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Abstract. We generalize the notion of Markov functions on closed

intervals [a, b] to Markov set-valued functions on compact metric spaces.

We also introduce when two such Markov set-valued functions follow the
same pattern and show that if the Markov set-valued functions F : X ⊸ X

and G : Y ⊸ Y follow the same pattern, then the inverse limits lim−⊸(X,F )

and lim−⊸(Y,G) are homeomorphic.

1. Introduction

In present paper, we generalize the notion of Holte’s Markov single-valued
functions [8] (which are often used in the theory of discrete topological dynam-
ical systems and they allow the symbolic dynamics to be used in the study
of such a dynamical system) to Markov upper semi-continuous set-valued
functions on arbitrary compacta. Note that several papers on the topic of
dynamical systems with (upper semi-continuous) set-valued functions have
appeared recently, see [12, 14–16, 18], where more references may be found.
However, there is not much known of such dynamical systems and, therefore,
there are many properties of such set-valued dynamical systems that are yet
to be studied.

The Markov partition of a closed interval I = [0, 1] with respect to a
continuous function f : I → I is usually given by finitely many points 0 =
x0 < x1 < x2 < · · · < xn−1 < xn = 1 in I such that all the restrictions
f |[xi−1,xi] of f to [xi−1, xi] are homeomorphisms from [xi−1, xi] onto some
interval [xk, xℓ]. Since a Markov partition is usually given by a finite collection
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of points A = {x0, x1, . . . , xn} ⊆ I, we usually refer to A as a Markov partition
for I. If a continuous function f has a Markov partition A, then we say that f
is a Markov function with respect to A. A Markov partition of I with respect
to f (if it exists) is a well-known tool in the dynamical system theory that
allows the symbolic dynamics to be used in the study of the dynamical system
(I, f). For more information about Markov partitions in dynamical systems
and symbolic dynamics, see [4, 13].

Let the function f be a Markov function with respect to some Markov
partition A = {a0, a1, a2, . . . , am} for an interval I and let g be a Markov
function with respect to some Markov partition B = {b0, b1, b2, . . . , bm} of an
interval J . In [8], Holte defined when the Markov functions f and g follow the
same pattern (with respect to A and B): f(aj) = ak if and only if g(bj) = bk
for all j and k. Then she proved the following theorem, which is one of the
main results of [8].

Theorem 1.1. Let I and J be closed intervals, let f be a Markov function
with respect to A ⊆ I and let g be a Markov function with respect to B ⊆ J .
If f and g follow the same pattern then the inverse limits lim←−(I, fn) and

lim←−(J, gn) are homeomorphic.

Some generalizations of Holte’s result have already been introduced, for
examples see [2, 3, 5–7, 9, 10] where more references may be found. In all of
the mentioned papers, the authors mostly generalized

1. the setting of such a Markov system from closed intervals to trees or
graphs;

2. the notion of Markov partitions A of closed intervals I (we point out
that they all have one thing in common — every generalization of
Holte’s Markov partition is closed in I);

3. the notion of Markov functions F on intervals — they are usually upper
semi-continuous functions (or sometimes just set-valued functions) on
closed intervals I that have a special structure on
(a) the given Markov partition A on I (usually the boundary of the

set F (a) is a subset of A for any a ∈ A), as well as
(b) on the complement of A, where it is usually assumed that on

each connected component of the complement of A, F is a single-
valued injective function (as in the original Holte’s paper) or its
inverse is single-valued;

4. the notion when two Markov functions follow the same pattern.

Then the main theorem is proven, saying that if Markov functions F and
G follow the same pattern, then their inverse limits are homeomorphic. In
present paper we generalize Holte’s result in the following ways:

1. the setting of such a Markov system from closed intervals, trees or
graphs to any compact metric spaces;
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2. the notion of Markov partitions A of closed intervals I to Markov
partitions on any compact metric spaces;

3. the notion of Markov functions on intervals to Markov functions F on
any compact metric spaces X in such a way that
(a) for a given Markov partition A on X, the boundary of the set

F (a) is a subset of A for any a ∈ A, and
(b) on each connected component of X \A, the function F is mim-

icking a single-valued injective function;
4. the notion when two Markov functions follow the same pattern.

Then we prove our main theorem which says that, if Markov functions F and
G follow the same pattern, then their inverse limits are homeomorphic.

2. Definitions and notation

Definition 2.1. Let X be a metric space and let A ⊆ X. We use Cl(A),
Int(A) and Bd(A) to denote the closure, the interior and the boundary, re-
spectively, of the set A in X.

Definition 2.2. A continuum is a non-empty connected compact metric
space. A continuum is degenerate if it consists of only a single point. Oth-
erwise it is non-degenerate. A subcontinuum is a subspace of a continuum
which itself is also a continuum.

Definition 2.3. Let X be a continuum and let a, b ∈ X. We say that
X is irreducible between points a and b, if for any subcontinuum Y of X the
following holds:

a, b ∈ Y =⇒ Y = X.

We say that X is irreducible if there are points a, b ∈ X such that X is
irreducible between points a and b.

The following theorem is a well-known result.

Theorem 2.4. Let X be a continuum and let a, b ∈ X. Then there is a
subcontinuum Y of X such that Y is irreducible between a and b.

Proof. See [17, page 68].

Definition 2.5. Let f : X → Y be a function. We use Γ(f) to denote
the graph of the function f .

Definition 2.6. An inverse sequence of compact metric spaces and con-
tinuous bonding functions is any double sequence (Xn, fn) of compact metric
spaces Xn and continuous functions fn : Xn+1 → Xn. The inverse limit of
such an inverse sequence (Xn, fn) is defined to be the subspace of

∏∞
n=1Xn of

all points

x = (x1, x2, x3, . . .) ∈
∞∏
n=1

Xn,
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such that xn = fn(xn+1) for each positive integer n. The inverse limit is
denoted by lim←−(Xn, fn).

Definition 2.7. If X is a metric space, then 2X denotes the family of
all non-empty compact subspaces of X.

Definition 2.8. Let X be a compact metric space and let (An) be a
sequence of subsets of X. Then we use lim supAn and lim inf An to denote
the limes superior and the limes inferior of the sequence (An), respectively,
where

lim supAn = {x ∈ X | for each open set U in X,

x ∈ U =⇒ U ∩An ̸= ∅ for infinitely many n}
and

lim inf An = {x ∈ X | for each open set U in X,

x ∈ U =⇒ U ∩An ̸= ∅ for all but finitely many n}
If lim supAn = lim inf An, then we define the limit of the sequence of sets
(An) as follows:

lim
n→∞

An = lim supAn = lim inf An.

Observation 2.9. Let X be a compact metric space, let x ∈ X and
A ⊆ X, let (xn) be a sequence of points in X such that lim

n→∞
xn = x and let

(An) be a sequence of subsets of X such that lim
n→∞

An = A. Then A ∈ 2X and

if for each positive integer n, xn ∈ An, then x ∈ A.

Definition 2.10. Let X and Y be metric spaces. The function F : X →
2Y is called a set-valued function from X to Y and is denoted by F : X ⊸ Y .
The graph of a set-valued function F is defined to be the subset of X × Y ,
which is defined by

Γ(F ) = {(x, y) | y ∈ F (x), x ∈ X}.

Definition 2.11. A set-valued function F : X ⊸ Y is an upper semi-
continuous set-valued function if for any x0 ∈ X and for any open set U in
Y , it holds that if F (x0) ⊆ U , then there is an open set V in X such that

1. x0 ∈ V and
2. for each x ∈ V , F (x) ⊆ U .

There is a simple characterization of upper semicontinuous set-valued
functions ([1, Proposition 11, p. 128] and [11, Theorem 1.2, p. 3]).

Theorem 2.12. Let X and Y be compact metric spaces and F : X ⊸ Y
a set-valued function. Then F is upper semicontinuous if and only if its graph
Γ(F ) is closed in X × Y .

Observation 2.13. Let X and Y be any compact metric spaces.
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1. Let F : X ⊸ Y be a set-valued function such that for each x ∈ X there
is exactly one yx ∈ Y such that

F (x) = {yx}

and let f : X → Y be defined by f(x) = yx for any x ∈ X. Then
Γ(f) = Γ(F ).

2. Let f : X → Y be a function and let F : X ⊸ Y be defined by
F (x) = {f(x)} for each x ∈ X. Then Γ(F ) = Γ(f).

Note that in both cases,

f is continuous ⇐⇒ F is upper semicontinuous.

Definition 2.14. Let F : X ⊸ Y be a set-valued function and let A ⊆ X.
Then

F |A : A⊸ Y,

defined by F |A(x) = F (x) for each x ∈ A, is the restriction of F to A.

Definition 2.15. Let F : X ⊸ Y be a set-valued function such that for
each x ∈ X there is exactly one yx ∈ Y such that F (x) = {yx}. Then we
always use F to denote the function F : X → F (X), defined by F (x) = yx
for any x ∈ X.

Definition 2.16. A generalized inverse sequence of compact metric
spaces and set-valued bonding functions is any double sequence (Xn, Fn) of
compact metric spaces Xn and set-valued functions Fn : Xn+1 ⊸ Xn. The
generalized inverse limit of such a generalized inverse sequence (Xn, Fn) is
defined to be the subspace of

∏∞
n=1Xn of all points x = (x1, x2, x3, . . .) ∈∏∞

n=1Xn, such that xn ∈ Fn(xn+1) for each positive integer n. The general-
ized inverse limit is denoted by lim−⊸(Xn, Fn).

Inverse limits with upper semicontinuous set-valued bonding functions
were first introduced in 2004 by Mahavier and later by Ingram and Mahavier.
Since their introduction many authors have been interested in this area and
many papers appeared (for more details and other references see [11]).

Definition 2.17. Let f : X → Y , G : Y ⊸ Z and h : Z → W . Then
G ◦ f and h ◦G are defined by

(G ◦ f)(x) = G(f(x))

for any x ∈ X and

(h ◦G)(y) = h(G(y))

for any y ∈ Y .

We also use the following well-known result in the proofs of our main
theorems.
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Lemma 2.18. Let (Xn, Fn) and (Yn, Gn) be two generalized inverse se-
quences of compact metric spaces and upper semicontinuous set-valued func-
tions. If for each positive integer n, there is a homeomorphism hn : Xn → Yn
such that hn ◦ Fn = Gn ◦ hn+1, then the inverse limits lim−⊸(Xn, Fn) and

lim−⊸(Yn, Gn) are homeomorphic.

(2.1)

X1 X2 X3
. . . Xn Xn+1 . . .

F1 F2 F3 Fn−1 Fn Fn+1

Y1 Y2 Y3 . . . Yn Yn+1 . . .
G1 G2 G3 Gn−1 Gn Gn+1

h1 h2 h3 hn hn+1

Proof. For any x = (x1, x2, x3, . . .) ∈ lim−⊸(Xn, Fn), we define

h(x) = (h1(x1), h2(x2), h3(x3), . . .).

Obviously, h : lim−⊸(Xn, Fn)→ lim−⊸(Yn, Gn), since for any positive integer n,

hn ◦ Fn = Gn ◦ hn+1

and therefore hn(xn) ∈ Gn(hn+1(xn+1)). It also follows that h : lim−⊸(Xn, Fn)

→ lim−⊸(Yn, Gn) is a continuous function since each hn is a continuous function.

Next, for any y = (y1, y2, y3, . . .) ∈ lim−⊸(Yn, Gn) we define

g(y) = (h−11 (y1), h
−1
2 (y2), h

−1
3 (y3), . . .).

Since for any positive integer n, hn◦Fn = Gn◦hn+1, it follows that h
−1
n ◦Gn =

Fn ◦ h−1n+1. Therefore h
−1
n (yn) ∈ Fn(h−1n+1(yn+1)). This means that

g : lim−⊸(Yn, Gn)→ lim−⊸(Xn, Fn)

is a continuous function. Note that

g(h(x)) = (h−11 (h1(x1)), h
−1
2 (h2(x2)), h

−1
3 (h3(x3)), . . .) = x

for each x = (x1, x2, x3, . . .) ∈ lim−⊸(Xn, Fn) and

h(g(y)) = (h1(h
−1
1 (y1)), h2(h

−1
2 (y2)), h3(h

−1
3 (y3)), . . .) = y

for each y = (y1, y2, y3, . . .) ∈ lim−⊸(Yn, Gn). Therefore, h is a homeomorphism.
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3. Markov set-valued functions on arbitrary compact metric
spaces

In this section we introduce the concept of Markov set-valued functions
on compact metric spaces and prove the main result of the paper.

Definition 3.1. Let C be a continuum, let A be a totally disconnected
closed subset of C, let a, b ∈ A, and let KCa,b be the family of subcontinua K
of C such that

1. K is irreducible between a and b and
2. K ∩A = {a, b}.

Then we use KA,C [a, b] to denote the set

KA,C [a, b] = C

if |A| = 2, and

KA,C [a, b] =
⋃

K∈KCa,b

K

to denote the union of all subcontinua of C that are irreducible between a and
b, if |A| > 2. We also use

KA,C(a, b) = KA,C [a, b] \ {a, b} and KA,C [a, b) = KA,C [a, b] \ {b}.

Observation 3.2. Let C be a continuum, let A be a totally disconnected
closed subset of C, and let a, b ∈ A. Then the following holds.

1. KA,C [a, b] = KA,C [b, a],
2. If KA,C [a, b] ̸= ∅, then a, b ∈ KA,C [a, b].

Also, note that KA,C [a, b] is not necessarily open or closed in C; see the fol-
lowing example and Figure 1 for an idea of how to construct such a KA,C [a, b].

Example 3.3. Let C be the continuum in Figure 1 (it is the union of
the following line segments: the black line segment from a to b, the black line
segment from c to d, the black line segment from a to c, and the union of
blue arcs Cn all from a to b such that lim

n→∞
Cn = Y , where Y is the union of

the following arcs: the black line segment from a to c, the black line segment
from c to d and the black line segment from v to b) and let A = {a, b, c, d}.
Then KA,C [a, b] is not open or closed in C.

Definition 3.4. Let C be a continuum, let A be a totally disconnected
closed subset of C and let a, b ∈ A. We say that (a, b) is an admissible pair
in C with respect to A, if a ̸= b and if

1. either |A| = 2
2. or |A| > 2 and there is a subcontinuum K of C which is irreducible

between a and b such that

K ∩A = {a, b}.
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Figure 1. KA,C [a, b] that is not closed or open in C.

We use

A(A,C) = {(a, b) ∈ A×A | (a, b) is an admissible pair in C

with respect to A}
to denote the set of all admissible pairs in C with respect to A.

Definition 3.5. Let X be a compact metric space, let A be a totally
disconnected closed subset of X and let C be the family of all connected com-
ponents of X. We define

A(A,X) =
⋃
C∈C
A(C ∩A,C).

Definition 3.6. Let X be a compact metric space. For each x ∈ X, we
use CxX to denote the connected component of X that contains the point x.

Definition 3.7. Let C be a non-degenerate continuum and let A be a
totally disconnected closed subset of C. We say that A takes over C if for
each x ∈ C \ A there is a unique admissible pair (a, b) ∈ A(A,C) such that
x ∈ KA,C(a, b).

Definition 3.8. Let C be a non-degenerate continuum and let A be a
totally disconnected closed subset of C such that A takes over C. For each
x ∈ C \A, we define ax, bx ∈ A to be the points such that (ax, bx) ∈ A(A,C)
and

x ∈ KA,C(ax, bx).

Definition 3.9. Let X be a compact metric space and let A be a totally
disconnected closed subset of X. We say that A is a Markov partition for X,
if
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1. for each degenerate connected component C of X, C ⊆ A;
2. for each non-degenerate connected component C of X, |C∩A| ≥ 2 and

C ∩A takes over C;
3. for each non-degenerate connected component C of X and for each

(a, b) ∈ A(C ∩A,C), the set KC∩A,C(a, b) is open in X;
4. for any sequence (xn) in X \A such that for all positive integers k and

ℓ,

k ̸= ℓ =⇒ KC
xk
X ∩A,C

xk
X
(axk , bxk) ̸= KC

xℓ
X ∩A,C

xℓ
X
(axℓ , bxℓ),

it holds that if lim
n→∞

xn exists, then the limit of sets

lim
n→∞

KCxnX ∩A,C
xn
X

(axn , bxn)

exists and there is c ∈ A such that

lim
n→∞

KCxnX ∩A,C
xn
X

(axn , bxn) = {c}.

Observation 3.10. Note that if A is a Markov partition of X, then for
each non-degenerate connected component C of X,

C ∩A ̸= ∅
and

Cl
( ⋃

(a,b)∈A(C∩A,C)

KC∩A,C [a, b]
)
= C.

Also, note that there may be connected components C of X such that⋃
(a,b)∈A(C∩A,C)

KC∩A,C [a, b] ̸= C;

see the following example.

Example 3.11. Let X = [0, 1] and let A = { 1n | n is a positive integer}∪
{0}. Then C = X is the only connected component of X and⋃

(a,b)∈A(C∩A,C)

KC∩A,C [a, b] = (0, 1] ̸= C.

In Figure 2, another Markov partition of a continuum is presented.

Definition 3.12. Let X be a compact metric space, let A be a Markov
partition for X, and let F : X ⊸ X be an upper semi-continuous set-valued
function. We say that F is Markov with respect to A, if

1. for each a ∈ A, there are uniquely determined sets Aa,X ⊆ A(A,X)
and Aa,X ⊆ A such that

Aa,X ∩ {b ∈ A | there is c ∈ A such that (b, c) ∈ Aa,X} = ∅
and

F (a) = Aa,X ∪
⋃

(c,d)∈Aa,X

KCcX∩A,CcX [c, d];
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Figure 2. A Markov partition of a continuum.

2. for each non-degenerate connected component C of X and for all
(a, b) ∈ A(C ∩ A,C), it holds that for each x ∈ KC∩A,C(a, b) there
is yx ∈ X such that F (x) = {yx} and the function

F |KC∩A,C(a,b) : KC∩A,C(a, b)→ F (KC∩A,C(a, b))

is a homeomorphism;
3. for each non-degenerate connected component C of X, and for all

(a, b) ∈ A(C ∩A,C), there are sets O,N ⊆ A(A,X), such that

F (KC∩A,C(a, b)) =

 ⋃
(c,d)∈O

KCcX∩A,CcX (c, d)

 ∪
 ⋃

(c,d)∈N

KCcX∩A,CcX [c, d)

 ;

4. for each non-degenerate connected component C and for each (a, b) ∈
A(C ∩A,C), the limits lim

x→a
F |KC∩A,C(a,b)(x) and lim

x→b
F |KC∩A,C(a,b)(x)

exist and

lim
x→a

F |KC∩A,C(a,b)(x), lim
x→b

F |KC∩A,C(a,b)(x) ∈ A;

5. for each non-degenerate connected component C and for each (a, b) ∈
A(C ∩A,C), let

La = lim
x→a

F |KC∩A,C(a,b)(x) and Lb = lim
x→b

F |KC∩A,C(a,b)(x).

Then

lim
x→La

(
F |KC∩A,C(a,b)

)−1
(x) = a and lim

x→Lb

(
F |KC∩A,C(a,b)

)−1
(x) = b.
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We say that F is Markov, if there is a Markov partition A for X such that F
is Markov with respect to A.

Lemma 3.13. Let X and Y be any compact metric spaces, let F : X ⊸ X
and G : Y ⊸ Y be Markov set-valued functions with respect to A and B,
respectively, and let τ : X → Y be any homeomorphism such that τ(A) = B.
Then

(a, b) ∈ A(A,X)⇐⇒ (τ(a), τ(b)) ∈ A(B, Y ).

for any a, b ∈ A.

Proof. Let a, b ∈ A. Let C be the connected component of X such
that a, b ∈ C. If |C ∩ A| = 2, then the statement is obvious. Suppose that
|C ∩A| > 2 and that (a, b) ∈ A(A,X). Then, since τ is a homeomorphism,

1. τ(a) ̸= τ(b) (since a ̸= b) and
2. for any subcontinuum K, which is irreducible between a and b such

that K ∩A = {a, b}, τ(K) is irreducible between τ(a) and τ(b), and

τ(K) ∩B = {τ(a), τ(b)}.

Therefore, (τ(a), τ(b)) ∈ A(B, Y ). The proof that (a, b) ∈ A(A,X) follows
from (τ(a), τ(b)) ∈ A(B, Y ) is analogous.

Next we introduce when two Markov set-valued functions follow the same
pattern.

Definition 3.14. Let X and Y be any compact metric spaces, let F :
X ⊸ X and G : Y ⊸ Y be Markov set-valued functions with respect to
A and B, respectively. We say that F and G follow the same pattern with
respect to A and B, if there is a homeomorphism τ : X → Y such that

1. τ(A) = B;
2. for each non-degenerate connected component C and for all (a, b) ∈
A(C ∩A,C),

τ(KC∩A,C(a, b)) = Kτ(C)∩B,τ(C)(τ(a), τ(b));

3. for each a ∈ A,

F (a) = Aa,X ∪
⋃

(c,d)∈Aa,X

KCcX∩A,CcX [c, d]

if and only if

G(τ(a)) = τ(Aa,X) ∪
⋃

(c,d)∈Aa,X

K
C
τ(c)
Y ∩B,Cτ(c)Y

[τ(c), τ(d)];
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4. for each non-degenerate connected component C, for each (a, b) ∈
A(C ∩A,C), and for all O,N ⊆ A(C ∩A,C),

F (KC∩A,C(a, b)) =

 ⋃
(c,d)∈O

KCcX∩A,CcX (c, d)

 ∪
 ⋃

(c,d)∈N

KCcX∩A,CcX [c, d)


if and only if

G(Kτ(C)∩B,τ(C)(τ(a), τ(b)))

=

 ⋃
(c,d)∈O

K
C
τ(c)
Y ∩B,Cτ(c)Y

(τ(c), τ(d))

 ∪
 ⋃

(c,d)∈N

K
C
τ(c)
Y ∩B,Cτ(c)Y

[τ(c), τ(d))

 ;

5. for each L ∈ A, for each non-degenerate connected component C and
for all (a, b) ∈ A(C ∩A,C), it holds that

lim
x→a

F |KC∩A,C(a,b)(x) = L⇐⇒ lim
y→τ(a)

G|Kτ(C)∩B,τ(C)(τ(a),τ(b))(y) = τ(L)

and

lim
x→b

F |KC∩A,C(a,b)(x) = L⇐⇒ lim
y→τ(b)

G|Kτ(C)∩B,τ(C)(τ(a),τ(b))(y) = τ(L);

6. for each L ∈ A, for each non-degenerate connected component C and
for all (a, b) ∈ A(C ∩A,C), it holds that

lim
x→L

(
F |KC∩A,C(a,b)

)−1
(x) = a⇐⇒ lim

y→τ(L)

(
G|Kτ(C)∩B,τ(C)(τ(a),τ(b))

)−1
(y) = τ(a)

and

lim
x→L

(
F |KC∩A,C(a,b)

)−1
(x) = b⇐⇒ lim

y→τ(L)

(
G|Kτ(C)∩B,τ(C)(τ(a),τ(b))

)−1
(y) = τ(b);

7. For any c ∈ A and for any sequence (xn) in X \ A such that for all
positive integers k and ℓ,

k ̸= ℓ =⇒ KC
xk
X ∩A,C

xk
X
(axk , bxk) ̸= KC

xℓ
X ∩A,C

xℓ
X
(axℓ , bxℓ),

it holds that

lim
n→∞

KCxnX ∩A,C
xn
X

(axn , bxn) = {c}~w�
lim
n→∞

Kτ(CxnX )∩B,τ(CxnX )(τ(axn), τ(bxn)) = {τ(c)}.

We say that the Markov set-valued functions F andG follow the same pattern,
if F and G follow the same pattern with respect to some Markov partitions A
and B.

The following theorem is our main result.
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Theorem 3.15. Let X and Y be any compact metric spaces, and let
F : X ⊸ X and G : Y ⊸ Y be Markov set-valued functions. If F and G
follow the same pattern, then the inverse limits lim−⊸(X,F ) and lim−⊸(Y,G) are

homeomorphic.

Proof. Using mathematical induction, we construct the following com-
mutative diagram – Diagram (3.1). Then, we use Lemma 2.18 to show that
the inverse limits lim−⊸(X,F ) and lim−⊸(Y,G) are homeomorphic.

(3.1)

X X X . . . X X . . .F F F F F F

Y Y Y . . . Y Y . . .G G G G G G

h1 h2 h3 hn hn+1

Let A be a Markov partition of X and let B be a Markov partition of
Y such that F and G follow the same pattern with respect to A and B. For
each x ∈ X \A, let ax, bx ∈ CxX ∩A be such that

x ∈ KCxX∩A,CxX (ax, bx).

Also, for each y ∈ Y \B, let cy, dy ∈ CyY ∩B be such that

y ∈ KCyY ∩B,C
y
Y
(cy, dy).

Let τ : X → Y be a homeomorphism satisfying Definition 3.14 and let h1 :
X → Y be defined by h1 = τ . Let n be a positive integer and suppose that
for each k ∈ {1, 2, 3, . . . , n}, hk : X → Y is a homeomorphism such that

1. for each a ∈ A, hk(a) = τ(a) for each k ∈ {1, 2, 3, . . . , n},
2. for each connected component C and for all (a, b) ∈ A(C ∩A,C),

hk(KC∩A,C [a, b]) = τ(KC∩A,C [a, b]),

for each k ∈ {1, 2, 3, . . . , n}, and
3. hk ◦ F = G ◦ hk+1 for each k ∈ {1, 2, 3, . . . , n− 1}.

Then we define the function hn+1 : X → Y by

• hn+1(x) = τ(x) for each x ∈ A, and
• hn+1(x) =

(
G|K

C
τ(ax)
Y

∩B,Cτ(ax)
Y

(τ(ax),τ(bx))

)−1
(hn(F |KCax

X
∩A,Cax

X
(ax,bx)(x)))

for each x ∈ X \A.
Note that by 2. of Definition 3.12, G|K

C
τ(ax)
Y

∩B,Cτ(ax)
Y

(τ(ax),τ(bx)) is a homeo-

morphism, therefore, its inverse does exist. Also, note that since A and X\A
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are disjoint sets and hn+1 is a single valued function on each of these sets, it
is a well-defined function. Let φ : Y → X be defined by

• φ(y) = τ−1(y) for each y ∈ B, and
•

φ(y) =
(
F |K

C
τ−1(cy)

X
∩A,C

τ−1(cy)

X

(τ−1(cy),τ−1(dy))

)−1
(
h−1n (G|K

C
cy
Y

∩B,C
cy
Y

(cy,dy)(y))

)
for each y ∈ Y \B

To show that hn+1 is bijective, we show that φ = h−1n+1. We treat the following
possible cases.

1. Let x ∈ A.Then

φ(hn+1(x)) = φ(τ(x)) = τ−1(τ(x)) = x.

2. Let y ∈ B. Then

hn+1(φ(y)) = hn+1(τ
−1(y)) = τ(τ−1(y)) = y.

3. Let x ∈ X \A. Also, let

G|K
C
τ(ax)
Y

∩B,Cτ(ax)
Y

(τ(ax),τ(bx)) = Gx and F |KCax
X

∩A,Cax
X

(ax,bx) = Fx.

Then

φ(hn+1(x)) = F−1x (h−1n (Gx(G
−1
x (hn(Fx(x)))))) = x.

4. Let y ∈ Y \B. Also, let

G|K
C
cy
Y

∩B,C
cy
Y

(cy,dy) = Gy and F |K
C
τ−1(cy)

X
∩A,C

τ−1(cy)

X

(τ−1(cy),τ−1(dy)) = Fy.

Then

hn+1(φ(y)) = G−1y (hn(Fy(F
−1
y (h−1n (Gy(y)))))) = y.

Therefore, hn+1 is bijective.
Next, we prove that hn+1 is continuous. Let x ∈ X be any point. We

show that hn+1 is continuous at the point x. We treat the following possible
cases.

1. x ∈ X \A. Let (xm) be a sequence in X such that lim
m→∞

xm = x. Since

KCaxX ∩A,C
ax
X
(ax, bx) is open in X (by 3. of Definition 3.9) it follows

that there is a positive integer m0 such that for each positive integer
m,

m ≥ m0 =⇒ xm ∈ KCaxX ∩A,C
ax
X
(ax, bx)
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since x ∈ KCaxX ∩A,C
ax
X
(ax, bx). Then

lim
m→∞
m≥m0

hn+1(xm)

= lim
m→∞

(
G|K

C
τ(ax)
Y

∩B,Cτ(ax)
Y

(τ(ax),τ(bx))

)−1
(hn(F |KCax

X
∩A,Cax

X
(ax,bx)(xm)))

=
(
G|K

C
τ(ax)
Y

∩B,Cτ(ax)
Y

(τ(ax),τ(bx))

)−1
(hn(F |KCax

X
∩A,Cax

X
(ax,bx)(x)))

= hn+1(x)

since
(
G|K

C
τ(ax)
Y

∩B,Cτ(ax)
Y

(τ(ax),τ(bx))

)−1
◦ hn ◦ F |KCax

X
∩A,Cax

X
(ax,bx) is

continuous.
2. x ∈ A. Let (xm) be a sequence in X such that lim

m→∞
xm = x. For any

subsequence (xim) of the sequence (xm), it follows that if xim ∈ A for
each positive integer m, then

lim
m→∞

hn+1(xim) = lim
m→∞

τ(xim) = τ(x) = hn+1(x).

Next, let (xim) be any subsequence of the sequence (xm) in X \A. We
treat the following possible cases.

Case 1. Suppose that there are a connected component C of X
and (a, b) ∈ A(C∩A,C) such that for some positive integerm0 it holds
that for each positive integer m

m ≥ m0 =⇒ xim ∈ KC∩A,C(a, b).

Fix such C, a, b and m0. It follows that x ∈ {a, b}. Without any loss
of generality suppose that x = a. Let L ∈ A such that

lim
x→a

F |KC∩A,C(a,b)(x) = L.

It follows from 4. of Definition 3.12 that this limit does exist. Then,
using 4. and 5. of Definition 3.12, and 5. and 6. of Definition 3.14, we
get

lim
m→∞
m≥m0

hn+1(xim)

= lim
m→∞

(
G|Kτ(C)∩B,τ(C)(τ(a),τ(b))

)−1
(hn(F |KC∩A,C(a,b)(xim)))

= τ(a) = hn+1(a) = hn+1(x).

Case 2. Suppose that it is not true that there are a connected
component C of X and (a, b) ∈ A(C∩A,C) such that for some positive
integer m0 it holds that for each positive integer m

m ≥ m0 =⇒ xim ∈ KC∩A,C(a, b).
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Without any loss of generality suppose that for all positive integers ℓ
and k,

ℓ ̸= k =⇒ K
C
axiℓ
X ∩A,C

axiℓ
X

(axiℓ , bxiℓ ) ̸= K
C
axik
X ∩A,C

axik
X

(axik , bxik ).

For each positive integer m, let

Km = K
C
axim
X ∩A,C

axim
X

(axim , bxim )

and

Hm = K
τ(C

axim
X )∩B,τ(C

axim
X )

(τ(axim ), τ(bxim )),

and let Nm,Om ⊆ A(A,X), such that

F (Km) =

 ⋃
(c,d)∈Om

KCcX∩A,CcX (c, d)

 ∪
 ⋃

(c,d)∈Nm

KCcX∩A,CcX [c, d)

 ,

F (Km) is equal to the union above by 3. of Definition 3.12. Note that
for each positive integer m,

G(Hm) =

 ⋃
(c,d)∈Om

K
C
τ(c)
Y ∩B,Cτ(c)Y

(τ(c), τ(d))


∪

 ⋃
(c,d)∈Nm

K
C
τ(c)
Y ∩B,Cτ(c)Y

[τ(c), τ(d))


by 4. of Definition 3.14. Therefore,

hn+1(xim)

=
(
G|Hm

)−1
(hn(F |Km(xim))) ∈

(
G|Hm

)−1
(hn(F (Km)))

=
(
G|Hm

)−1
hn

 ⋃
(c,d)∈Om

KCcX∩A,CcX (c, d)

 ∪
 ⋃

(c,d)∈Nm

KCcX∩A,CcX [c, d)


=
(
G|Hm

)−1
 ⋃

(c,d)∈Om

hn(KCcX∩A,CcX (c, d))

 ∪
 ⋃

(c,d)∈Nm

hn(KCcX∩A,CcX [c, d))


=
(
G|Hm

)−1
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(c,d)∈Om

τ(KCcX∩A,CcX (c, d))

 ∪
 ⋃

(c,d)∈Nm

τ(KCcX∩A,CcX [c, d))


=
(
G|Hm

)−1
 ⋃

(c,d)∈Om

K
C
τ(c)
Y ∩B,Cτ(c)Y

(τ(c), τ(d))


∪

 ⋃
(c,d)∈Nm

K
C
τ(c)
Y ∩B,Cτ(c)Y

[τ(c), τ(d))


=
(
G|Hm

)−1
(G(Hm)) = Hm.

It follows from 4. of Definition 3.9 that lim
m→∞

Km = {x}. Thus,

lim
m→∞

Hm = {τ(x)} by 7. of Definition 3.14. Therefore,

lim
m→∞

hn+1(xim) = τ(x) = hn+1(x).

Since hn+1 is a continuous bijection from a compact metric space to a metric
space, it follows that it is a homeomorphism.

Obviously, for each a ∈ A, hn+1(a) = τ(a). Next, let C be a connected
component of X and let (a, b) ∈ A(C ∩ A,C). Since hn+1 and τ are both
homeomorphisms such that for each a ∈ A, hn+1(a) = τ(a) it follows that

hn+1(KC∩A,C [a, b]) = τ(KC∩A,C [a, b]).

Finally, we show that hn ◦ F = G ◦ hn+1. Let x ∈ X. We treat the following
possible cases.

1. x ∈ A. Then by 1. of Definition 3.12,

F (x) = Ax,X ∪
⋃

(c,d)∈Ax,X

KCcX∩A,CcX [c, d].

Then by 3. of Definition 3.14,

G(τ(x)) = τ(Ax,X) ∪
⋃

(c,d)∈Ax,X

K
C
τ(c)
Y ∩B,Cτ(c)Y

[τ(c), τ(d)] = τ(F (x)).

It follows that

(G ◦ hn+1)(x) = G(hn+1(x)) = G(τ(x)) = τ(F (x))
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and

(hn ◦ F )(x) = hn(F (x)) = hn(Ax,X ∪
⋃

(c,d)∈Ax,X

KCcX∩A,CcX [c, d])

= hn(Ax,X) ∪
⋃

(c,d)∈A

hn(KCcX∩A,CcX [c, d])

= τ(Ax,X) ∪
⋃

(c,d)∈A

τ(KCcX∩A,CcX [c, d])

= τ(Ax,X) ∪
⋃

(c,d)∈A

K
C
τ(c)
Y ∩B,Cτ(c)Y

[τ(c), τ(d)] = τ(F (x)).

Therefore,

(G ◦ hn+1)(x) = (hn ◦ F )(x).

2. x ∈ X \A. Then

hn+1(x) =
(
G|K

C
τ(ax)
Y

∩B,Cτ(ax)
Y

(τ(ax),τ(bx))

)−1
(hn(F |KCax

X
∩A,Cax

X
(ax,bx)(x)))

and

(G ◦ hn+1)(x) = (hn ◦ F )(x)

follows.

We have constructed the following commutative diagram – Diagram (3.2).

(3.2)

X X X . . . X X . . .F F F F F F

Y Y Y . . . Y Y . . .G G G G G G

h1 h2 h3 hn hn+1

By Lemma 2.18, the inverse limits lim−⊸(X,F ) and lim−⊸(Y,G) are homeomor-

phic.
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MARKOVLJEVE SKUPOVNE FUNKCIJE NA KOMPAKTNIM
METRIČKIM PROSTORIMA

Iztok Banič, Matevž Črepnjak i Teja Kac

Sažetak. U ovom radu poopćujemo pojam Markovljevih funkcija na

zatvorenim intervalima [a, b] na Markovljeve skupovne funkcije na kompak-
tnim metričkim prostorima. Takoder opisujemo kada dvije takve Markov-

ljeve skupovne funkcije slijede isti obrazac i pokazujemo da, ako Markovl-

jeve skupovne funkcije F : X ⊸ X i G : Y ⊸ Y slijede isti obrazac, tada
su inverzni limesi lim−⊸(X,F ) i lim−⊸(Y,G) homeomorfni.


