−1(et), h−1(es), ω).

Proof. It is similar to the proof of Proposition 2.13.

Corollary 2.16. Let (φ,Φ) be a stochastic skew-evolution semiflow.
Then it has uniform polynomial decay in mean if and only if the stochas-
tic skew-evolution semiflow (φ1,Φ1) has uniform exponential decay in mean,
where (φ1,Φ1) is defined as in Corollary 2.14.

Proof. It follows immediately from Proposition 2.15 for h(t) = t+ 1.

We now discuss the relation between uniform h-instability in mean and
uniform polynomial instability in mean.

Proposition 2.17. Let (φ,Φ) be a stochastic skew-evolution semiflow.
Then it is uniformly h-unstable in mean if and only if the stochastic skew-
evolution semiflow (ψh,Ψh) (see [13, Theorem 2]) is uniformly polynomially
unstable in mean, where

ψh : ∆× Ω→ Ω, ψh(t, s, ω) := φ(h−1(t+ 1), h−1(s+ 1), ω)

and

Ψh : ∆× Ω→ L(X), Ψh(t, s, ω) := Φ(h−1(t+ 1), h−1(s+ 1), ω).

Proof. Necessity. If (φ,Φ) is u.h.us.m., then by Definition 2.7, there are
two constants N > 1 and v > 0 such that the relation (2.2) holds. It follows
from (2.2) that

N(s+ 1)v
∫
Ω

∥Ψh(t, s, ω)x(ω)∥ dP(ω)

= N(s+ 1)v
∫
Ω

∥∥Φ(h−1(t+ 1), h−1(s+ 1), ω)x(ω)
∥∥ dP(ω)

≥ (s+ 1)v
(
h(h−1(t+ 1))

h(h−1(s+ 1))

)v ∫
Ω

∥x(ω)∥ dP(ω)

= (t+ 1)v
∫
Ω

∥x(ω)∥ dP(ω),

which means that (ψh,Ψh) is u.p.us.m.
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Sufficiency. If (ψh,Ψh) is u.p.us.m., then it follows that there are N > 1
and v > 0 such that for all (t, s, x) ∈ Z we have

Nh(s)v
∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω)

= Nh(s)v
∫
Ω

∥∥Φ(h−1(h(t)), h−1(h(s)), ω)x(ω)∥∥ dP(ω)

= Nh(s)v
∫
Ω

∥Ψh(h(t)− 1, h(s)− 1, ω)x(ω)∥ dP(ω)

≥ h(s)v
(
h(t)− 1 + 1

h(s)− 1 + 1

)v ∫
Ω

∥x(ω)∥ dP(ω)

= h(t)v
∫
Ω

∥x(ω)∥ dP(ω).

Hence (φ,Φ) is u.h.us.m.

The next proposition establishes a connection between the concept of
uniform h-decay in mean and the concept of uniform polynomial decay in
mean.

Proposition 2.18. Let (φ,Φ) be a stochastic skew-evolution semiflow.
Then it has uniform h-decay in mean if and only if the stochastic skew-
evolution semiflow (ψh,Ψh) has uniform polynomial decay in mean, where
(ψh,Ψh) is defined as in Proposition 2.17.

Proof. It is similar to the proof of Proposition 2.17.

3. The main results

3.1. Some expansion properties. In this subsection we present some key
expansion properties for the concepts of uniform exponential instability in
mean, uniform polynomial instability in mean and uniform h-instability in
mean for stochastic skew-evolution semiflows in Banach spaces.

Theorem 3.1. Let (φ,Φ) be a stochastic skew-evolution semiflow with
uniform exponential decay in mean. Then it is uniformly exponentially un-
stable in mean if and only if there exist r > 1 and c > 1 such that

(3.1)

∫
Ω

∥Φ(r + s, s, ω)x(ω)∥ dP(ω) ≥ c
∫
Ω

∥x(ω)∥ dP(ω), ∀(s, x) ∈ Y.

Proof. Necessity. It is a simple verification for r = lnN
v +1 and c = evr

N ,
where N > 1 and v > 0 are given by Remark 2.9(i).

Sufficiency. Since (φ,Φ) has u.e.d.m., it follows that there are K > 1 and
α > 0 such that

(3.2) Keαt
∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω) ≥ eαs
∫
Ω

∥x(ω)∥ dP(ω), ∀(t, s, x) ∈ Z.
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Obviously, for every (t, s) ∈ ∆ there are n ∈ N and l ∈ [0, r) such that
t− s = rn+ l.

Let (t, s, x) ∈ Z. According to (3.2) and (3.1) we have that∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω)

=

∫
Ω

∥Φ(s+ nr + l, s+ nr, φ(s+ nr, s, ω))Φ(s+ nr, s, ω)x(ω)∥ dP(ω)

≥ 1

K
e−αl

∫
Ω

∥Φ(s+ nr, s, ω)x(ω)∥ dP(ω)

≥ 1

K
e−αr

∫
Ω

∥Φ(s+ nr, s, ω)x(ω)∥ dP(ω)

≥ 1

K
e−αrc

∫
Ω

∥Φ(s+ (n− 1)r, s, ω)x(ω)∥ dP(ω)

≥ · · · ≥ 1

K
e−αrcn

∫
Ω

∥x(ω)∥ dP(ω)

=
1

K
e−αrevrn

∫
Ω

∥x(ω)∥ dP(ω)

=
1

K
e−αr−vlev(t−s)

∫
Ω

∥x(ω)∥ dP(ω)

≥ 1

K
e−(α+v)rev(t−s)

∫
Ω

∥x(ω)∥ dP(ω)

≥ 1

N
ev(t−s)

∫
Ω

∥x(ω)∥ dP(ω),

where v = lnc
r and N = Ke(α+v)r + 1. Thus, we can conclude that (φ,Φ) is

u.e.us.m.

Theorem 3.2. Let (φ,Φ) be a stochastic skew-evolution semiflow with
uniform polynomial decay in mean. Then it is uniformly polynomially unstable
in mean if and only if there exist r > e− 1 and c > 1 such that

(3.3)

∫
Ω

∥Φ(rs+ r + s, s, ω)x(ω)∥ dP(ω) ≥ c
∫
Ω

∥x(ω)∥ dP(ω), ∀(s, x) ∈ Y.

Proof. Necessity. If (φ,Φ) is u.p.us.m., then from Corollary 2.14, we
have that (φ1,Φ1) is u.e.us.m. In light of Theorem 3.1 we have that there
exist u > 1 and c > 1 such that

∫
Ω

∥Φ1(u+ v, v, ω)x(ω)∥ dP(ω) =

∫
Ω

∥∥Φ(eu+v − 1, ev − 1, ω)x(ω)
∥∥ dP(ω)

≥ c
∫
Ω

∥x(ω)∥ dP(ω)

(3.4)
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for all (v, x) ∈ Y .
Let r = eu−1 and v = ln(s+1)(s ≥ 0), which implies r > e−1, s = ev−1

and eu+v − 1 = rs+ r + s. Thus, from (3.4) we deduce that∫
Ω

∥Φ(rs+ r + s, s, ω)x(ω)∥ dP(ω) =

∫
Ω

∥∥Φ(eu+v − 1, ev − 1, ω)x(ω)
∥∥ dP(ω)

≥ c
∫
Ω

∥x(ω)∥ dP(ω)

for all (s, x) ∈ Y .
Sufficiency. Since (φ,Φ) has u.p.d.m, therefore (φ1,Φ1) has u.e.d.m. in

view of Corollary 2.16.
Let u = ln(1+r) and v ≥ 0, which implies u > 1, r = eu−1, s = ev−1 ≥ 0

and eu+v − 1 = rs+ r + s. By (3.3) we have∫
Ω

∥Φ1(u+ v, v, ω)x(ω)∥ dP(ω) =

∫
Ω

∥∥Φ(eu+v − 1, ev − 1, ω)x(ω)
∥∥ dP(ω)

=

∫
Ω

∥Φ(rs+ r + s, s, ω)x(ω)∥ dP(ω)

≥ c
∫
Ω

∥x(ω)∥ dP(ω).

From Theorem 3.1 we obtain that (φ1,Φ1) is u.e.us.m. which implies from
the Corollary 2.14 that (φ,Φ) is u.p.us.m.

Theorem 3.3. Let (φ,Φ) be a stochastic skew-evolution semiflow with
uniform h-decay in mean. Then it is uniformly h-unstable in mean if and
only if there exist r > e and c > 1 such that
(3.5)∫

Ω

∥∥Φ(h−1(res), h−1(es), ω)x(ω)∥∥ dP(ω) ≥ c
∫
Ω

∥x(ω)∥ dP(ω), ∀(s, x) ∈ Y.

Proof. It follows from Proposition 2.13, Proposition 2.15 and Theorem
3.1.

3.2. Logarithmic criteria. In this subsection, we give some logarithmic
type characterizations for the concepts considered in our study.

Theorem 3.4. Let (φ,Φ) be a stochastic skew-evolution semiflow with
uniform polynomial decay in mean. Then it is uniformly polynomially unstable
in mean if and only if there exists a constant L > 1 such that
(3.6)

L

∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω) ≥ ln
t+ 1

s+ 1

∫
Ω

∥x(ω)∥ dP(ω), ∀(t, s, x) ∈ Z.
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Proof. Necessity. We suppose that (φ,Φ) is u.p.us.m. Then, via Re-
mark 2.9(ii) there are N > 1 and v > 0 such that

ln
t+ 1

s+ 1

∫
Ω

∥x(ω)∥ dP(ω) ≤ N
(
t+ 1

s+ 1

)−v
ln
t+ 1

s+ 1

∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω)

=
N

v

ln
(
t+1
s+1

)v
(
t+1
s+1

)v ∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω)

≤ N

ve

∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω)

≤
(
1 +

N

ve

)∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω),

(3.7)

where we use the fact that

lnξ

ξ
≤ 1

e
, ∀ξ ≥ 1.

By (3.7) we can choose L = 1 + N
ve , and thus relation (3.6) holds for all

(t, s, x) ∈ Z.
Sufficiency. Let c is an arbitrary constant belongs to (1,∞) and r =

ecL − 1, which implies r > e− 1. From (3.6) we get that∫
Ω

∥Φ(rs+ r + s, s, ω)x(ω)∥ dP(ω) ≥ L−1lnrs+ r + s+ 1

s+ 1

∫
Ω

∥x(ω)∥ dP(ω)

=
ln(r + 1)

L

∫
Ω

∥x(ω)∥ dP(ω)

= c

∫
Ω

∥x(ω)∥ dP(ω)

for all (s, x) ∈ Y . Now applying Theorem 3.2, we obtain that (φ,Φ) is
u.p.us.m.

Remark 3.5. Theorem 3.4 can be considered as a variant for uniform
polynomial instability in mean of a result due to Boruga [6, Theorem 3.1] for
polynomial stability in average of cocycles. We notice that the proof idea of
Theorem 3.4 is different from Boruga’s proof.

Theorem 3.6. Let (φ,Φ) be a stochastic skew-evolution semiflow with
uniform h-decay in mean. Then it is uniformly h-unstable in mean if and
only if there exists a constant L > 1 such that

(3.8) L

∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω) ≥ ln
h(t)

h(s)

∫
Ω

∥x(ω)∥ dP(ω), ∀(t, s, x) ∈ Z.
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Proof. Necessity. If (φ,Φ) is u.h.us.m., then from Proposition 2.17 we
have that (ψh,Ψh) is u.p.us.m. Based on Theorem 3.4, it follows that there
exists a constant L > 1 such that

L

∫
Ω

∥∥Φ(h−1(u+ 1), h−1(v + 1), ω)x(ω)
∥∥ dP(ω)

= L

∫
Ω

∥Ψh(u, v, ω)x(ω)∥ dP(ω) ≥ ln
u+ 1

v + 1

∫
Ω

∥x(ω)∥ dP(ω)

for all (u, v, x) ∈ Z.
Let (t, s) ∈ ∆. Then for u = h(t)− 1 and v = h(s)− 1 we have that

L

∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω)

= L

∫
Ω

∥∥Φ(h−1(u+ 1), h−1(v + 1), ω)x(ω)
∥∥ dP(ω)

≥ ln
h(t)

h(s)

∫
Ω

∥x(ω)∥ dP(ω)

for all (t, s, x) ∈ Z.
Sufficiency. Let c is an arbitrary constant belongs to (1,∞) and r = ecL,

which implies r > e. From (3.8) it follows that∫
Ω

∥∥Φ(h−1(res), h−1(es), ω)x(ω)∥∥ dP(ω)

≥ L−1lnh(h
−1(res))

h(h−1(es))

∫
Ω

∥x(ω)∥ dP(ω)

=
lnr

L

∫
Ω

∥x(ω)∥ dP(ω) = c

∫
Ω

∥x(ω)∥ dP(ω)

for all (s, x) ∈ Y . By Theorem 3.3, we conclude that (φ,Φ) is u.h.us.m.

Corollary 3.7. Let (φ,Φ) be a stochastic skew-evolution semiflow with
uniform exponential decay in mean. Then it is uniformly exponentially un-
stable in mean if and only if there exists a constant L > 1 such that

(3.9) L

∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω) ≥ (t− s)
∫
Ω

∥x(ω)∥ dP(ω), ∀(t, s, x) ∈ Z.

Proof. It follows immediately from Theorem 3.6 for h(t) = et.

3.3. Majorization criteria. In this subsection, we obtain some majoriza-
tion criteria that characterize the uniform exponential instability in mean, the
uniform polynomial instability in mean and the uniform h-instability in mean
for stochastic skew-evolution semiflows.
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Theorem 3.8. Let (φ,Φ) be a stochastic skew-evolution semiflow with
uniform exponential decay in mean. Then it is uniformly exponentially un-
stable in mean if and only if there are a constant L > 1 and a nondecreasing
function ρ : R+ → R+ with lim

t→∞
ρ(t) =∞ such that

(3.10)

L

∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω) ≥ ρ(t− s)
∫
Ω

∥x(ω)∥ dP(ω), ∀(t, s, x) ∈ Z.

Proof. Necessity follows easily by Corollary 3.7, if we consider ρ(t) = t.
Sufficiency. Since (φ,Φ) is u.e.d.m., it follows that there are K > 1 and

α > 0 such that relation (3.2) holds. From lim
t→∞

ρ(t) =∞ it results that there

exists a constant δ > 0 such that ρ(δ)
L > 1. Moreover, for all (t, s) ∈ ∆, there

are n ∈ N and l ∈ [0, δ) such that t − s = nδ + l. Using (3.2) and (3.10) we
have that∫

Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω)

=

∫
Ω

∥Φ(s+ nδ + l, s+ nδ, φ(s+ nδ, s, ω))Φ(s+ nδ, s, ω)x(ω)∥ dP(ω)

≥ e−αl

K

∫
Ω

∥Φ(s+ nδ, s, ω)x(ω)∥ dP(ω)

≥ e−αδ

K

∫
Ω

∥Φ(s+ nδ, s, ω)x(ω)∥ dP(ω)

=
e−αδ

K

∫
Ω

∥Φ(s+ nδ, s+ (n− 1)δ, φ(s+ (n− 1)δ, s, ω))

Φ(s+ (n− 1)δ, s, ω)x(ω)∥ dP(ω)

≥ e−αδ

K

ρ(δ)

L

∫
Ω

∥Φ(s+ (n− 1)δ, s, ω)x(ω)∥ dP(ω)

≥ · · · ≥ e−αδ

K

(
ρ(δ)

L

)n ∫
Ω

∥x(ω)∥ dP(ω)

=
e−αδ

K
enln

ρ(δ)
L

∫
Ω

∥x(ω)∥ dP(ω)

=
e−αδ

K
e
t−s−l
δ ln

ρ(δ)
L

∫
Ω

∥x(ω)∥ dP(ω)

≥ e−αδ

K
e
t−s
δ ln

ρ(δ)
L e−

δ
δ ln

ρ(δ)
L

∫
Ω

∥x(ω)∥ dP(ω)

=
Le−αδ

Kρ(δ)
e
t−s
δ ln

ρ(δ)
L

∫
Ω

∥x(ω)∥ dP(ω)

≥ 1

N
ev(t−s)

∫
Ω

∥x(ω)∥ dP(ω)
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for all (t, s, x) ∈ Z, where N = Kρ(δ)eαδ

L +1 and v = 1
δ ln

ρ(δ)
L . Hence, (φ,Φ) is

u.e.us.m.

Remark 3.9. Theorem 3.8 is a version of a result due to Stoica and Megan
[27, Proposition 1] for uniform exponential instability in mean of stochastic
skew-evolution semiflows.

Theorem 3.10. Let (φ,Φ) be a stochastic skew-evolution semiflow with
uniform polynomial decay in mean. Then it is uniformly polynomially unstable
in mean if and only if there are a constant L > 1 and a nondecreasing function
η : [1,∞)→ R+ with lim

t→∞
η(t) =∞ such that

(3.11)

L

∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω) ≥ η
(
t+ 1

s+ 1

)∫
Ω

∥x(ω)∥ dP(ω), ∀(t, s, x) ∈ Z.

Proof. Necessity. It follows immediately from Theorem 3.4 for η(t) =
lnt.

Sufficiency. Let (φ1,Φ1) be defined as in Corollary 2.14. Since (φ,Φ) is
u.p.d.m., from Corollary 2.16 we have that (φ1,Φ1) is u.e.d.m. Let (t, s, x) ∈
Z. Using (3.11) we deduce that

L

∫
Ω

∥Φ1(t, s, ω)x(ω)∥ dP(ω) = L

∫
Ω

∥∥Φ(et − 1, es − 1, ω)x(ω)
∥∥ dP(ω)

≥ η
(
et

es

)∫
Ω

∥x(ω)∥ dP(ω)

= ρ(t− s)
∫
Ω

∥x(ω)∥ dP(ω),

where ρ(t) = η(et).
From Theorem 3.8 we have that (φ1,Φ1) is u.e.us.m. which implies from

the Corollary 2.14 that (φ,Φ) is u.p.us.m., the proof completes.

Remark 3.11. Theorem 3.10 is a generalization to the case of uniform
polynomial instability in mean of a result proved by Boruga in [7, Theorem
3.6] for the deterministic case of uniform polynomial instability of evolution
operators.

Theorem 3.12. Let (φ,Φ) be a stochastic skew-evolution semiflow with
uniform h-decay in mean. Then it is uniformly h-unstable in mean if and only
if there are a constant L > 1 and a nondecreasing function η : [1,∞) → R+

with lim
t→∞

η(t) =∞ such that

(3.12)

L

∫
Ω

∥Φ(t, s, ω)x(ω)∥ dP(ω) ≥ η
(
h(t)

h(s)

)∫
Ω

∥x(ω)∥ dP(ω), ∀(t, s, x) ∈ Z.
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Proof. Necessity. It follows immediately from Theorem 3.6 for η(t) =
lnt.

Sufficiency. Let (t, s, x) ∈ Z and (ψh,Ψh) be defined as in Proposition
2.17. Since (φ,Φ) is u.h.d.m., from Proposition 2.18 we have that (ψh,Ψh) is
u.p.d.m. By (3.12), we have

L

∫
Ω

∥Ψh(t, s, ω)x(ω)∥ dP(ω)

= L

∫
Ω

∥∥Φ(h−1(t+ 1), h−1(s+ 1), ω)x(ω)
∥∥ dP(ω)

≥ η
(
h(h−1(t+ 1))

h(h−1(s+ 1))

)∫
Ω

∥x(ω)∥ dP(ω)

= η

(
t+ 1

s+ 1

)∫
Ω

∥x(ω)∥ dP(ω).

From Theorem 3.10 we have that (ψh,Ψh) is u.p.us.m. which implies from
the Proposition 2.17 that (φ,Φ) is u.h.us.m. This completes the proof.
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[3] L. Barreira, D. Dragičević and C. Valls, Exponential dichotomies in average for flows

and admissibility, Publ. Math. Debrecen 89 (2016), 415–439.
[4] L. Barreira and C. Valls, Polynomial growth rates, Nonlinear Anal. 71 (2009), 5208–

5219.

[5] A. J. G. Bento and C. Silva, Stable manifolds for nonuniform polynomial dichotomies,
J. Funct. Anal. 257 (2009), 122–148.

[6] R. Boruga, Polynomial stability in average for cocycles of linear operators, Theory
Appl. Math. Comput. Sci. 9 (2019), 8–13.

[7] R. Boruga, Majorization criteria for polynomial stability and instability of evolution

operators, Sci. Bull. Politeh. Univ. Timiş. 64 (2019), 55–62.
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O PROSJEČNOJ UNIFORMNOJ NESTABILNOSTI
STOHASTIČKIH EVOLUCIJSKIH POLUTOKOVA

Tian Yue

Sažetak. U ovom radu proučavamo tri koncepta prosječne uniformne
nestabilnosti za stohastičke koso-evolucijske polutokove: prosječnu uni-

formnu eksponencijalnu nestabilnost, prosječnu uniformnu polinomijalnu
nestabilnost i prosječnu uniformnu h-nestabilnost. Ovi koncepti su

prirodne generalizacije determinističkog slučaja. Prikazane su veze izmedu

ovih pojmova. Dodatno, dana su neka svojstva širenja, logaritamski kri-
teriji i kriteriji majorizacije ovih koncepata.


