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Abstract. We continue the work initiated by A. Rojas, F. Barragán

and S. Maćıas in Conceptions on topological transitivity in products and

symmetric products. Thurk. J. Math. 44 (2020), 491–523. We consider
classes of functions not included in the mentioned paper, namely: exact in

the sense of Akin-Auslander-Nagar, fully exact, strongly transitive in the

sense of Akin-Auslander-Nagar, very strongly transitive, exact transitive,
strongly exact transitive and strongly product transitive.

1. Introduction

A dynamical system is a pair (X, f), where X is a nondegenerate topo-
logical space and f : X → X is a function. Given a topological space X and
a positive integer n, we consider the n-fold symmetric product of X, Fn(X),
consisting of all nonempty subsets of X with at most n points [8]. A function
f : X → X induces a function on Fn(X) denoted by Fn(f) : Fn(X)→ Fn(X)
and defined by Fn(f)(A) = f(A), for each A ∈ Fn(X). In this way,
the discrete dynamical system (X, f) induces the discrete dynamical system
(Fn(X),Fn(f)).

Let X1, . . . , Xm be topological spaces, with m ≥ 2, and for each i ∈
{1, . . . ,m}, let fi : Xi → Xi be a function. We define the function

∏m
i=1 fi :∏m

i=1Xi →
∏m
i=1Xi by

∏m
i=1 fi((x1, . . . , xm)) = (f1(x1), . . . , fm(xm)) for

each (x1, . . . , xm) ∈
∏m
i=1Xi. This function is called product function. In

this way, we can analyze the relationships between the dynamical proper-
ties of the systems (1) (Fn(

∏m
i=1Xi),Fn(

∏m
i=1 fi)); (2) (Fn(Xi),Fn(fi)),
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for each i ∈ {1, . . . ,m}; (3) (
∏m
i=1Xi,

∏m
i=1 fi) and (4) (Xi, fi), for each

i ∈ {1, . . . ,m}. In [18], Rojas et al. analyzed the relationships between the
dynamical systems (1), (2), (3) and (4) when any of them is: exact, mix-
ing, transitive, weakly mixing, totally transitive, strongly transitive, chaotic,
minimal, orbit-transitive, strictly orbit-transitive, ω-transitive, TT++, mild
mixing, exactly Devaney chaotic, backward minimal, totally minimal, scat-
tering, Touhey or an F -system. However, there exist more classes of func-
tions that we can study in the same way, namely: exact in the sense of
Akin-Auslander-Nagar, fully exact, strongly transitive in the sense of Akin-
Auslander-Nagar, very strongly transitive, exact transitive, strongly exact
transitive and strongly product transitive [2].

LetM be one of the following classes of functions: exact in the sense of
Akin-Auslander-Nagar, fully exact, strongly transitive in the sense of Akin-
Auslander-Nagar, very strongly transitive, exact transitive, strongly exact
transitive and strongly product transitive. Continuing with the work in [18]
we will study the relationships between the following four statements.

1. For each i ∈ {1, . . . ,m}, fi ∈M.
2.
∏m
i=1 fi ∈M.

3. Fn(
∏m
i=1 fi) ∈M.

4. For each i ∈ {1, . . . ,m}, Fn(fi) ∈M.

This paper is organized as follows: In Section 2, we recall basic defini-
tions and introduce some notation. In Section 3, we present some preliminary
results needed for the rest of the paper. In particular, we prove results con-
cerning the product function. Section 4 is devoted to study the relationships
between the functions

∏m
i=1 fi and fi, for each i ∈ {1, . . . ,m}. Finally, in Sec-

tion 5, we study the relationships between the functions Fn(
∏m
i=1 fi), Fn(fi)

and fi, for each i ∈ {1, . . . ,m}.

2. Definitions and notations

Throughout this paper, m is an integer greater than one. A set is said
to be nondegenerate if it has more than one point. By a (discrete) dynamical
system we mean a pair (X, f), where X is a nondegenerate topological space
and f : X → X is a not necessarily continuous function, X is called the
phase space. Let X be a topological space and let A be a subset of X, cl(A)
and int(A) denote the closure and interior of the set A in X, respectively. A
function f : X → Y between topological spaces is said to be open provided
f(U) is open in Y for each open subset U of X. The symbols Z, Z+ and
N denote the set of integers, the set of nonnegative integers and the set of
positive integers, respectively. The cartesian product of a finite collection
of topological spaces X1, . . . , Xm endowed with the product topology [16] is
denoted by

∏m
i=1Xi. On the other hand, given a finite collection of functions,

f1 : X1 → X1, . . . , fm : Xm → Xm, we define the product function
∏m
i=1 fi :
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i=1Xi →

∏m
i=1Xi by

∏m
i=1 fi((x1, . . . , xm)) = (f1(x1), . . . , fm(xm)), for

each (x1, . . . , xm) ∈
∏m
i=1Xi. In particular, if X is a topological space and

f : X → X is a function, the cartesian product of X with itself m times is
denoted by X×m and the product of f with itself m times is denoted by f×m.

Given a dynamical system (X, f), for each k ∈ N, the kth iteration of f is
defined as the repeated composition of f with itself k times and it is denoted
by fk, that is fk = f ◦fk−1, where f1 = f and f0 = idX , the identity function
on X. For a subset A of X and k ∈ Z, we denote by fk(A) the image of A
under fk, when k ≥ 0, and the preimage under f |k| when k < 0.

Remark 2.1. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical system,
let Ui, Vi be nonempty subsets of Xi, and let k ∈ N. Then the following hold.

1. (
∏m
i=1 fi)

k =
∏m
i=1 f

k
i .

2. If (
∏m
i=1 fi)

k(
∏m
i=1 Ui) =

∏m
i=1 Vi, then for all i ∈ {1, . . . ,m}, fki (Ui) =

Vi.

Let (X, f) be a dynamical system, and let x, y ∈ X. Then x is a:

• fixed point of f if f(x) = x,
• periodic point of f if there exists k ∈ N such that fk(x) = x. The set
of periodic points of f is denoted by Per(f),

• recurrent point of f provided that for each open subset U of X such
that x ∈ U , there exists l ∈ N such that f l(x) ∈ U ,

• quasi-periodic point of f provided that for each open subset U of X
such that x ∈ U , there exists l ∈ N such that fkl(x) ∈ U for every
k ≥ 0,

• nonwandering point of f if for each open subset U in X such that
x ∈ U there exists l ∈ N such that f l(U) ∩ U ̸= ∅,

• ω-limit point of y under f if for any k ∈ N and for any open subset
U of X such that x ∈ U , there exists a positive integer l ≥ k such
that f l(y) ∈ U . The set of ω-limit points of y under f , is denoted by
ω(y, f) and is called ω-limit set of y.

The orbit of x under f is the set O(x, f) = {fk(x) : k ∈ Z+}. Given a
subset A ofX, we say that A is +invariant under f if f(A) ⊆ A. A topological
space X is +invariant over open subsets under f , if for each open subset U of
X, U is +invariant under f . For subsets A and B of X, the following subset
of N is defined as nf (A,B) = {k ∈ N : A ∩ f−k(B) ̸= ∅}.

The following definitions can be found in [1, 3, 15,19].
Let (X, f) be a dynamical system. Then f is:

• exact, if for each nonempty open subset U of X, there exists k ∈ N
such that fk(U) = X,

• mixing, if for each pair of nonempty open subsets U and V of X, there
exists N ∈ N such that fk(U) ∩ V ̸= ∅, for all k ≥ N ,
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• transitive, if for every pair of nonempty open subsets U and V of X,
there exists k ∈ N such that fk(U) ∩ V ̸= ∅,

• weakly mixing, if f×2 is transitive,
• totally transitive, if fs is transitive, for all s ∈ N,
• strongly transitive, if for each nonempty open subset U of X, there
exists s ∈ N such that

⋃s
k=0 f

k(U) = X,
• chaotic, if it is transitive and Per(f) is dense in X (this definition

corresponds to chaos in the sense of Devaney [9, Remark 1]),
• orbit-transitive, if there exists x ∈ X such that cl(O(x, f)) = X,
• strictly orbit-transitive, if there exists x ∈ X such that cl(O(f(x), f)) =
X,

• ω-transitive, if there exists x ∈ X such that ω(x, f) = X,
• TT++, if for any pair of nonempty open subsets U and V of X, the set
nf (U, V ) is infinite,

• mild mixing, if for any transitive function f1 : X1 → X1, the function
f × f1 is transitive,

• exactly Devaney chaotic, if f is exact and Per(f) is dense in X,
• scattering, if for any minimal function (see [18]), f1 : X1 → X1, the
function f × f1 is transitive,

• Touhey, if for every pair of nonempty open subsets U and V of X,
there exists a periodic point x ∈ U and k ∈ Z+ such that fk(x) ∈ V ,

• an F -system, if f is totally transitive and Per(f) is dense in X,
• exact in the sense of Akin-Auslander-Nagar, if for any pair of nonempty
open subsets U and V of X, there exists k ∈ N such that fk(U) ∩
fk(V ) ̸= ∅,

• fully exact, if for each pair of nonempty open subsets U and V of X,
there exists k ∈ N such that int(fk(U) ∩ fk(V )) ̸= ∅,

• strongly transitive in the sense of Akin-Auslander-Nagar, if for each
nonempty open subset U of X,

⋃∞
k=1 f

k(U) = X,
• very strongly transitive, if for each nonempty open subset U of X, there

exists N ∈ N such that
⋃N
k=1 f

k(U) = X,
• exact transitive, if for each pair of nonempty open subsets U and V of
X,
⋃∞
k=1(f

k(U) ∩ fk(V )) is dense in X,
• strongly exact transitive, if for each pair of nonempty open subsets U
and V of X, we have that

⋃∞
k=1(f

k(U) ∩ fk(V )) = X,
• strongly product transitive, if for each k ∈ Z+, f

×k is strongly transitive
in the sense of Akin-Auslander-Nagar.

The concepts of exact in the sense of Akin-Auslander-Nagar and strongly
transitive in the sense of Akin-Auslander-Nagar were studied by Akin et al. [2]
just as exact and strongly transitive respectively. For convenience, from now
on we will refer to them as AAN exact and AAN strongly transitive.
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Also, since every exact function is surjective, we have that f : X → X is
exact if and only if, for all nonempty open subset U of X, there exists N ∈ N
such that fk(U) = X, for each k ≥ N . Throughout this paper we use this
equivalence.
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Figure 1. Inclusions between some classes of functions.

Diagram of Figure 1 shows some inclusions between the classes of func-
tions we are working with. Readers interested in the proofs of these inclusions
can see, for instance, [1, 3, 6, 15].
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Note that by adding certain properties to a phase space or to a function,
we may obtain different (stronger) dynamical properties, namely: Let X be
a compact metric space and let f : X → X be a function, then every exact
transitive function is weakly mixing [1, Theorem 2.18]; in addition if f is
an open function, then the concepts of AAN strongly transitive and very
strongly transitive are equivalent [1, Theorem 2.13]. If X is compact and
f is open and continuous, we have that AAN strongly transitive and very
strongly transitive are equivalent [1, Theorem 2.13]. If X is compact and f is
continuous, it follows that if f is exact transitive then f is weakly mixing.

3. Preliminary results

In this section we establish some preliminary results about the function∏m
i=1 fi.
In [18, Theorem 3.3], Rojas et al. studied relationships between transitive,

ω-limit, isolated and periodic points of the functions
∏m
i=1 fi and fi, for all

i ∈ {1, . . . ,m}. Now, we analyzed the same problem considering recurrent,
quasi-periodic and nonwandering points.

Clearly, the following implications hold: fixed =⇒ periodic =⇒ quasi-
periodic =⇒ recurrent =⇒ nonwandering. However, the reverse implications
do not hold.

Theorem 3.1. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical sys-
tem, and let (x1, . . . , xm) ∈

∏m
i=1Xi. If (x1, . . . , xm) is a recurrent, quasi-

periodic or nonwandering point of
∏m
i=1 fi, then, for each i ∈ {1, . . . ,m}, xi

is a recurrent, quasi-periodic or nonwandering point of fi, respectively.

Proof. Suppose that (x1, . . . , xm) is a recurrent point of
∏m
i=1 fi. Let

i0 ∈ {1, . . . ,m} and let Ui0 be an open subset of Xi0 such that xi0 ∈ Ui0 . For
each i ∈ {1, . . . ,m}\{i0}, let Ui = Xi. Then U =

∏m
i=1 Ui is an open subset

of
∏m
i=1Xi such that (x1, . . . , xm) ∈ U . By hypothesis, there exists k ∈ N

such that (
∏m
i=1 fi)

k((x1, . . . , xm)) ∈ U , that is (
∏m
i=1 f

k
i )((x1, . . . , xm)) ∈ U .

Therefore, fki0(xi0) ∈ Ui0 and thus, xi0 is a recurrent point of fi0 .
The proof for quasi-periodic and nonwandering points is similar to that

given for recurrent points.

Theorem 3.2. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical
system, let (x1, . . . , xm) ∈

∏m
i=1Xi, let i0 ∈ {1, . . . ,m}, and for each

i ∈ {1, . . . ,m}\{i0}, let xi ∈ Xi be a fixed point of fi. If xi0 is a recurrent,
quasi-periodic or nonwandering point of fi0 , then (x1, . . . , xm) is a recurrent,
quasi-periodic or nonwandering point of

∏m
i=1 fi, respectively.

Proof. Suppose that xi0 is a recurrent point of fi0 . Let Ω be an open
subset of

∏m
i=1Xi such that (x1, . . . , xm) ∈ Ω. Then, for every i ∈ {1, . . . ,m},

there exists an open subset Ui of Xi such that (x1, . . . , xm) ∈ U =
∏m
i=1 Ui ⊆
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Ω. By hypothesis, there exists ki0 ∈ N such that f
ki0
i0

(xi0) ∈ Ui0 . On the
other hand, since, for all i ∈ {1, . . . ,m}\{i0}, xi is a fixed point, we have that

f
ki0
i (xi) ∈ Ui. Consequently, (

∏m
i=1 f

ki0
i )((x1, . . . , xm)) ∈ U , that is to say,

(
∏m
i=1 fi)

ki0 ((x1, . . . , xm)) ∈ U ⊆ Ω. Therefore, (x1, . . . , xm) is a recurrent
point of

∏m
i=1 fi.

The proof for quasi-periodic and nonwandering points is similar to that
given for recurrent points.

Definition 3.3. Let (X, f) and (Y, g) be dynamical systems. Then f
and g are said to be topologically conjugate if there exists a homeomorphism
h : X → Y such that h ◦ f = g ◦ h. The homeomorphism h is called a
topological conjugacy between f and g.

Remark 3.4. Let (X, f) and (Y, g) be dynamical systems, let h : X → Y
be a homeomorphism, and let k ∈ N. If f and g are topologically conjugate
via h then:

(1) g and f are topologically conjugate via h−1,
(2) fk = h−1 ◦ gk ◦ h and gk = h ◦ fk ◦ h−1.

The following result follows from [10, Proposition 2.3.29] and [7, Lemma
7].

Theorem 3.5. Let X1, . . . , Xm, Y1, . . . , Ym be topological spaces, and for
each i ∈ {1, . . . ,m}, let fi : Xi → Yi be a function. For each i ∈ {1, . . . ,m},
fi is a homeomorphism if and only if

∏m
i=1 fi is a homeomorphism.

Our next result follows from Theorem 3.5.

Theorem 3.6. Let (X, f) and (Y, g) be dynamical systems, let h : X → Y
be a homeomorphism, and let k ∈ N. Then f and g are topologically conjugate
via h if and only if f×k and g×k are topologically conjugate via h×k.

There are many dynamical properties that are preserved under topological
conjugacy.

Theorem 3.7. Let (X, f) and (Y, g) be dynamical systems, let h : X → Y
be a topological conjugacy between f and g, and let M be one of the follow-
ing classes of functions: AAN exact, fully exact, AAN strongly transitive,
very strongly transitive, exact transitive, strongly exact transitive or strongly
product transitive. Then f ∈M if and only if g ∈M.

Proof. Suppose that f is AAN exact. Let U and V be nonempty open
subsets of Y . Then h−1(U) and h−1(V ) are nonempty open subsets of X.
By hypothesis, there exists k ∈ N such that fk(h−1(U)) ∩ fk(h−1(V )) ̸= ∅,
that is, h−1(gk(U)) ∩ h−1(gk(V )) = h−1(gk(U) ∩ gk(V )) ̸= ∅. Therefore,
gk(U) ∩ gk(V ) ̸= ∅ and thus, g is AAN exact.
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Suppose that f is fully exact. Let U and V be nonempty open subsets
of Y . Then h−1(U) and h−1(V ) are nonempty open subsets of X. Since f is
fully exact, there exists k ∈ N such that int(fk(h−1(U)) ∩ fk(h−1(V ))) ̸= ∅.
Thus, int(h−1(gk(U)) ∩ h−1(gk(V ))) = int(h−1(gk(U) ∩ gk(V ))) ̸= ∅. Let
x ∈ int(h−1(gk(U)∩gk(V ))). Hence, there exists an open subsetW of X such
that x ∈ W ⊆ h−1(gk(U) ∩ gk(V )). Finally, h(x) ∈ h(W ) ⊆ gk(U) ∩ gk(V ).
Therefore, h(x) ∈ int(gk(U) ∩ gk(V )) and thus, g is fully exact.

Suppose that f is AAN strongly transitive. Let U be a nonempty open
subset of Y . It follows that:

∞⋃
k=1

gk(U) =

∞⋃
k=1

(h ◦ fk ◦ h−1)(U)

=

∞⋃
k=1

h(fk(h−1(U)))

= h

( ∞⋃
k=1

fk(h−1(U))

)
.

Since f is AAN strongly transitive,
⋃∞
k=1 g

k(U) = h(X) = Y . Therefore,
g is AAN strongly transitive.

The proof for very strongly transitivity is similar to that given for AAN
strongly transitivity.

Suppose that f is exact transitive. Let U and V be nonempty open
subsets of Y . Then, h−1(U) and h−1(V ) are nonempty open subsets of X.
By hypothesis,

⋃∞
k=1(f

k(h−1(U)) ∩ fk(h−1(V ))) is dense in X. Since h is a
homeomorphism, we have that h(

⋃∞
k=1(f

k(h−1(U)) ∩ fk(h−1(V )))) is dense
in Y . Also:

h

( ∞⋃
k=1

(fk(h−1(U)) ∩ fk(h−1(V )))

)
=

∞⋃
k=1

h(fk(h−1(U)) ∩ fk(h−1(V )))

=

∞⋃
k=1

(gk(U) ∩ gk(V )).

Therefore, g is exact transitive.
Suppose that f is strongly exact transitive. Let U and V be nonempty

open subsets of Y . Hence, h−1(U) and h−1(V ) are nonempty open subsets
of X. By hypothesis,

⋃∞
k=1(f

k(h−1(U)) ∩ fk(h−1(V ))) = X. It follows that
h(
⋃∞
k=1(f

k(h−1(U))∩fk(h−1(V )))) = Y . Finally,
⋃∞
k=1(g

k(U)∩gk(V )) = Y .
Therefore, g is strongly exact transitive.

Suppose that f is strongly product transitive. Then, f×k is AAN strongly
transitive for all k ∈ Z+. On the other hand, by Theorem 3.6, f×k and g×k are
topologically conjugate via h×k. Finally, by the third paragraph of the proof
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of this theorem, g×k is AAN strongly transitive for each k ∈ Z+. Therefore,
g is strongly product transitive.

By Remark 3.4, part (1), we have the converse.

We conclude this section establishing that the functions (
∏m
i=1 fi)

×k and∏m
i=1 f

×k
i are topologically conjugate.

Theorem 3.8. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical sys-

tem, let k ∈ N, and let h : (
∏m
i=1Xi)

×k →
∏m
i=1X

×k
i be a function given

by:

h(((x11, . . . , x
1
m), . . . , (xk1 , . . . , x

k
m))) = ((x11, . . . , x

k
1), . . . , (x

1
m, . . . , x

k
m)).

Then h is a homeomorphism.

Proof. It is not difficult to prove that h is a bijective function. We shall
show that h is a continuous and open function. Let U be an open subset of∏m
i=1X

×k
i and let X ∈ h−1(U). It follows that, for each i ∈ {1, . . . ,m} and

for all j ∈ {1, . . . , k}, there exists a nonempty open subset U ji of Xi such

that h(X ) ∈
∏m
i=1(

∏k
j=1 U

j
i ) ⊆ U , that is, X ∈ h−1

(∏m
i=1

(∏k
j=1 U

j
i

))
⊆

h−1 (U) . Even more, since h−1
(∏m

i=1

(∏k
j=1 U

j
i

))
=
∏k
j=1

(∏m
i=1 U

j
i

)
, we

have that h−1(U) is an open subset of (
∏m
i=1Xi)

×k. Therefore, h is continu-
ous.

Now, let U be an open subset of (
∏m
i=1Xi)

×k and let X ∈ h(U).
Then, for each j ∈ {1, . . . , k} and for all i ∈ {1, . . . ,m}, there exists a

nonempty open subset U ji of Xi such that h−1(X ) ∈
∏k
j=1

(∏m
i=1 U

j
i

)
⊆ U .

Even more, since h(
∏k
j=1(

∏m
i=1 U

j
i )) =

∏m
i=1(

∏k
j=1 U

j
i ), we conclude that

X ∈
∏m
i=1(

∏k
j=1 U

j
i ) ⊆ h(U). Therefore, h is open and thus, h is a homeo-

morphism.

As a consequence of Theorem 3.8, we have the following result.

Theorem 3.9. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical sys-

tem, let k ∈ N, and let h : (
∏m
i=1Xi)

×k →
∏m
i=1X

×k
i be the same as in

Theorem 3.8. Then (
∏m
i=1 fi)

×k is topologically conjugate to
∏m
i=1 f

×k
i via

the homeomorphism h.

By Remark 3.4, part (1), and Theorems 3.9 and 3.7, we immediately
obtain the following theorem.

Theorem 3.10. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical
system, let k ∈ N, and let M be one of the following classes of functions:
AAN exact, fully exact, AAN strongly transitive, very strongly transitive, ex-
act transitive, strongly exact transitive or strongly product transitive. Then
(
∏m
i=1 fi)

×k ∈M if and only if
∏m
i=1 f

×k
i ∈M.
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4. Dynamic properties of product functions

In this section, we study the relationships that exist between the functions∏m
i=1 fi and fi, for each i ∈ {1, . . . ,m}, when any of them is AAN exact,

fully exact, AAN strongly transitive, very strongly transitive, exact transitive,
strongly exact transitive or strongly product transitive.

Theorem 4.1. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical sys-
tem. Then, for each i ∈ {1, . . . ,m}, fi is AAN exact if and only if

∏m
i=1 fi is

AAN exact.

Proof. Suppose that
∏m
i=1 fi is AAN exact. Let i0 ∈ {1, . . . ,m} and let

Ui0 and Vi0 be nonempty open subsets of Xi0 . For each i ∈ {1, . . . ,m}\{i0},
let Ui = Xi and Vi = Xi. Then U =

∏m
i=1 Ui and V =

∏m
i=1 Vi are

nonempty open subsets of
∏m
i=1Xi. By hypothesis, there exists k ∈ N

such that (
∏m
i=1 fi)

k(U) ∩ (
∏m
i=1 fi)

k(V) ̸= ∅, that is to say, (
∏m
i=1 f

k
i (Ui)) ∩

(
∏m
i=1 f

k
i (Vi)) ̸= ∅. Therefore, fki0(Ui0) ∩ f

k
i0
(Vi0) ̸= ∅ and thus, fi0 is AAN

exact.
Now, suppose that for all i ∈ {1, . . . ,m}, fi is AAN exact. Let Ω1 and Ω2

be nonempty open subsets of
∏m
i=1Xi. Then, for each i ∈ {1, . . . ,m}, there

exist nonempty open subsets Ui and Vi of Xi such that U =
∏m
i=1 Ui ⊆ Ω1 and

V =
∏m
i=1 Vi ⊆ Ω2. By hypothesis, for each i ∈ {1, . . . ,m}, there exists ki ∈ N

such that fkii (Ui)∩fkii (Vi) ̸= ∅. Let k = max{k1, . . . , km}. It follows that, for
each i ∈ {1, . . . ,m}, there exists li ∈ N ∪ {0} such that k = ki + li and thus,

fki (Ui)∩fki (Vi) = f lii (f
ki
i (Ui)∩fkii (Vi)) ̸= ∅. In consequence, (

∏m
i=1 f

k
i (Ui))∩

(
∏m
i=1 f

k
i (Vi)) ̸= ∅. Finally, (

∏m
i=1 fi)

k(U) ∩ (
∏m
i=1 fi)

k(V) ̸= ∅. Therefore,
(
∏m
i=1 fi)

k(Ω1) ∩ (
∏m
i=1 fi)

k(Ω2) ̸= ∅ and thus,
∏m
i=1 fi is AAN exact.

Theorem 4.2. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical sys-
tem, and letM be one of the following classes of functions: fully exact, AAN
strongly transitive, very strongly transitive, exact transitive, strongly exact
transitive or strongly product transitive. If

∏m
i=1 fi ∈ M, then, for each

i ∈ {1, . . . ,m}, fi ∈M.

Proof. Let i0 ∈ {1, . . . ,m}, let Ui0 and Vi0 be nonempty open subsets
of Xi0 , and for each i ∈ {1, . . . ,m}\{i0}, let Ui = Xi and Vi = Xi. It follows
that, U =

∏m
i=1 Ui and V =

∏m
i=1 Vi are nonempty open subsets of

∏m
i=1Xi.

Suppose that
∏m
i=1 fi is fully exact. This implies that, there exists n ∈ N

such that int((
∏m
i=1 fi)

k(U) ∩ (
∏m
i=1 fi)

k(V)) ̸= ∅. Then

int

((
m∏
i=1

fki (Ui)

)
∩

(
m∏
i=1

fki (Vi)

))
̸= ∅.

In consequence,
(∏m

i=1 int
(
fki (Ui)

))
∩
(∏m

i=1 int
(
fki (Vi)

))
̸= ∅ and thus, we

obtain that int(fki0(Ui0) ∩ f
k
i0(Vi0)) ̸= ∅. Therefore, fi0 is fully exact.
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Suppose that
∏m
i=1 fi is AAN strongly transitive. Then, we have that⋃∞

k=1(
∏m
i=1 fi)

k(U) =
∏m
i=1Xi. Let xi0 ∈ Xi0 , and for all i ∈ {1, . . . ,m}\{i0},

let xi ∈ Xi. If follows that, φ = (x1, . . . , xm) ∈
∏m
i=1Xi. Consequently, there

exists ki0 ∈ N such that φ ∈ (
∏m
i=1 fi)

ki0 (U), that is, φ ∈
∏m
i=1 f

ki0
i (Ui).

Therefore, xi0 ∈ f
ki0
i0

(Ui0) ⊆
⋃∞
k=1 f

k
i0
(Ui0) and thus, fi0 is AAN strongly

transitive.
The proof for very strongly transitivity is similar to that given for AAN

strongly transitivity.

Suppose that
∏m
i=1 fi is exact transitive. Then,

⋃∞
k=1((

∏m
i=1 fi)

k
(U) ∩

(
∏m
i=1 fi)

k
(V)) is dense in

∏m
i=1Xi. Let Wi0 be a nonempty open subset

of Xi0 and for each i ∈ {1, . . . ,m}\{i0}, let Wi = Xi. It follows that,
W =

∏m
i=1Wi is a nonempty open subset of

∏m
i=1Xi. Consequently, there

exists ki0 ∈ N such that ((
∏m
i=1 fi)

ki0 (U) ∩ (
∏m
i=1 fi)

ki0 (V)) ∩ W ≠ ∅, that
is, (

∏m
i=1 f

ki0
i (Ui) ∩

∏m
i=1 f

ki0
i (Vi)) ∩ W ̸= ∅. In consequence, (f

ki0
i0

(Ui0) ∩
f
ki0
i0

(Vi0))∩Wi0 ̸= ∅. Therefore,
⋃∞
k=1(f

k
i0
(Ui0)∩ fki0(Vi0)) is dense in Xi0 and

thus, fi0 is exact transitive.
Suppose that

∏m
i=1 fi is strongly exact transitive. Then,

∞⋃
k=1

( m∏
i=1

fi

)k
(U) ∩

(
m∏
i=1

fi

)k
(V)

 =

m∏
i=1

Xi.

Let xi0 ∈ Xi0 , and for each i ∈ {1, . . . ,m}\{i0}, let xi ∈ Xi. Thus, there
exists ki0 ∈ N such that φ = (x1, . . . , xm) ∈ (

∏m
i=1 fi)

ki0 (U)∩(
∏m
i=1 fi)

ki0 (V),
that is, φ ∈ (

∏m
i=1 f

ki0
i (Ui))∩(

∏m
i=1 f

ki0
i (Vi)). Consequently, xi0 ∈ f

ki0
i0

(Ui0)∩
f
ki0
i0

(Vi0). Therefore,
⋃∞
k=1(f

k
i0
(Ui0)∩fki0(Vi0)) = Xi0 and thus, fi0 is strongly

exact transitive.
Suppose that

∏m
i=1 fi is strongly product transitive. Then, (

∏m
i=1 fi)

×k

is AAN strongly transitive, for all k ∈ Z+. By Theorem 3.10, we have that∏m
i=1 f

×k
i is AAN strongly transitive. Finally, by the second paragraph of the

proof of this theorem, we have that f×ki0 is AAN strongly transitive for all
k ∈ Z+. Therefore, fi0 is strongly product transitive.

For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical system where Xi is
+invariant over open subsets under fi. Rojas et al. [18, Theorem 4.10] prove
that: if for all i ∈ {1, . . . ,m}, fi is transitive, weakly mixing, totally transitive,
chaotic, orbit-transitive, strictly orbit-transitive, ω-transitive, TT++, Touhey,
scattering, an F -system or mild mixing, then

∏m
i=1 fi has the same property.

In Theorems 4.6, 4.7 and 4.8, we present an alternative form of [18, Theorem
4.10] when M is one of the following classes of functions: transitive, weakly
mixing, totally transitive, chaotic, TT++, Touhey or an F -system. Specifi-
cally, we replace condition “for all i ∈ {1, . . . ,m}, Xi is +invariant over open
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subsets under fi and fi ∈ M” by “for all i ∈ {1, . . . ,m}\{i0}, fi is mixing,
and fi0 is surjective, continuous and transitive (respectively, weakly mixing,
totally transitive or TT++)” (Theorem 4.6), “for all i ∈ {1, . . . ,m}\{i0}, fi is
mixing and Per(fi) is dense inXi, and fi0 is surjective, continuous and chaotic
(respectively, an F -system)” (Theorem 4.7) and “for all i ∈ {1, . . . ,m}\{i0},
fi is continuous and mixing, and Per(fi) is dense in Xi, and fi0 surjec-
tive, continuous and Touhey” (Theorem 4.8). Furthermore, we explore the
following classes of functions: AAN exact, fully exact, AAN strongly transi-
tive, very strongly transitive, exact transitive, strongly exact transitive and
strongly product transitive and we obtain results that are analogous to those
presented in [18, Theorem 4.10].

Remark 4.3 (Compare with [18, Remark 4.9]). Let (X, f) be a dynami-
cal system. Observe that, if X is +invariant over open subsets under f , then
f cannot be AAN strongly transitive, very strongly transitive, strongly exact
transitive or strongly product transitive unless X has the trivial topology.

Theorem 4.4. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical sys-
tem, let i0 ∈ {1, . . . ,m}, for all i ∈ {1, . . . ,m}\{i0}, let fi be exact, and let
fi0 be surjective. If fi0 is AAN strongly transitive, strongly transitive, very
strongly transitive, strongly exact transitive or strongly product transitive, then∏m
i=1 fi is AAN strongly transitive, strongly transitive, very strongly transi-

tive, strongly exact transitive or strongly product transitive, respectively.

Proof. Suppose that fi0 is AAN strongly transitive. Let Ω be a
nonempty open subset of

∏m
i=1Xi. Then, for each i ∈ {1, . . . ,m}, there

exists a nonempty open subset Ui of Xi such that U =
∏m
i=1 Ui ⊆ Ω.

Since for each i ∈ {1, . . . ,m}\{i0}, fi is exact, there exists Ni ∈ N such
that f li (Ui) = Xi, for all l ≥ Ni. By hypothesis,

⋃∞
k=1 f

k
i0
(Ui0) = Xi0 .

Let N = max{Ni : i ∈ {1, . . . ,m}\{i0}}. Then,
⋃∞
k=1 f

N+k
i0

(Ui0) = Xi0 .

Finally, if (x1, . . . , xm) ∈
∏m
i=1Xi, there exists ki0 ∈ N such that xi0 ∈

f
N+ki0
i0

(Ui0), and for all i ∈ {1, . . . ,m}\{i0}, xi ∈ f
N+ki0
i (Ui). Then,

(x1, . . . , xm) ∈
∏m
i=1 f

N+ki0
i (Ui), that is, (x1, . . . , xm) ∈ (

∏m
i=1 fi)

N+ki0 (U) ⊆⋃∞
k=1(

∏m
i=1 fi)

k(Ω). Therefore,
∏m
i=1 fi is AAN strongly transitive.

The proof for very strongly transitivity and strongly transitivity is similar
to that given for AAN strongly transitivity.

Suppose that fi0 is strongly exact transitive. Let Ω1 and Ω2 be nonempty
open subsets of

∏m
i=1Xi. For all i ∈ {1, . . . ,m}, there exist nonempty open

subsets Ui and Vi of Xi such that U =
∏m
i=1 Ui ⊆ Ω1 and V =

∏m
i=1 Vi ⊆ Ω2.

Since for each i ∈ {1, . . . ,m}\{i0}, fi is exact, we have that there exist

N1
i , N

2
i ∈ N such that fk1i (Ui) = Xi and fk2i (Vi) = Xi for all k1 ≥ N1

i

and k2 ≥ N2
i . By hypothesis,

⋃∞
k=1(f

k
i0
(Ui0) ∩ fki0(Vi0)) = Xi0 . Let

N = max{N1
i , N

2
i : i ∈ {1, . . . ,m}\{i0}}. Note that

⋃∞
k=1(f

N+k
i0

(Ui0) ∩
fN+k
i0

(Vi0)) = Xi0 . Let (x1, . . . , xm) ∈
∏m
i=1Xi. Then, there exists
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ki0 ∈ N such that xi0 ∈ f
N+ki0
i0

(Ui0) ∩ f
N+ki0
i0

(Vi0). On the other hand,

for each i ∈ {1, . . . ,m}\{i0}, xi ∈ f
N+ki0
i (Ui) ∩ f

N+ki0
i (Vi). In consequence,

(x1, . . . , xm) ∈
∏m
i=1 f

N+ki0
i (Ui) ∩

∏m
i=1 f

N+ki0
i (Vi), that is to say,

(x1, . . . , xm) ∈

(
m∏
i=1

fi

)N+ki0

(U) ∩

(
m∏
i=1

fi

)N+ki0

(V).

This implies that

(x1, . . . , xm) ∈
∞⋃
k=1

( m∏
i=1

fi

)k
(Ω1) ∩

(
m∏
i=1

fi

)k
(Ω2)

 .

Therefore,
∏m
i=1 fi is strongly exact transitive.

Suppose that fi0 is strongly product transitive. Then, f×ki0 is AAN
strongly transitive for all k ∈ Z+. Also, by [18, Theorem 4.3], for each

i ∈ {1, . . . ,m}\{i0}, f×ki is exact. By the first paragraph of the proof of

this theorem, we have that
∏m
i=1 f

×k
i is AAN strongly transitive for every

k ∈ Z+. Finally, by Theorem 3.10, (
∏m
i=1 fi)

×k is AAN strongly transitive
for all k ∈ Z+. Therefore,

∏m
i=1 fi is strongly product transitive.

Theorem 4.5. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical sys-
tem, let i0 ∈ {1, . . . ,m}, let fi0 be continuous and exact transitive, and for
each i ∈ {1, . . . ,m}\{i0} let fi be exact. Then

∏m
i=1 fi is exact transitive.

Proof. Let Ω1 and Ω2 be nonempty open subsets of
∏m
i=1Xi. Then,

for each i ∈ {1, . . . ,m}, there exist nonempty open subsets Ui and Vi of Xi

such that U =
∏m
i=1 Ui ⊆ Ω1 and V =

∏m
i=1 Vi ⊆ Ω2. Since for every i ∈

{1, . . . ,m}\{i0}, fi is exact, there exist N1
i , N

2
i ∈ N such that fk1i (Ui) = Xi,

for each k1 ≥ N1
i and fk2i (Vi) = Xi, for every k2 ≥ N2

i . On the other hand,
since fi0 is exact transitive,

⋃∞
k=1(f

k
i0
(Ui0)∩fki0(Vi0)) is dense in Xi0 . Let N =

max{N1
i , N

2
i : i ∈ {1, . . . ,m}\{i0}}. Since fNi0 is continuous, we have that⋃∞

k=1(f
N+k
i0

(Ui0) ∩ fN+k
i0

(Vi0)) is dense in Xi0 . Let Ω3 be a nonempty open

subset of
∏m
i=1Xi. Then, for each i ∈ {1, . . . ,m}, there exists a nonempty

open subset Wi of Xi such that W =
∏m
i=1Wi ⊆ Ω3. In consequence, there

exist ki0 ∈ N and xi0 ∈ Xi0 such that xi0 ∈ f
N+ki0
i0

(Ui0) ∩ f
N+ki0
i0

(Vi0) ∩
Wi0 . On the other hand, for all i ∈ {1, . . . ,m}\{i0}, f

N+ki0
i (Ui) = Xi and

f
N+ki0
i (Vi) = Xi. Finally, for all i ∈ {1, . . . ,m}\{i0}, let xi ∈ Wi. Notice
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that (x1, . . . , xm) ∈ (
∏m
i=1 f

N+ki0
i (Ui)) ∩ (

∏m
i=1 f

N+ki0
i (Vi)), that is to say,

(x1, . . . , xm) ∈

( m∏
i=1

fi

)N+ki0

(U) ∩

(
m∏
i=1

fi

)N+ki0

(V)

 ∩W
⊆

( m∏
i=1

fi

)N+ki0

(Ω1) ∩

(
m∏
i=1

fi

)N+ki0

(Ω2)

 ∩ Ω3.

Therefore,
⋃∞
k=1((

∏m
i=1 fi)

k(Ω1) ∩ (
∏m
i=1 fi)

k(Ω2)) is dense in
∏m
i=1Xi

and thus,
∏m
i=1 fi is exact transitive.

Theorem 4.6. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical sys-
tem, let i0 ∈ {1, . . . ,m}, let fi0 be surjective and continuous, and for each
i ∈ {1, . . . ,m}\{i0}, let fi be mixing. If fi0 is transitive, weakly mixing, to-
tally transitive or TT++, then

∏m
i=1 fi is transitive, weakly mixing, totally

transitive or TT++, respectively.

Proof. Suppose that fi0 is transitive. Let Ω1 and Ω2 be nonempty
open subsets of

∏m
i=1Xi. For each i ∈ {1, . . . ,m}, there exist nonempty

open subsets Ui and Vi of Xi such that U =
∏m
i=1 Ui ⊆ Ω1 and V =∏m

i=1 Vi ⊆ Ω2. Since for all i ∈ {1, . . . ,m}\{i0}, fi is mixing, there exists
Ni ∈ N such that fki (Ui) ∩ Vi ̸= ∅, for all k ≥ Ni. Let N = max{Ni :
i ∈ {1, . . . ,m}\{i0}}. It is clear that fNi0 is surjective and continuous and

thus, we have that f−Ni0 (Vi0) is a nonempty open subset of Xi0 . By hy-

pothesis, there exists l ∈ N such that f li0(Ui0) ∩ f
−N
i0

(Vi0) ̸= ∅. Hence,

fNi0 (f
l
i0
(Ui0) ∩ f−Ni0 (Vi0)) = fN+l

i0
(Ui0) ∩ Vi0 ̸= ∅. On the other hand, for

each i ∈ {1, . . . ,m}\{i0}, fN+l
i (Ui) ∩ Vi ̸= ∅. Consequently, there exists

(x1, . . . , xm) ∈ (
∏m
i=1 f

N+l
i (Ui)) ∩ V = ((

∏m
i=1 fi)

N+l(U)) ∩ V and thus,
((
∏m
i=1 fi)

N+l(Ω1)) ∩ Ω2 ̸= ∅. Therefore,
∏m
i=1 fi is transitive.

Suppose that fi0 is weakly mixing. Let Ω1,Ω2,Σ1 and Σ2 be nonempty
open subsets of

∏m
i=1Xi. Then, for all i ∈ {1, . . . ,m}, there exists nonempty

open subsets U1
i , U

2
i , V

1
i and V 2

i of Xi such that U1 =
∏m
i=1 U

1
i ⊆ Ω1, U2 =∏m

i=1 U
2
i ⊆ Ω2, V1 =

∏m
i=1 V

1
i ⊆ Σ1 and V2 =

∏m
i=1 V

2
i ⊆ Σ2. Since for

each i ∈ {1, . . . ,m}\{i0}, fi is mixing, there exists N1
i , N

2
i ∈ N such that

fk1i (U1
i ) ∩ V 1

i ̸= ∅ and fk2i (U2
i ) ∩ V 2

i ̸= ∅, for all k1 ≥ N1
i and k2 ≥ N2

i .
Let N = max{N1

i , N
2
i : i ∈ {1, . . . ,m}\{i0}}. Since fNi0 is surjective and

continuous, we have that f−Ni0 (V 1
i0
) and f−Ni0 (V 2

i0
) are nonempty open subsets

ofXi0 . By hypothesis, there exists l ∈ N such that f li0(U
1
i0
)∩f−Ni0 (V 1

i0
) ̸= ∅ and

f li0(U
2
i0
)∩f−Ni0 (V 2

i0
) ̸= ∅. This implies that fN+l

i0
(U1

i0
)∩V 1

i0
̸= ∅ and fN+l

i0
(U2

i0
)∩

V 2
i0
̸= ∅. On the other hand, for each i ∈ {1, . . . ,m}\{i0}, fN+l

i (U1
i ) ∩

V 1
i ̸= ∅ and fN+l

i (U2
i ) ∩ V 2

i ̸= ∅. Consequently, there exist (x1, . . . , xm) ∈
(
∏m
i=1 fi)

N+l(U1) ∩ V1 and (y1, . . . , ym) ∈ (
∏m
i=1 fi)

N+l(U2) ∩ V2 and thus,
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(
∏m
i=1 fi)

N+l(Ω1)∩Σ1 ̸= ∅ and (
∏m
i=1 fi)

N+l(Ω2)∩Σ2 ̸= ∅. Therefore,
∏m
i=1 fi

is weakly mixing.
Suppose that fi0 is totally transitive. Let s ∈ N, and let Ω1 and Ω2 be

nonempty open subsets of
∏m
i=1Xi. Then, for each i ∈ {1, . . . ,m}, there ex-

ist nonempty open subsets Ui and Vi of Xi such that U =
∏m
i=1 Ui ⊆ Ω1

and V =
∏m
i=1 Vi ⊆ Ω2. Since for all i ∈ {1, . . . ,m}\{i0}, fi is mix-

ing, there exists Ni ∈ N such that fki (Ui) ∩ Vi ̸= ∅, for each k ≥ Ni.
Let N = max{Ni : i ∈ {1, . . . ,m}\{i0}}. It is clear that fsNi0 is sur-

jective and continuous and thus, f−sNi0
(Vi0) is a nonempty open subset of

Xi0 . By hypothesis, since fsi0 is transitive, there exists l ∈ N such that

(fsi0)
l(Ui0)∩f−sNi0

(Vi0) ̸= ∅. Consequently, fsN+sl
i0

(Ui0)∩Vi0 ̸= ∅. On the other

hand, for all i ∈ {1, . . . ,m}\{i0}, fsN+sl
i (Ui)∩Vi ̸= ∅. This implies that, there

exists (x1, . . . , xm) ∈ (
∏m
i=1 f

sN+sl
i (Ui))∩ (

∏m
i=1 Vi) = (

∏m
i=1 fi)

sN+sl
(U)∩V

and thus, ((
∏m
i=1 fi)

s)N+l (U)∩V ≠ ∅. Finally, ((
∏m
i=1 fi)

s)N+l(Ω1)∩Ω2 ̸= ∅.
Therefore, (

∏m
i=1 fi)

s
is transitive and thus,

∏m
i=1 fi is totally transitive.

Suppose that fi0 is TT++. Let Ω1 and Ω2 be nonempty open subsets of∏m
i=1Xi. Then, for all i ∈ {1, . . . ,m}, there exist nonempty open subsets Ui

and Vi of Xi such that U =
∏m
i=1 Ui ⊆ Ω1 and V =

∏m
i=1 Vi ⊆ Ω2. Since for all

i ∈ {1, . . . ,m}\{i0}, fi is mixing, there exists Ni ∈ N such that fki (Ui)∩Vi ̸=
∅, for all k ≥ Ni. Let N = max{Ni : i ∈ {1, . . . ,m}\{i0}}. Notice that fi0
is surjective and continuous and thus, f−Ni0 (Vi0) is a nonempty open subset

of Xi0 . Furthermore, since fi0 is TT++, we have that nfi0 (Ui0 , f
−N
i0

(Vi0)) is

infinite. Let l ∈ nfi0 (Ui0 , f
−N
i0

(Vi0)). Then, f li0(Ui0) ∩ f
−N
i0

(Vi0) ̸= ∅. Conse-

quently, fN+l
i0

(Ui0) ∩ Vi0 ̸= ∅. On the other hand, for all i ∈ {1, . . . ,m}\{i0},
fN+l
i (Ui) ∩ Vi ̸= ∅. By the above, (

∏m
i=1 fi)

N+l(U) ∩ V ̸= ∅ and thus,

N + l ∈ n∏m
i=1 fi

(Ω1,Ω2). Finally, since nfi0 (Ui0 , f
−N
i0

(Vi0)) is infinite, we

have that n∏m
i=1 fi

(Ω1,Ω2) is infinite. Therefore,
∏m
i=1 fi is TT++.

As a consequence of [18, Theorem 3.15] and Theorem 4.6, we have the
following statements.

Theorem 4.7. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical sys-
tem, let i0 ∈ {1, . . . ,m}, let fi0 be surjective and continuous, and for each
i ∈ {1, . . . ,m}\{i0}, let fi be mixing and Per(fi) is dense in Xi. If fi0 is
chaotic or an F -system, then

∏m
i=1 fi is chaotic or an F -system, respectively.

Theorem 4.8. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical sys-
tem, let i0 ∈ {1, . . . ,m}, let fi0 be surjective, continuous and Touhey, and
for each i ∈ {1, . . . ,m}\{i0}, let fi be continuous and mixing and Per(fi) is
dense in Xi. Then

∏m
i=1 fi is Touhey.

Proof. Let Ω1 and Ω2 be nonempty open subsets of
∏m
i=1Xi. Then,

for all i ∈ {1, . . . ,m}, there exist nonempty open subsets Ui and Vi of
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Xi such that U =
∏m
i=1 Ui ⊆ Ω1 and V =

∏m
i=1 Vi ⊆ Ω2. Since for

every i ∈ {1, . . . ,m}\{i0}, fi is mixing, there exists Ni ∈ N such that
fki (Ui) ∩ Vi ̸= ∅, for all k ≥ Ni. Let N = max{Ni : i ∈ {1, . . . ,m}\{i0}}.
Notice that fNi0 is surjective and continuous and thus, f−Ni0 (Vi0) is a nonempty
open subset of Xi0 . By hypothesis, there exist a periodic point xi0 ∈ Ui0 and

ki0 ∈ Z+ such that f
ki0
i0

(xi0) ∈ f−Ni0 (Vi0). It follows that, f
N+ki0
i0

(xi0) ∈ Vi0 .
On the other hand, for each i ∈ {1, . . . ,m}\{i0}, f

N+ki0
i (Ui)∩Vi ̸= ∅. Conse-

quently, for each i ∈ {1, . . . ,m}\{i0}, Ui ∩ f
−(N+ki0 )
i (Vi) is a nonempty open

subset of Xi. Even more, since for all i ∈ {1, . . . ,m}\{i0}, Per(fi) is dense in
Xi, we have that there exists xi ∈ Ui ∩ f

−(N+ki0 )
i (Vi) such that xi ∈ Per(fi).

Finally, (x1, . . . , xm) ∈ Ω1, (
∏m
i=1 fi)

N+ki0 ((x1, . . . , xm)) ∈ V ⊆ Ω2 and by
[18, Theorem 3.3], part (4), (x1, . . . , xm) is a periodic point of

∏m
i=1 fi. There-

fore,
∏m
i=1 fi is Touhey.

5. Induced functions to n-fold symmetric products of product
spaces

Hyperspace theory started about 1900, with the work of F. Hausdorff [11]
and L. Vietoris [20]. Nowadays hyperspaces are widely studied, mainly in
continuum theory [13,14,17].

Given a topological space (X, τ) and a positive integer n, we define the
n-fold symmetric product of X by:

Fn(X) = {A ⊆ X : A ̸= ∅ and A has at most n elements}.
This hyperspace is considered with the Vietoris topology [17]. Next we de-
scribe this topology.

Let (X, τ) be a topological space. Given a finite collection of nonempty
subsets U1, . . . , Uk of X, we denote by ⟨U1, . . . , Uk⟩ the subset of Fn(X):{
A ∈ Fn(X) : A ⊆

k⋃
i=1

Ui and A ∩ Ui ̸= ∅, for each i ∈ {1, . . . , k}

}
.

The family:

B = {⟨U1, . . . , Uk⟩ | Ui ∈ τ, for each i ∈ {1, . . . , k} and k ∈ N}
forms a basis for a topology on Fn(X) which is denoted by τV and called the
Vietoris topology.

Let n be a positive integer and let X be a topological space. If f : X → X
is a function, we consider the function Fn(f) : Fn(X) → Fn(X) defined by
Fn(f)(A) = f(A), for all A ∈ Fn(X); it is called the induced map of f on the
n-fold symmetric product of X.

In addition, if n is an integer greater than or equal to two, we define the
n-fold symmetric product suspension of X, SFn(X), as the quotient space
Fn(X)⧸F1(X), and the induced map SFn(f) : SFn(X)→ SFn(X).
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In this section we study relationships between the functions Fn(
∏m
i=1 fi),

Fn(fi) and fi, for all i ∈ {1, . . . ,m}, when any of them is AAN exact,
fully exact, AAN strongly transitive, very strongly transitive, exact transi-
tive, strongly exact transitive or strongly product transitive.

LetX be a continuum (nonempty compact connected metric space), let f :
X → X be a continuous function, and letM be one of the following classes of
functions: fully exact, AAN strongly transitive, very strongly transitive, exact
transitive, strongly exact transitive or strongly product transitive. Barragán
et al. [5] analyzed the relationships between the following statements: (1)
f ∈M and (2) Fn(f) ∈M, via the function SFn(f).

Theorem 5.1. Let (X, f) be a dynamical system, let n ∈ N, and letM be
one of the following classes of functions: fully exact, AAN strongly transitive,
very strongly transitive, exact transitive, strongly exact transitive or strongly
product transitive. If Fn(f) ∈M, then f ∈M.

Proof. Suppose that Fn(f) is fully exact, and let U and V be nonempty
open subsets of X. Then, ⟨U⟩ and ⟨V ⟩ are nonempty open subsets of Fn(X).
By hypothesis, there exists k ∈ N such that:

int((Fn(f))k(⟨U⟩) ∩ (Fn(f))k(⟨V ⟩)) ̸= ∅.

Hence, there exists a nonempty open subset U of Fn(X) such that U ⊆
(Fn(f))k(⟨U⟩) ∩ (Fn(f))k(⟨V ⟩). By [4, Theorem 3.2],

⋃
U is a nonempty

open subset of X. Let x ∈
⋃
U . Then, there exists B ∈ U such that

x ∈ B. This implies that, there exist C1 ∈ ⟨U⟩ and C2 ∈ ⟨V ⟩ such that
(Fn(f))k(C1) = B and (Fn(f))k(C2) = B. Consequently, x ∈ fk(U)∩fk(V ),
that is,

⋃
U ⊆ fk(U) ∩ fk(V ). Therefore, int(fk(U) ∩ fk(V )) ̸= ∅ and thus,

f is fully exact.
Suppose that Fn(f) is AAN strongly transitive, and let U be a nonempty

open subset of X. Then, ⟨U⟩ is a nonempty open subset of Fn(X). By
hypothesis,

⋃∞
k=1(Fn(f))k(⟨U⟩) = Fn(X). Let x ∈ X. Hence, there exists

k1 ∈ N such that {x} ∈ (Fn(f))k1(⟨U⟩). This implies that x ∈ fk1(U).
Therefore, x ∈

⋃∞
k=1 f

k(U) and thus, f is AAN strongly transitive.
The proof for very strongly transitivity is similar to that given for AAN

strongly transitivity.
Suppose that Fn(f) is exact transitive, and let U and V be nonempty

open subsets of X. Then ⟨U⟩ and ⟨V ⟩ are nonempty open subsets of Fn(X).
By hypothesis,

⋃∞
k=1((Fn(f))k(⟨U⟩)∩ (Fn(f))k(⟨V ⟩)) is dense in Fn(X). Let

W be a nonempty open subset of X. Since ⟨W ⟩ is a nonempty open subset of
Fn(X), we have that A = (

⋃∞
k=1((Fn(f))k(⟨U⟩)∩(Fn(f))k(⟨V ⟩)))∩⟨W ⟩ ≠ ∅.

Let A ∈ A. Then, there exist k1 ∈ N, C1 ∈ ⟨U⟩ and C2 ∈ ⟨V ⟩ such that
(Fn(f))k1(C1) = A and (Fn(f))k1(C2) = A, that is to say, fk1(C1) = A and
fk1(C2) = A. Finally, for all a ∈ A, we have that a ∈ (fk1(U)∩ fk1(V ))∩W .
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This implies that (
⋃∞
k=1(f

k(U)∩ fk(V )))∩W ̸= ∅. Therefore,
⋃∞
k=1(f

k(U)∩
fk(V )) is dense in X and thus, f is exact transitive.

Suppose that Fn(f) is strongly exact transitive, and let U and V be
nonempty open subsets of X. Then ⟨U⟩ and ⟨V ⟩ are nonempty open subsets
of Fn(X). By hypothesis,

⋃∞
k=1((Fn(f))k(⟨U⟩) ∩ (Fn(f))k(⟨V ⟩)) = Fn(X).

Let x ∈ X. Since {x} ∈ Fn(X), there exists k1 ∈ N such that {x} ∈
(Fn(f))k1(⟨U⟩)∩ (Fn(f))k1(⟨V ⟩). This implies that there exist C1 ∈ ⟨U⟩ and
C2 ∈ ⟨V ⟩ such that (Fn(f))k1(C1) = {x} and (Fn(f))k1(C2) = {x}. Hence,
fk1(C1) = {x} and fk1(C2) = {x}. In consequence, x ∈ fk1(U) ∩ fk1(V ).
Finally, x ∈

⋃∞
k=1(f

k(U) ∩ fk(V )). Therefore,
⋃∞
k=1(f

k(U) ∩ fk(V )) = X
and thus, f is strongly exact transitive.

Suppose that Fn(f) is strongly product transitive, and let k ∈ Z+. Let Ω
be a nonempty open subset of X×k. Then, there exist nonempty open subsets

U1, . . . , Uk of X such that U =
∏k
i=1 Ui ⊆ Ω. Note that ⟨U1⟩ × · · · × ⟨Uk⟩

is a nonempty open subset of (Fn(X))×k. Since (Fn(f))×k is AAN strongly
transitive, we have that

⋃∞
s=1((Fn(f))×k)s(⟨U1⟩ × · · · × ⟨Uk⟩) = (Fn(X))×k.

Let (x1, . . . , xk) ∈ X×k. It follows that there exists s1 ∈ N such that
({x1}, . . . , {xk}) ∈ ((Fn(f))×k)s1(⟨U1⟩ × · · · × ⟨Uk⟩). Consequently, there ex-
ists (A1, . . . , Ak) ∈ ⟨U1⟩ × · · · × ⟨Uk⟩ such that ((Fn(f))×k)s1(A1, . . . , Ak) =
({x1}, . . . , {xk}), that is, ((Fn(f))s1)×k(A1, . . . , Ak) = ({x1}, . . . , {xk}). In
consequence, for each i ∈ {1, . . . , k}, fs1(Ai) = {xi}, and thus, there ex-
ists ai ∈ Ai such that fs1(ai) = xi. Even more, since (a1, . . . , ak) ∈ U , we
have that (x1, . . . , xk) ∈ (fs1)×k(U) = (f×k)s1(U). Then, (x1, . . . , xk) ∈⋃∞
s=1(f

×k)s(U) and thus,
⋃∞
s=1(f

×k)s(U) = X×k. Finally, f×k is AAN
strongly transitive. Therefore, f is strongly product transitive.

Also, in [5, Theorem 4.6], Barragán et al. proved that: f is AAN exact
if and only if Fn(f) is AAN exact, for continua and continuous functions.
Actually, this result continue to hold true for topological spaces and not nec-
essarily continuous functions. The proof of Theorem 5.2 is similar to that
given in [5, Theorem 4.6].

Theorem 5.2. Let (X, f) be a dynamical system, and let n ∈ N. Then
Fn(f) is AAN exact if and only if f is AAN exact.

Now, let us consider the function Fn(
∏m
i=1 fi).

Remark 5.3. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical system,
and let k ∈ N. It is not difficult to prove that the kth iteration of the induced
function Fn(

∏m
i=1 fi) is equal to the induced function of the product function∏m

i=1 f
k
i . That is, [Fn(

∏m
i=1 fi)]

k = Fn(
∏m
i=1 f

k
i ).

Theorem 5.4. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical sys-
tem, and let n ∈ N. Then the following hold.

1. Fn(
∏m
i=1 fi) is AAN exact if and only if, for each i ∈ {1, . . . ,m},

Fn(fi) is AAN exact.
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2. Fn(
∏m
i=1 fi) is AAN exact if and only if, for each i ∈ {1, . . . ,m}, fi is

AAN exact.

Proof. Suppose that Fn(
∏m
i=1 fi) is AAN exact. Let i0 ∈ {1, . . . ,m},

and let U and V be nonempty open subsets of Fn(Xi0). By [12, Lemma
4.2], there exist nonempty open subsets U1

i0
, . . . , Uni0 , V

1
i0
, . . . , V ni0 of Xi0 such

that ⟨U1
i0
, . . . , Uni0⟩ ⊆ U and ⟨V 1

i0
, . . . , V ni0 ⟩ ⊆ V. For all i ∈ {1, . . . ,m}\{i0}

and every j ∈ {1, . . . , n}, let U ji = Xi and V ji = Xi. Notice that for each

j ∈ {1, . . . , n}, U ′j =
∏m
i=1 U

j
i and V ′j =

∏m
i=1 V

j
i are nonempty open sub-

sets of
∏m
i=1Xi. Then, ⟨U ′1, . . . , U ′n⟩ and ⟨V ′1 , . . . , V ′n⟩ are nonempty open

subsets of Fn(
∏m
i=1Xi). By hypothesis, there exists k ∈ N such that

W = (Fn (
∏m
i=1 fi))

k (⟨U ′1, . . . , U ′n⟩) ∩ (Fn (
∏m
i=1 fi))

k (⟨V ′1 , . . . , V ′n⟩) ̸= ∅. Let
X = {(xl1, . . . , xlm) : l ∈ {1, . . . , p}with p ≤ n} ∈ W. Thus, there exist

A = {(ar11 , . . . , ar1m) : r1 ∈ {1, . . . , p1}with p1 ≤ n} ∈ ⟨U ′1, . . . , U ′n⟩
and

B = {(br21 , . . . , br2m) : r2 ∈ {1, . . . , p2}with p2 ≤ n} ∈ ⟨V ′1 , . . . , V ′n⟩

such that (Fn (
∏m
i=1 fi))

k
(A) = X and (Fn (

∏m
i=1 fi))

k
(B) = X , that is,

{(fk1 (a
r1
1 ), . . . , fkm(ar1m)) : r1 ∈ {1, . . . , p1}with p1 ≤ n} = X

and
{(fk1 (b

r2
1 ), . . . , fkm(br2m)) : r2 ∈ {1, . . . , p2}with p2 ≤ n} = X .

Then, {fki0(a
1
i0
), . . . , fki0(a

p1
i0
)} = {x1i0 , . . . , x

p
i0
} and {fki0(b

1
i0
), . . . , fki0(b

p2
i0
)} =

{x1i0 , . . . , x
p
i0
}, that is to say, (Fn(fi0))k({a1i0 , . . . , a

p1
i0
}) = {x1i0 , . . . , x

p
i0
} and

(Fn(fi0))k({b1i0 , . . . , b
p2
i0
}) = {x1i0 , . . . , x

p
i0
}. On the other hand, by [18, Lemma

5.2], for each i ∈ {1, . . . ,m}, {a1i , . . . , a
p1
i } ∈ ⟨U1

i , . . . , U
n
i ⟩ and {b1i , . . . , b

p2
i } ∈

⟨V 1
i , . . . , V

n
i ⟩. Finally, we have that:

{x1i0 , . . . , x
p
i0
} ∈ (Fn(fi0))k(⟨U1

i0 , . . . , U
n
i0⟩) ∩ (Fn(fi0))k(⟨V 1

i0 , . . . , V
n
i0 ⟩).

Therefore, (Fn(fi0))k(U)∩(Fn(fi0))k(V) ̸= ∅ and thus, Fn(fi0) is AAN exact.
Suppose that for each i ∈ {1, . . . ,m}, Fn(fi) is AAN exact. Then, by

Theorem 5.2, for all i ∈ {1, . . . ,m}, fi is AAN exact and thus, by Theorem 4.1,∏m
i=1 fi is AAN exact. Finally, by Theorem 5.2, we obtain that Fn(

∏m
i=1 fi)

is AAN exact.
The other implications follows from Theorems 4.1 and 5.2.

Lemma 5.5. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical system,
let l, n, k ∈ N such that l ≤ n, for each i ∈ {1, . . . ,m}, let U1

i , . . . , U
n
i be

nonempty open subsets of Xi, and for each j ∈ {1, . . . , l}, let (xj1, . . . , xjm) ∈∏m
i=1Xi. If{
(xj1, . . . , x

j
m) : j ∈ {1, . . . , l}

}
∈

(
Fn

(
m∏
i=1

fi

))k(〈 m∏
i=1

U1
i , . . . ,

m∏
i=1

Uni

〉)
,
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then, for each i ∈ {1, . . . ,m}, {x1i , . . . , xli} ∈ (Fn(fi))k(⟨U1
i , . . . , U

n
i ⟩).

Proof. Let F = (Fn (
∏m
i=1 fi))

k (〈∏m
i=1 U

1
i , . . . ,

∏m
i=1 U

n
i

〉)
. Suppose

that X = {(xj1, . . . , xjm) : j ∈ {1 . . . , l}} ∈ F . Then, there exists

A = {(as1, . . . , asm) : s ∈ {1, . . . , p}with p ≤ n} ∈

〈
m∏
i=1

U1
i , . . . ,

m∏
i=1

Uni

〉

such that (Fn (
∏m
i=1 fi))

k
(A) = X . It follows that {(fk1 (as1), . . . , fkm(asm)) :

s ∈ {1, . . . , p}with p ≤ n} = X . In consequence, for each i ∈ {1, . . . ,m},
{fki (a1i ), . . . , fki (a

p
i )} = {x1i , . . . , xli} and thus,

(Fn(fi))k({a1i , . . . , a
p
i }) = {x

1
i , . . . , x

l
i}.

Even more, by [18, Lemma 5.2], for each i ∈ {1, . . . ,m}, {a1i , . . . , a
p
i } ∈

⟨U1
i , . . . , U

n
i ⟩. Therefore, {x1i , . . . , xli} ∈ (Fn(fi))k(⟨U1

i , . . . , U
n
i ⟩), for every

i ∈ {1, . . . ,m}.

Theorem 5.6. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical sys-
tem, let n ∈ N, and let M be one of the following classes of functions: AAN
strongly transitive, very strongly transitive, exact transitive or strongly exact
transitive. If Fn(

∏m
i=1 fi) ∈M, then for each i ∈ {1, . . . ,m}, Fn(fi) ∈M.

Proof. Let i0 ∈ {1, . . . ,m}, and let U and V be nonempty open sub-
sets of Fn(Xi0). By [12, Lemma 4.2] there exist nonempty open subsets
U1
i0
, . . . , Uni0 , V

1
i0
, . . . , V ni0 of Xi0 such that T1 = ⟨U1

i0
, . . . , Uni0⟩ ⊆ U and T2 =

⟨V 1
i0
, . . . , V ni0 ⟩ ⊆ V. Now, for each i ∈ {1, . . . ,m}\{i0} and all j ∈ {1, . . . , n},

let U ji = Xi and V
j
i = Xi. Finally, for each j ∈ {1, . . . , n}, let U ′j =

∏m
i=1 U

j
i

and V ′j =
∏m
i=1 V

j
i . Note that F1 = ⟨U ′1, . . . , U ′n⟩ and F2 = ⟨V ′1 , . . . , V ′n⟩ are

nonempty open subsets of Fn(
∏m
i=1Xi).

Suppose that Fn(
∏m
i=1 fi) is AAN strongly transitive. Then, we have that⋃∞

k=1 (Fn (
∏m
i=1 fi))

k
(F1) = Fn (

∏m
i=1Xi) . Let {z1i0 , . . . , z

l
i0
} ∈ Fn(Xi0), for

all i ∈ {1, . . . ,m}\{i0} and every j ∈ {1, . . . , l}, let zji ∈ Xi, and for each

j ∈ {1, . . . , l}, let x′j = (zj1, . . . , z
j
m). Note that {x′1, . . . , x′l} ∈ Fn(

∏m
i=1Xi).

Then, there exists k1 ∈ N such that {x′1, . . . , x′l} ∈ (Fn (
∏m
i=1 fi))

k1 (F1). By
Lemma 5.5, {z1i0 , . . . , z

l
i0
} ∈ (Fn(fi0))k1(T1). Hence:

Fn(Xi0) = (Fn(fi0))k1(U) ⊆
∞⋃
k=1

(Fn(fi0))k(U).

Therefore, Fn(Xi0) =
⋃∞
k=1(Fn(fi0))k(U) and thus, Fn(fi0) is AAN strongly

transitive.
The proof for very strongly transitivity is similar to that given for AAN

strongly transitivity.
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Suppose that Fn(
∏m
i=1 fi) is exact transitive. Thus:

∞⋃
k=1

(Fn( m∏
i=1

fi

))k
(F1) ∩

(
Fn

(
m∏
i=1

fi

))k
(F2)


is dense in Fn(

∏m
i=1Xi). Let W be a nonempty open subset of Fn(Xi0).

By [12, Lemma 4.2], there exist nonempty open subsets W 1
i0
, . . . ,Wn

i0
of Xi0

such that ⟨W 1
i0
, . . . ,Wn

i0
⟩ ⊆ W. Now, for all i ∈ {1, . . . ,m}\{i0} and each

j ∈ {1, . . . , n}, let W j
i = Xi. Notice that for each j ∈ {1, . . . , n}, W ′j =∏m

i=1W
j
i is a nonempty open subset of

∏m
i=1Xi and thus, F3 = ⟨W ′1, . . . ,W ′n⟩

is a nonempty open subset of Fn(
∏m
i=1Xi). Then, there exists k1 ∈ N

such that A =
(
(Fn (

∏m
i=1 fi))

k1 (F1) ∩ (Fn (
∏m
i=1 fi))

k1 (F2)
)
∩ F3 ̸= ∅. Let

{(zl1, . . . , zlm) : l ∈ {1, . . . , p}with p ≤ n} ∈ A. By Lemma 5.5 and [18, Lemma
5.2], we have that:

{z1i0 , . . . , z
p
i0
} ∈ (Fn(fi0))k1(T1) ∩ (Fn(fi0))k1(T2) ∩ ⟨W 1

i0 , . . . ,W
n
i0⟩.

Finally,
(
(Fn(fi0))k1(U) ∩ (Fn(fi0))k1(V)

)
∩W ̸= ∅ and thus,( ∞⋃

k=1

((Fn(fi0))k(U) ∩ (Fn(fi0))k(V))

)
∩W ̸= ∅.

Therefore,
⋃∞
k=1((Fn(fi0))k(U)∩(Fn(fi0))k(V)) is dense in Fn(Xi0) and thus,

Fn(fi0) is exact transitive.
Suppose that Fn(

∏m
i=1 fi) is strongly exact transitive. Then,

∞⋃
k=1

(Fn( m∏
i=1

fi

))k
(F1) ∩

(
Fn

(
m∏
i=1

fi

))k
(F2)

 = Fn

(
m∏
i=1

Xi

)
.

Let {x1i0 , . . . , x
l
i0
} ∈ Fn(Xi0), for each i ∈ {1, . . . ,m}\{i0} and all j ∈

{1, . . . , n}, let xji ∈ Xi. It follows that {(xp1, . . . , xpm) : p ∈ {1, . . . , l}} ∈
Fn(

∏m
i=1Xi) and thus, there exists k1 ∈ N such that {(xp1, . . . , xpm) : p ∈

{1, . . . , l}} ∈ (Fn(
∏m
i=1 fi))

k1(F1) ∩ (Fn(
∏m
i=1 fi))

k1(F2). Finally, by Lemma
5.5,

{x1i0 , . . . , x
l
i0} ∈ (Fn(fi0))k1(T1) ∩ (Fn(fi0))k1(T2)

⊆
∞⋃
k=1

((Fn(fi0))k(U) ∩ (Fn(fi0))k(V)).

Therefore,
⋃∞
k=1((Fn(fi0))k(U) ∩ (Fn(fi0))k(V)) = Fn(Xi0) and thus,

Fn(fi0) is strongly exact transitive.

By Theorems 4.2 and 5.1, we have the following result.
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Theorem 5.7. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical sys-
tem, let n ∈ N, and letM be one of the following classes of functions: fully ex-
act, AAN strongly transitive, very strongly transitive, exact transitive, strongly
exact transitive or strongly product transitive. If Fn(

∏m
i=1 fi) ∈M, then, for

every i ∈ {1, . . . ,m}, fi ∈M.

We end this paper with the following questions.

Problem 5.1. For each i ∈ {1, . . . ,m}, let (Xi, fi) be a dynamical sys-
tem, and let n ∈ N.

1. Let Fn(
∏m
i=1 fi) be fully exact. Is Fn(fi) fully exact for every i ∈

{1, . . . ,m}?
2. Let Fn(

∏m
i=1 fi) be strongly product transitive. Is Fn(fi) strongly prod-

uct transitive for every i ∈ {1, . . . ,m}?
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KONCEPCIJE O TOPOLOŠKOJ TRANZITIVNOSTI U
PRODUKTIMA I SIMETRIČNIM PRODUKTIMA II

Anah́ı Rojas, Aura L. Kantún, José N. Méndez i V́ıctor M.
Méndez

Sažetak. Nastavljamo rad koji su započeli A. Rojas, F. Barragán i S.

Maćıas u Conceptions on topological transitivity in products and sym-
metric products. Thurk. J. Math. 44(2) (2020), 491-523. Razmatramo

klase funkcija koje nisu uključene u navedeni rad: egzaktne u smislu
Akin-Auslander-Nagara, potpuno egzaktne, jako tranzitivne u smislu Akin-
Auslander-Nagara, vrlo jako tranzitivne, egzaktne tranzitivne, jako egzak-
tne tranzitivne i izrazito produktno tranzitivne.


