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ON THE BOUNDEDNESS OF EULER-STIELTJES
CONSTANTS FOR THE RANKIN-SELBERG L-FUNCTION

MEDINA ZUBACA
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ABSTRACT. Let E be a Galois extension of Q of finite degree and
let @ and 7’ be two irreducible automorphic unitary cuspidal represen-
tations of GLm(Ag) and GL,, (AEg), respectively. Let A(s,m x 7) be
a Rankin-Selberg L—function attached to the product m x 7, where 7’
denotes the contragredient representation of 7/, and let its finite part (ex-
cluding Archimedean factors) be L(s,m x 7). The Euler-Stieltjes constants
of the Rankin-Selberg L—function are the coefficients in the Laurent (Tay-
lor) series expansion around s = 1 + itg of the function L(s,7 X 7). In
this paper, we derive an upper bound for these constants.

1. INTRODUCTION

The classical Euler constant

. 1
¥ =10 = lim ;ﬁ—logx =0.57721...,

discovered and computed correctly up to five decimal places by L. Euler [12]
in 1731. is the constant term in the Laurent series expansion of the Riemann
zeta function at s =1,

1 > 1 >
_ S L
¢(s) 571+7+ka(8 ) 571“1‘2’)%(3 )
k=1 k=0
In 1885, T. J. Stieltjes [16] pointed out that each 7, can be obtained as
_(=DF log"n  log"™a
(L.1) = dim | > == - 1

n<x
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The proof of equation (1.1) can be found in [3,6]. Therefore, the constants
vk (k > 0) are named the Stieltjes constants, the generalized Euler constants
or the Fuler-Stieltjes constants.

The Euler-Stieltjes constants -, are closely related (see e.g. [4]) to coeffi-
cients ;. of the Laurent series expansion of the logarithmic derivative of the
Riemann zeta function at s =1

¢ LS
W=t e k<

Constants 7y, can be evaluated as (see e.g. [9])

(=Rt A(n)logFn  log"™ z
= T e )

n<x

where A(n) is the von Mangoldt function [25,40]. Usually, constants -y, are
called the Euler-Stieltjes constants of the first kind, while constants 7 are
called the Euler-Stieltjes constants of the second kind.

The Euler-Stieltjes constants of the first and the second kinds are im-
portant in both theoretical and computational analytic number theory since
they appear in various estimations and as a result of asymptotic analysis. For
example, the Euler-Stieltjes constants of the first kind can be used to deter-
mine a zero-free region of the Riemann zeta function near the real axis in the
critical strip 0 < Res < 1 [1]. The Euler-Stieltjes constants of the second kind
are related to the Li positivity criterion for the Riemann hypothesis [4] since
they appear in the arithmetic formula for the non-archimedean part of the Li
coefficient. Numerical evaluation and estimations are given in [23].

The Euler-Stieltjes constants of the first and the second kinds and their
relation to the Li criterion for the Riemann hypothesis were further investi-
gated by M. Coffey in [8,10] and by C. Knessl and M. Coffey in [20]. Some
interesting formulas and bounds are recently derived in [30].

This concept is generalized in many different settings. Coefficients ap-
pearing in the Laurent (Taylor) series representation of a zeta or L-function
or its logarithmic derivative are called generalized Euler-Stieltjes constants
of the first and the second kinds. Different kinds of formulas, properties or
bounds are derived.

Results related to the Hurwitz zeta function are given in [3], those for the
Dedekind zeta function in [15,33], for the general setting of a non-co-compact
Fuchsian group with unitary representation in [2], for a class of functions pos-
sessing an Euler product representation in [14], for a subclass S of the Selberg
class in [39], for the extended Selberg class in [17] and for the Rankin-Selberg
L—functions in [27,28]. Also, some investigations are done in the case of zeta
functions with multiple variables, introducing multiple Stieltjes constants, for
example, see [22,34]. g-analogues of these coefficients are investigated in [7].



ON THE BOUNDEDNESS OF EULER-STIELTJES CONSTANTS 35

In this paper, we investigate generalized Euler-Stieltjes constants attached
to the Rankin-Selberg L—functions associated with two representations. We
precisely define coeflicients under consideration in the sequel. Let E be a
Galois extension of Q of finite degree and let 7 and ' be two irreducible
automorphic unitary cuspidal representations (see e.g. [11]) of GL,,(Ag)
and GL,, (Ag), respectively. The generalized Euler-Stieltjes constants of the
first kind . ./ (k) attached to the finite part of Rankin-Selberg L—function
L(s,m x 7') (an analogue of classical ¢ function) are defined as coefficients in
the Laurent (Taylor) series representation of L(s,m x ') at s = 1 + it:

o0
(1.2) Lis,mx7) = > e (k)(s —1—it)",
k=—0(to)

where 6(tp) = 1 if and only if m = m’ and 7’ = 7 ® |det|"®, for some ¢, € R,
where = denotes isomorphic representations. Otherwise, (¢y) = 0.

In this paper, the finite part of Rankin-Selberg L—function we denote
by L(s,m x 7') and call the Rankin-Selberg L—function, and its completed
function (including Archimedean factors) we denote by A(s, 7 x 7).

The purpose of this paper is to derive an upper bound for coefficients
e« (k) appearing in (1.2). The Rankin-Selberg L—functions attached to a
convolution of two irreducible, unitary cuspidal representations of GL,,(Ag)
and GL,, (Ag) over number field E do not always belong to the extended
Selberg class S*, which is introduced in [19] (nor to the class of functions
considered in [14]). In the case when m = m’ and «’ = 7 ® |det|", for
some ty € R\ {0} the Rankin-Selberg L—function possesses pole at s =
1+ity # 1. Hence, they do not satisfy axiom (ii) of the class S*. Furthermore,
coefficients u; appearing in the functional equation for the Rankin-Selberg
L—functions unconditionally satisfy the bound Reyu; > —1, different from the
bound Rep; > 0, posed in axiom (iii) of the class S*.

The rest of the paper is organized as follows. In section 2 we give a com-
plete overview of the setting we are dealing with, introduce necessary notation
and recall some known results that will be used for the proofs. Section 3 con-
tains some preliminary results about functions under consideration, while the
main results are stated and proved in sections 4 and 5. In section 4 inte-
gral representation of coefficients under consideration is derived, while their
bounds are proved in 5.

2. PRELIMINARIES AND NOTATIONS

Let E be a Galois extension of Q of degree d, and let Ag denote the ring
of adeles over E. For every place v, let E, be the completion of a number field
E at v, and let f, denote the modular degree of E, over the field of p—adic
numbers Q,, for v|p, where p is a prime. Let S, denotes a set of infinite
places v of the number field £. The Rankin-Selberg L-function attached to
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the product m x 7 of irreducible cuspidal representations of GL,,(Ag) and
GL,, (Ag) with a unitary central character (see e.g. [11]), respectively, is
given by absolutely convergent Euler product of local factors

L(s,mx7) HL (s,7p X 7)),
V<00
for Res > 1, see e.g. [18, Th. 5.3.], where 7 denotes the contragredient
representation of . For finite place v at which 7, and 7, are unramified, the
local factors of L(s,m x 7’) are given by

(2.1) Ly(s,mx7) f[f[(l—a,rvjaﬂ(vk) )

where {ax (v, j)}~, and {am (v, k:)}km:1 are corresponding sets of Satake pa-
rameters associated to m and 7', respectively. If 7, or m, ramified, we can
also write the local factors at ramified places v in the same form (2.1) with
the convention that some of a (v, j) and o, (v, k) may be zero (see e.g. [27]).
The function L(s, 7 x 7’) has a Dirichlet series expansion of the form

2.2 L vy = 3 dox ()
(2.2) (s,m x ') n; e

that is valid for Res > 1.
Similarly, at the infinite place v € S, the archimedean local factor
L,(s,m x ) can be written as a product

LU(S,’/TUX%L):HH 3+,“fw><7r (U jak))v
j=1k=1

where pirwz(v,7,k) = pr(v,7) + o (v, k), at the infinite places v unramified
for both 7 and 7', {px (v, 7)}72, and {pn (v, )}, are the Langlands param-
eters associated to 7, and 7/, respectively and T'y(s) = 7~%/2T'(s/2), if v is
real and T',(s) = 2 (27) " T'(s), if v is complex. In the case when infinite place
v is ramified for 7 or 7', parameters p,x5 (v, j, k) are described in [31, Ap-
pendix], where it is also proved that p,xz/(v,j, k), for all j = 1,...,m and
k=1,...,m’ satisfy the trivial bound Rep w7 (v, j,k) > —1.
As proved in [11, Th. 9.1. and Th. 9.2.], the completed Rankin-Selberg
L-function
A(s,m x ') = L(s,m x &) H Ly(s,m, X )
vES
extends to a meromorphic function of order one on the whole complex plane,
bounded (away from its possible poles) in the vertical strip. The functional
equation, which is due to F. Shahidi ([36-38]),

(2.3) A(s,m x 7) = e(m x #)Q2 5 A1 — 5,7 x ')
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is valid for all s, where Q7 > 0 is the arithmetic conductor and e(m x 7') is

a complex number of modulus 1. The function A(s,7 x 7') has simple poles

at s = 1+itg and s = itg, arising from L(s, 7 x 7’) if and only if m = m’ and

7' =7 @ |det|", for some ty € R. Otherwise, it is an entire function.
Following [13] let us define

1,m=mand 7 27 ® |det|™, for some ¢¢cR;
2.4 o(tg) = ’ ’ ’
(2:4) (to) { 0, otherwise,

then the functional equation (2.3) can be written as

(2.5) L(s,m x T)W, (s) =L(1 —s,m x7),

where L(s,m x 7') = L(5,m x 7’) and the factor ¥, ,/(s) is given by

’

(2.6) \1/”,(5):% 1 TI1I Ly (s + prxz (0,4, k)

~/ T N ’
£ (7T X ) VESa =1 kel FU (1 — s+ wa%’(vmjv k))

As in [26], it follows that (2.6) can be written in more convenient form, as

(2.7) Urn(s) =

)

(wa%/ﬁ_dmm)s_% d”ﬁl/ T (5 (s + prxi (1))
e(mx7) i F(% <1fs+m»

where |e (7 x T')| = 1 and prxz (1) = ptiaxz (v, 4, k), for r1+79 placesv € Sy
and firx7 (1) = paxz(v,7,k) + 1, for the rest of o places v € Sy (j =
1, ..., m, k=1,...,m') and r; denotes number of real places v € S, and
ro denotes number of complex places v € So.

The zeros of A(s, mx7") are called non-trivial zeros of L(s, 7 x 7). They lie
in the strip 0 < Res < 1, see [35]. The function L(s, 7 x7') may also have triv-
ial zeros, which arise from the poles of the local L—factors at infinite places.
There are finitely many of them inside the critical strip 0 < Res < 1 at points
$ = —prxz (v, 4,k), for those v € Soo, 7 € {1,...,m} and k € {1,...,m'}
such that Rep,xz (v, 4, k) < 0.

3. SOME PROPERTIES OF THE RANKIN-SELBERG L—FUNCTIONS

In the following proposition, we give some asymptotic bounds for the
Rankin-Selberg L— functions and the factor U, -/ (s) of the functional equa-
tion. These results are used in proof of the main result of the paper.

PROPOSITION 3.1. Let E be a Galois extension of Q of finite degree d and
let m and © be two irreducible automorphic unitary cuspidal representations
of GL,(Ag) and GLy/ (Ag). The function U, ./(s) satisfies relation

1
QWX%’ )U : |t|(0—%)dmm/ ,

(3.1) W (0 +it)] ~o ((%)dmm
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as [t| = 4o00. Further, for an arbitrary € > 0 the function L(s, 7 x7") satisfies
0:(1) if o>1+e¢,
|t|d1n2m (1—<7+6)) if —e<o<l+e,

(3.2) Lio+itax7) =4 9 <
Oc,0 <|lfdmzm (120)> if o< —e.

PROOF. The function U, ./(s) can be written as

1 NS5
—dmm
(Qﬂ'xﬁ’ﬂ- )

e(mx @)

con |55 (oar (5 0)] i p (1242 |

By applying the asymptotic series expansion of function logT'(z + a) (see
[21, Section 2.11, relation (4)]) on the functions log {I‘ (M)} and

U, (s)=

2
1—s+p, 7 (1) . _ it . —it . .
log |I'{ ——=>—— )|, with 2z = % and z = respectively, we obtain

2
relation (3.1).
For Res = 0 > 1+ ¢ > 1 the Rankin-Selberg L-function L(s,m x ') is
given by an absolutely convergent Euler product for Res > 1, so
Lo +it,m x7') = 0(1), for o>1+c¢,

where O, denotes that a constant appearing in O notation depends on . For
Res = 0 < —¢ < 0, the functional equation for the Rankin-Selberg L-function
given by (2.5) and relation (3.1) imply

Lio+it,m x &) = O.q <|t| e <1—20>) :

as |t| = +oo, where O, denotes that a constant appearing in O notation
depends on ¢ and ¢. In special case, if o lies in a closed and bounded subset
of R, a constant in O notation is uniform in o and depends on €.

For o such that —¢ < ¢ < 14 ¢, Phragmén-Lindel6f theorem for strip can
be used to derive the desired result. Basically, since the function

(s —itg)’t0) (s — 1 — itg)’ I L(s,m x 7),
where §(to) is defined by (2.4), is an entire of finite order, the bound
|L(s,m x 7)| = O (exp(exp(d[t]))) ,

holds true for sufficiently large [¢t| and any § > 0. Application of the result [29,
Proposition 8.15] to the Rankin-Selberg L-function in the strip —e < o < 1+4¢
implies

Lo it x ) =0, (| “#07+9)
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as [t| = +oo. The proof is complete. O

4. INTEGRAL REPRESENTATION OF THE GENERALIZED EULER-STIELTJES
CONSTANTS ASSOCIATED TO THE RANKIN-SELBERG L—FUNCTION

In this section, we derive an integral representation for coefficients in the
Laurent (Taylor) series expansion of the Rankin-Selberg L—function given
by (1.2) using a classical method in the analytic number theory based on
contour integrals (see e.g. [40, Section 4.14], [17]). A key idea in the method
is to apply the Cauchy integral formula to obtain an integral expression for
coeflicients, and then deform the contour appearing in the integral expression
to a line from a — ico to a + ico. Cauchy integral formula implies

1 L(s,mx7)
4.1 (k)= — | —>——2—d
(4.1) Y (K) Qm'/(s—l—z'to)kﬂ *
c
where contour C' is a positively oriented circle with centre s = 1 + ity and
radius 7 such that it contains s = 1 + ity as the only singularity of the inte-
grand!. If §(tg) = 0, for all ¢y € R, then (1.2) gives Taylor series expansions

of function L(s,m x 7’) and in that case, let tg = 0.

PROPOSITION 4.1. Let E be a Galois extension of Q of finite degree d and
let L(s,m x 7') be Rankin-Selberg L—function attached to the product m x 7'
be two irreducible automorphic unitary cuspidal representations of GLy,(Ag)
and GL,,(Ag). Let k be a positive integer and a be a real number such
that 1 < 14+¢e < a < 225 + 1 and (1 — a + Repryw (1)) ¢ Z for all
l=1,...,dmm'. Then,

atioco______
(=) L(s, 7 x 7)GL(s)
(4.2) Y (k) = 2mi (s + itg)ktt

a—100

ds

+ 6(to)(—=1)k ' Res L(s, 7 x &),

s=1itg

s— 1

=/ 3 dmm’ -
(4.3) Gr(s) _m X T I1 lr (H“ﬂ*(l)>

(ﬂ-dmm/)s"'% e 2

xr(1+5jf”?m)gn;u—s+uﬂwaw.

PROOF. The proof is based on integral representation (4.1). The contour
C is deformed to a suitable rectangular R, 4,7 and the integral is decomposed
into integrals over its sides.

ISince the function L(s, 7 x ') might have two poles, s = ity and s = 1 + itg, we can

choose for radius r any positive number less than %
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Let A and T be sufficiently large positive numbers. Let Rq 4,7 be a
positively oriented rectangle determined by vertices —a + 1 — T, A — i
A+ 4T and —a + 1 4+ ¢T. Compared to the integral over C, the additional
contribution can be from a simple pole s = itg of the function L(s, 7 x 7) if
it exists. By the Cauchy’s formula, we can write

1 L(s,m x7") L(s,m x7")
— ST ) s =y §(tg)Res ——— L.
i / (s — 1 — itg)k+1 § = Yrw (k) + (0)3 ez%g(s—l—lto)k"—l
Ra,A,T
Therefore,
1 L(s,mx7")
(4.4) Yo (k) = i / stJﬂs(to)( 1)k E{egoL(S X 7).
7Za,A,T

Now, integral over R, a7 can be written as a sum of integrals over line
segments S1, S2, S3 and Sy joining —a+ 14T, —a+1—4T, A—iT, A+iT
and —a + 1 + T, respectively.

For integral over So, we have

I -, A—iT . .,
/ (s,7r>f7r) ds — / (s,mx7) ds
(s — 1 —itg)k+t? (s — 1 —itg)kt?
52 —(L-‘rl T

—5 —iT 1+a T A—iT

L(s,m x7)
+ TR R
(s — 1 —itg)k+
a+1 T —e— zT 14e—1T

Using Proposition 3.1 we obtain following asymptotic bounds

—e—iT L(s % %I) T k+1 1y, e
/ s = 0. (|| )R
(8 1 Zto) T+t0

a+1—iT

14e—iT _
/ ( Lismx7) 1 o <‘ T

M amm? 14+2¢)—k—1
| E )

s—1 —Zto)k'H T+t
—e—1
and
A—iT I - .
S, T X T
_ssmxm) Lo (1
/ (s — L —ito)rr1 | = 7° <|T+t0|’“+1>’
+e—iT

where O. denotes that constants appearing in O notation are uniform in
Res = o, for s € S;, and might depend on ¢.
Hence, for 1 +¢ < a < £EL + % and k > —1, we obtain

dmm

L(s,m x7)
(45) /(S—l—’lto)k""lds — O, as |T| — 0Q.
Sa
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Integral over Sy can be bounded completely analogously, i.e. we get

L(s,m x7)
(46) /mds — 0, as |T| — 00.
Sa
Next, we consider the integral over S3. Here s = A + it, and by choice
of A we are in the region of absolute convergence of the Rankin-Selberg
L—function, thus from Proposition 3.1 and by substitution u = t — ¢y fol-
lows

L 7 o d
8, T X U
/ st < 2K / PNCEE
- - — 2
3 S (A-12+w?)
where K is a positive constant such that |L(A + it,7 x ©/| < K. From
Lebesgue’s convergence theorem, when A — oo, it follows that the contri-
bution of the integral over Sz tends to zero, as |T| — oo. Namely, for the

integrand
1
fA(t) = PES)
(A=1)2+1¢2)>

and function
L, telo1];
t) =
g(?) { ﬁv t>1,

holds fa(t) < g(t) on [0,400), for k > 0 and g¢(t) is integrable. Then, since
=0, w

li h
LHm fa(t) =0, we have
L(s,m x7")
li li —— ~ _ds=0.
Aoe To (s — 1 —itg)kt! o
S3

Thus, the only contribution to the integral in (4.4), when |T| — oo, is
from the integral over S;. So, for £ > max {O, (% + 5) dmm’ — 1}, we have

—a+1—io0 _
L(s,m x7)

1
, = et St —1)* L =/
Yoo, (k) o / (s—lfito)kﬂds—'—é(to)( )*Res L(s,m x ')

s=ito
—a+1+4ioc0
-t Lo )
— — S, T™XT
= : ds + 6(to)(—1)"Res L 7).
27 / (5 + ito)k+l s+ ( 0)( ) iego (8,71' X T )

Functional equation (2.5) for the Rankin-Selberg L—function and defini-
tion (4.3) of the function G1(s), combined with formula I'(s)I'(1 - s) = ="—,

which is valid for all s ¢ Z, applied to the gamma functions appearing in
gamma factor of the functional equation imply

L(1—s,mx7)=L(s,7x 7)GL(s),
for 2 (1— s+ paxz (1) ¢ Z.
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Hence, relation (4.2) holds true for all k¥ > max {O7 (% + 5) dmm’' — 1},
where a € (1+¢, 2251 + 1) is chosen such that 2 (1 —a+ Repx7 (1)) ¢ Z

dmm/’

for all I =1,2,...,dmm/. This completes the proof of Proposition 4.1. ]

5. BOUNDS FOR THE GENERALIZED EULER-STIELTJES CONSTANTS
ASSOCIATED TO THE RANKIN-SELBERG L—FUNCTION

In this section, we prove the main result of the paper, the theorem that
gives an upper bound for the Euler-Stieltjes coefficients v ./ (k) defined by
(1.2). The proof is based on integral representation (4.2) derived in the previ-
ous section. Firstly, in the following lemma, we prove a bound for the function
G (s) appearing in the integrand in (4.2).

LEMMA 5.1. Let E be a Galois extension of Q of finite degree d and
let L(s, ™ x ') be Rankin-Selberg L—function attached to the product m x 7'
two irreducible automorphic unitary cuspidal representations of GL.,(Ag) and

GL. (Ag). Let ur = ,_,max [Repirxz (1)], pur = , max [Ty w0 (1))
For a > max{1 + ¢, ug}, where e > 0, we have
(5.1) |Grla+it)] < Q) 2,CL(a)

9 9 dmm/2a4—1
l+a+pr [t| + pur
— )Tz ’

where constant Cr(a) is given by

2 dmm/’ dmm/ 2 + 1
=) | X oIt

PROOF. From definition (4.3) of function G, for s = a + it, and having
in mind that (7 x 7') is a complex number of modulus 1, one obtains

- QZ*% dmm’
(6.2) [Grlatit)] = —= ] |
(ﬂ-dmm/) 2

=1

F(l-i—a-l—it—,uwx%/(l))F (a“t*“”ﬁ’(l)) H :

sin% (1—a—it+ prxz (l))’

2 2

Factors containing sine function, we bound using a simple representation in
terms of exponential functions, precisely for z € C,

(5.3) |sin z| < el™l.
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While bounds for the factors containing gamma functions will be based on
Binet formula [41, p. 258]

1 I 1
log |T'(2)| = <Rez - 2) log |z| — Imz arctan % — Rez + 3 log(27)

T ‘
67 z
R e dt
e /(2 t+et—1> t ’
0
valid for Rez > 0. A simple calculation implies that the second term can be
additionally simplified, i.e.

(5.4)

Imz s
—Imzarctan — — Rez < —— |[Imz|.
Rez - 2 | |

The properties of the function g(t) = (% — % + et171) %7 specially, the fact

that it attains its maximum 1/12, at ¢ = 0, gives us a bound

—+oo
1 1 1 e 17 1
R - — = dt| < .
¢ /(2 t+et—1) t = 12Rex
0
So, for Rez > 0, relation (5.4) implies

1 1
(5.5) log |T'(2)] < <Rez - > log |z — [Imz| g t3 log(2m) +

2 12Rez "’

For the arguments appearing in (5.2), bound (5.3) implies

(5.6)

sing (1—a— it + firxs (l))‘ < exp (g It — It s (z>|),

for all I = 1,...,dmm/. Since, by the assumption, a > max{l + ¢, ugr},
and coefficients p,xz (!) for the Rankin-Selberg L—function satisfy bound
Repirwz > —1, we have

] ! 1 it — !
Re <a+lt +2/j/7'r><71' (l)> > O and Re( +G+Zt2 ,u7T><7l' (Z)> > O,

for all I = 1,...,dmm/, thus inequality (5.5) may be applied for the gamma
factors in (5.2).
In addition, definition of numbers pur and p; implies the following in-
equalities
(t = Tmpirr (1)® < (8] + 1),
(a+ Repirxiw (1))? < (1+a+ pr)?,
(1 +a-— Re.u‘n'x%’(l))Q < (1 +a+ HR>2,
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and from (5.5) we obtain

. (a +it +um/(l)>

log

+10g’1—\ <1+a’+’£t_/"tﬂ'><%/(l))‘

2

20— 1 T+a+pur\"  [(ltl+p\*\ =
< 1 PRI ) Ty T (1
< og(( 5 ) +{ 75 5 [t = Imptzxzr (1)

20 +1
a+ Repirxz (1))(1 + a — Repirxz (1))

for all I =1,...,dmm’. This bound combined with (5.6) implies

. <a+it+uﬂxg'(l)> . (1+a+it—uﬁx;'(l)>

2

1
+ 6( + log 2,

2 2

" Sinﬂ'(l—a—zt—i—,u,m;/(l))’
2
2a — 1 l+a+pur\” It + pr\°
< oxp | log (2) Jr(2)

+ 2a + 1
6(a 4+ Reprxz(1))(1 +a — Reprxz (1))

Substituting it into (5.2), we obtain (5.1), and the proof is complete. d

+ log 27T:| .

The first explicit upper bound for coefficients in the Laurent series ex-
pansion of the Riemann zeta function about s = 1 has been given by Briggs
[5]. Then, Matsuoka studied the asymptotic behaviour of these coefficients
and he gave an excellent upper bound for its in [24]. Results related to upper
bound for Stieltjes constants for the Dirichlet L-function when x is a primi-
tive character modulo ¢ is given in [32], those for the Hurwitz zeta function
in [3]. The investigation of Stieltjes constants for functions from the extended
Selberg class S* is done and an upper bound for these coefficients is obtained
in [17].

The following theorem is the main result of the paper, it gives a bound
for the coeflicients under consideration.

THEOREM 5.2. Let E be a Galois extension of Q of finite degree d and
let L(s,m x 7') be Rankin-Selberg L—function attached to the product m x 7'
two irreducible automorphic unitary cuspidal representations of GLy, (Ag) and
GLyy (Ag) with pole at s = 1+ ity if m = m/ and 7 = 7 @ |det|"™, otherwise
to=0. Let up = max  |Repnxz (D], pr = max  [Impiesz (I)] and

=1,...,dmm/ =1,...,dm
URT = max{pR,uI + 1 — 1} Let a > max{l + &, uR,1, ‘t0| + ur — ,U,RJ} and

1(1—a+Reprxw (1) ¢ Z for alll = 1,...,dmm’. For positive integer k such
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that k > dmm/’ (a — %) we have

B 4
[V (k)] < Dr(a)a™" (2 FHRL At e T >
(5.7) ’

Res L(s,m x 7')],
S= Z[)

+4(to)

where constant Dy (a) is defined by

20 + 1 “mm 1

6 ; (a+ Reprxz (1))(1 +a — Reprxz (1))

G«*l ’ 1
o (30 3) D (4) (=3) i‘” [axxz ()]
T 7r — na '

PrOOF. From the integral representation of generalized Euler-Stieltjes
coefficients given in Proposition 4.1, and using the bound obtained in
Lemma 5.1, we have

Dy(a) = exp

/2a—1

et s cuto e [ [(Lrerem)’ (M’
Tmm VL= S o 2 2
’L(afztﬂ'x
X i dt + 0(to) |Res L(s,m x 7')|,
(@@ + (1t 10)) =

where Cp(a) is defined in Lemma 5.1.

Since the Rankin-Selberg L—function possesses a Dirichlet series repre-
sentation (2.2) that converges absolutely for Res > 1, for a > 1 +¢ > 1, one
yields

Z oz ()] ¢ poc,

L(a —it,m x7)

hence
a 2 +oo |a
6:8) b ()] < Cuo) S5 3 1m0 ) R (s, x 7).
el s=itg
where

2a—1

+oo 2 2 dmm’ T
I_/ <1+a+,uR> +<|t|+u1)] dt
kS 2 2 @+ (t+10)2)

Thus, it is left to derive a bound for the integral I. Depending on the value
of tg, we examine two cases.
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(i) Let to > 0. Then
+oo
(5.9)  I= / ( S L )
o @+ (t+1)%) = (@+(—10)?) =

dmm’ 2e=1
2 2
1+a+pr n t+ pr
2 2

4
dt.
The interval of integration we derive into two parts. Denote by I; and Iy
integrals that correspond to intervals (0, B) and (B, +00), respectively, where
B=1+a+ppr—pur>to+ 1.
For I; we have

(510) I < 2(2 + ppg + MI)Sdmm’ 2a471a_k'+%dmm”

since 1 +a+pur <14+a+ppr < 4a and % < 24 pp,1+ pr, by assumptions
of the theorem.
For integral I, we have t > B,

1+a+pr ? t+ pr : t+ pr ?
- < + -5 §2 4 b
2 2 2
and (t +tg)? > (t —t9)?, so
+oo dmm/' 2e=1

9 27 am 1
2<t+2u1> ] gt

IQS/
Jo@® (- 1))

—+oo

k+1 1—dmm
t+to+ pr 2 1 dmam/ 20=1
< t+1to+ 2 dt.
- / ( t ) (t+to + pr)itt (t4 o+ ur)

B—tg

Furthermore, since the function g(t) = Hto% is monotonically decreasing

for t > B —tg, g(t) > 1 and . ligl g(t) = 1, it follows that maximal value of
—r+00

g(t) is at point t = B — tg and it is equal to g%’;;. Hence,
k+1
B+ I + 1—dmm’ 2a=1
IQ < 2 4
B -t
“+o0
72a—1
x / (t + to + )~ FFDTImm T gy
Bt

For constant a under consideration, we have a < % + ﬁ, thus the above
integral converges and yields

12a—1

217dmm (1 +a+MR’I)1+dmm’%

I, < )
2= k—dmm’%;l (I+a+prr — pr —to)kt?
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Additionally, since ugr,; = max {pg, i1 + to — 1} inequalities 1 + a + pgr, —
pr —to >a>1+4¢>1 hold true. Also, 1 +a+ pg,r < 4a. Thus

/2a—1
4

81+dmm —k+dmm’ 221
(5.11) I < A 7

— k—dmm S

Substituting (5.10) and (5.11) into (5.9), combined with (5.8) implies (5.7).
(ii) The result for the case ty < 0 can be derived completely analogously
as in (i) using simple substitution —tq = ¢; > 0.
The proof is complete. ]
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O OGRANICENOSTI EULER-STIELTJESOVIH KONSTANTI
ZA RANKIN-SELBERGOVU L-FUNKCIJU

MEDINA ZUBACA

SAZETAK. Neka je E Galoisovo prosirenje od Q kona¢nog stupnja i neka su
7w i w’ dvije ireducibilne automorfne unitarne kupidalne reprezentacije od
GLm(Ag) i GL,,/(AEg), redom. Neka je A(s,m X &) Rankin-Selbergova
L—funkcija pridruzena produktu 7 x 7, gdje & oznacava kontragradi-
jentnu reprezentaciju od w’, a neka njegov konacni dio (bez Arhime-
dovih faktora) bude L(s,m x 7). Euler-Stieltjesove konstante Rankin-
Selbergove L—funkcije su koeficijenti u razvoju u Laurentov (Taylorov)
red oko s = 1 + itg funkcije L(s,m X ). U ovom radu izvodimo gornju
medu ovih konstanti.



