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Abstract. We follow here the results of Varchenko, who assigned

to each weighted arrangement A of hyperplanes in the n-dimensional real
space a bilinear form, which he called the quantum bilinear form of the ar-

rangement A. We briefly explain the quantum bilinear form of the oriented

braid arrangement in the n-dimensional real space. The main concern of
this paper is to compute the inverse of the matrix of the quantum bilinear

form of the oriented braid arrangement in Rn, n ≥ 2. To solve this prob-

lem, in [3] the authors used some special matrices and their factorizations
in terms of simpler matrices. So, to simplify some matrix calculations, we

first introduce a twisted group algebra A(Sn) of the symmetric group Sn

with coefficients in the polynomial ring in n2 commutative variables and
then use a natural representation of some elements of the algebra A(Sn)

on the generic weight subspaces of the multiparametric quon algebra B,
which immediately gives the corresponding matrices of the quantum bilin-

ear form.

1. Introduction

We first briefly explain the basic concepts of an arrangement and of the
oriented braid arrangement in Rn, n ≥ 2. An arrangement is a finite set of
hyperplanes in Rn, n ≥ 1. Connected components of the complement of the
union of all hyperplanes of A are called regions (chambers or domains). An
edge of A is any nonempty intersection of a subset of A, including the empty
intersection, where the space Rn can be regarded as the intersection of the
empty set of hyperplanes. We denote by LA the intersection poset consisting
of all edges of A, where LA is partially ordered by reverse inclusion. We denote
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by L′A = LA\Rn the intersection poset except Rn. Let RA = Z[aH | H ∈ A]
be the commutative polynomial ring in variables aH , H ∈ A. First we assign
a weight aH ∈ RA to each hyperplane H of A, and then we define the weight
of an edge L ∈ L′A as the product of the weights of all hyperplanes containing
L. Note that in particular the weight of the space Rn is equal to one, which
is not considered here. Then a quantum bilinear form B associated to A is
the bilinear form on the module MA of all RA-linear combinations of regions
of A defined by

(1.1) B(P,Q) =
∏

aH

where the product runs over all hyperplanes H ∈ A separating regions P and
Q. The matrix B with the entries (1.1) is a symmetric square matrix which
Varchenko called the quantum bilinear form of the arrangement A and proved
that the determinant of B is given by the formula

(1.2) detB =
∏
L∈L′

A

(1− a2L)l(L)

where aL is the weight of the edge L ∈ L′A and l(L) is the multiplicity of the
edge L, see [10] for more details.

We now consider the braid arrangement in a real affine space Rn, n ≥ 2,
denoted by Bn, consisting of all diagonal hyperplanes

Hij = {(x1, x2, . . . , xn) ∈ Rn | xi = xj}, 1 ≤ i < j ≤ n.

Moreover, if we introduce the orientation of the braid arrangement, we obtain
the oriented braid arrangement in a real affine space Rn, n ≥ 2, denoted by
B∗n, consisting of open half-spaces

H+
ij = {(x1, x2, . . . , xn) ∈ Rn | xi > xj},

H−ij = {(x1, x2, . . . , xn) ∈ Rn | xi < xj}

for all 1 ≤ i < j ≤ n. Then to every open half-space H+
ij we associate a weight

qij = a(H+
ij ) and similarly to every open half-space H−ij we associate a weight

qji = a(H−ij ) in the polynomial ring in variables qij , qji. Therefore, qji ̸= qij for
all 1 ≤ i < j ≤ n. In agreement with the fact that the braid arrangement Bn
is the reflection arrangement of the symmetric group Sn, see [2,4], the regions
of Bn and also of B∗n are directly connected to Sn, so that each region Pσ is
in one-to-one correspondence with the corresponding permutation σ ∈ Sn, as
follows

Pσ = {(x1, x2, . . . , xn) ∈ Rn | xσ1 < xσ2 < · · · < xσn}.

Let us denote by B∗n the quantum bilinear form associated to the oriented
braid arrangement B∗n in a real affine space Rn, n ≥ 2. Then the entries of
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B∗n are the monomials of the form

(1.3) B∗n(Pσ, Pτ ) =
∏

(a,b)∈I(τ−1σ)

qσ(a)σ(b)

where qσ(b)σ(a) ̸= qσ(a)σ(b) and I(τ
−1σ) = {(a, b) | a < b, τ−1σ(a) > τ−1σ(b)}

denotes the set of inversions of τ−1σ, cf. [7, Proposition 3.2 and Proposi-
tion 3.5]. Then the matrix B∗n with the entries (1.3) is non-symmetric. We
call the matrix B∗n the quantum bilinear form B∗n of the oriented braid arrange-
ment B∗n. In the following we will explain the determination of the inverse of
the matrix B∗n. Before that we recall that the formula for the determinant of
the quantum bilinear form B∗n of the oriented braid arrangement B∗n is given
by

(1.4) detB∗n =
∏

T∈(Q;m)
2≤m≤n

(1− σT )(m−2)! (n−m+1)!

(cf. [7, Theorem 3.8]). Here (Q;m) = {T ⊆ Q | Card T = m} denotes the set
of all subsets T of the set Q = {l1, l2, . . . , ln} of cardinality n such that the
cardinality of T is equal to m, and

(1.5) σT =
∏

{i,j}⊆T

σij =
∏

i ̸=j∈T

qij ,

where σij := qijqji for i < j and σii = 1, which is consistent with qii = 1.
Compare (1.4) with [3, Theorem 1.9.2], where the matrix B∗n is denoted by
A(ν), and see also [6], where the author uses the notation AQ for this matrix.
The quantum bilinear form of the braid arrangement and the formula for its
determinant can be found in [1]. A decomposition of the matrix B∗n, by matrix-
level factorizations are given in [3]. Here we are motivated to simplify these
algebraic manipulations. By labeling the regions of the braid arrangements by
permutations from the symmetric group Sn (i.e., the set of all permutations
of the first n natural numbers), we can simplify these algebraic manipulations
by replacing these matrix-level factorizations by more appropriate and alge-
braically much simpler algebraic expressions in a twisted group algebra A(Sn)
of the symmetric group Sn with coefficients in the commutative polynomial
ring Rn = C[Xa b | 1 ≤ a, b ≤ n] with 1 ∈ Rn as unit element of Rn, where we
studied the nontrivial factorization of certain canonically defined elements [8].
Furthermore, by using a natural representation of some factorizations of these
elements of A(Sn) on the generic weight subspaces BQ of the multiparamet-
ric quon algebra B, which is equipped with a multiparametric q-differential
structure, we then obtain the corresponding factorizations of the matrix (B∗n)
and hence of the matrix (B∗n)

−1, cf. [5, 6].
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2. A twisted group algebra of the symmetric group

In [8] we obtained a factorization of certain canonically defined elements
in the algebra A(Sn) first as a product of previously defined simpler elements
and then as a product of still simpler elements. Now we briefly recall the
algebra A(Sn) and some of its canonically defined elements. We use the
standard notation Sn for the symmetric group on n letters, i.e., the set of all
permutations of the first n natural numbers. Let Rn = C[Xa b | 1 ≤ a, b ≤ n]
be the polynomial ring of all polynomials in n2 variables Xa b over the set of
complex numbers. Then we define a twisted group algebra of the symmetric
group Sn with coefficients in the commutative polynomial ring Rn, denoted by
A(Sn) = Rn ⋊C[Sn], where ⋊ denotes the semidirect product. The elements
of A(Sn) are the linear combinations

∑
gi∈Sn pi gi, with pi belonging to Rn.

Consider the action of Sn on Rn given by g.p(.., Xa b, ..) = p(.., Xg(a) g(b), ..)
for each g ∈ Sn and each p ∈ Rn, the multiplication in A(Sn) is then given
by

(p1(.., Xa b, ..) g1) · (p2(.., Xc d, ..) g2)(2.1)

= p1(.., Xa b, ..) · p2(.., Xg1(c) g1(d), ..) g1g2

where g1g2 is the product (i.e., the composition g1 ◦ g2) of g1 and g2 in Sn.
Note that (2.1) is the consequence of the following two kinds of basic relations

(2.2) Xa b ·Xc d = Xc d ·Xa b, g.Xa b = Xg(a) g(b) g.

The algebra A(Sn) is associative but not commutative.
To each g ∈ Sn we first assign a unique element g∗ in the algebra A(Sn) by

(2.3) g∗ =
∏

(a,b)∈I(g−1)

Xa b g

where I(g−1) = {(a, b) | 1 ≤ a < b ≤ n, g−1(a) > g−1(b)} denotes the set of
inversions of the permutation g−1 ∈ Sn (i.e., the inverse of g ∈ Sn), and we
then consider the following canonical element of the algebra A(Sn) as follows

(2.4) α∗n =
∑
g∈Sn

g∗

cf. [8]. Of particular interest is its factorization into the product of the sim-
pler elements of the algebra A(Sn). So before we perform the decomposition
of α∗n ∈ A(Sn) and also of g∗ ∈ A(Sn) for all g ∈ Sn, we first consider the
cyclic permutation ta,b ∈ Sn which maps b to b− 1 to b− 2 · · · to a to b,
and then its inverse tb,a ∈ Sn which maps a to a+ 1 to a+ 2 · · · to b to
a for all 1 ≤ a ≤ b ≤ n, where in both cyclic permutations all 1 ≤ k ≤ a− 1
and b+ 1 ≤ k ≤ n are fixed. Thus in the algebra A(Sn) the corresponding
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elements are given by

t∗a,b =
∏

a≤i≤b−1

Xi b ta,b, t∗b,a =
∏

a+1≤j≤b

Xa j tb,a

1 ≤ a ≤ b ≤ n, where t∗k,k = id for each 1 ≤ k ≤ n.
Then a permutation g ∈ Sn can be decomposed into cycles from the left

as follows g = tkn,n · tkn−1,n−1 · · · tkj ,j · · · tk2,2 · tk1,1, where kj ≥ j (see [8, Sec-
tion 3] and compare with [3], where g ∈ Sn is decomposed into cycles from
the right), so that the corresponding element of the algebra A(Sn) is given by

g∗ = t∗kn,n · t
∗
kn−1,n−1 · · · t

∗
kj ,j · · · t

∗
k2,2 · t

∗
k1,1.

Moreover, in the algebra A(Sn) we define the following element

(2.5) β∗n−k+1 = t∗n,k + t∗n−1,k + · · ·+ t∗k+1,k + t∗k,k

for all 1 ≤ k ≤ n (cf. [8, Definition 3.2]), where t∗k,k = id. Note that k = n
implies β∗1 = id, so for 1 ≤ k ≤ n− 1 we define the simpler elements γ∗n−k+1

and δ∗n−k+1 as follows

(2.6) γ∗n−k+1 =
(
id− t∗n,k

)
·
(
id− t∗n−1,k

)
· · ·
(
id− t∗k+1,k

)
δ∗n−k+1 =

(
id− (t∗k)

2 t∗n,k+1

)
·
(
id− (t∗k)

2 t∗n−1,k+1

)
(2.7)

· · ·
(
id− (t∗k)

2 t∗k+2,k+1

)
·
(
id− (t∗k)

2
)

with (t∗k)
2 = X{k, k+1} id, where t

∗
k := t∗k+1,k and t∗k+1,k+1 = id, see [8, Defini-

tion 3.5, Corollary 2.7 and Remark 2.6]). Here we have applied the notation

(2.8) X{a,b} := Xa b ·Xb a

1 ≤ a < b ≤ n. In addition, we denote by

(2.9) XP :=
∏

{a,b}⊆P

X{a,b}

for each P ⊆ {1, 2, . . . , n}. Considering Theorem 3.4 and Proposition 3.6 of
[8], we obtain that the canonical element (2.4) has the following nontrivial
factorization

(2.10) α∗n = β∗2 · β∗3 · · ·β∗n
of simpler elements (2.5) over all 1 ≤ k ≤ n− 1, where each β∗i , 2 ≤ i ≤ n is
given as a product

(2.11) β∗i = δ∗i · (γ∗i )
−1

in terms of even simpler elements γ∗i and δ∗i , given by (2.6) and (2.7).
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Remark 2.1. We emphasize that the elements defined by (2.5), (2.6) and
(2.7) can be written as follows

β∗i = t∗n,n−i+1 + t∗n−1,n−i+1 + · · ·+ t∗n−i+2,n−i+1 + t∗n−i+1,n−i+1,

γ∗i =
(
id− t∗n,n−i+1

)
·
(
id− t∗n−1,n−i+1

)
· · ·
(
id− t∗n−i+2,n−i+1

)
,

δ∗i =
(
id− (t∗n−i+1)

2 t∗n,n−i+2

)
·
(
id− (t∗n−i+1)

2 t∗n−1,n−i+2

)
· · ·
(
id− (t∗n−i+1)

2 t∗n−i+2,n−i+3

)
·
(
id− (t∗n−i+1)

2
)

for all 2 ≤ i ≤ n. In particular, i = 1 implies β∗1 = t∗n,n = id. However,
comparing the corresponding right-hand sides of β∗i , γ

∗
i , δ

∗
i , 2 ≤ k ≤ n with

β∗n−k+1, γ
∗
n−k+1, δ

∗
n−k+1, 1 ≤ k ≤ n−1 (each written in reverse order), we see

that (2.5), (2.6), (2.7) are better suited for further algebraic manipulations.

Thus, from the application of (2.10) and (2.11) it follows directly that
α∗n ∈ A(Sn) has the following factorization

(2.12) α∗n =

←∏
1≤k≤n−1

δ∗n−k+1 ·
(
γ∗n−k+1

)−1
so that its inverse is given by

(2.13) (α∗n)
−1

=
∏

1≤k≤n−1

γ∗n−k+1 ·
(
δ∗n−k+1

)−1
.

Note that the product on the right-hand side of (2.12) is written from right to
left for all 1 ≤ k ≤ n− 1. We reproduce here Proposition 3.10 of [8] because it
is so important for the further calculation of the inverse matrix of the quantum
bilinear form of the oriented braid arrangement. For simplicity, we shall omit
the second index n in Proposition 3.10 of [8] when written as Proposition 2.2
below. Let Des(σ) = {1 ≤ i ≤ n− 1 | σ(i) > σ(i+ 1)} be the descent set of a
permutation σ ∈ Sn.

Proposition 2.2. For all 1 ≤ k ≤ n− 1 the inverse of δ∗n−k+1 is given
by the following formula

(2.14)
(
δ∗n−k+1

)−1
= (∆n−k+1)

−1 · ε∗n−k+1,

where

∆n−k+1 :=
∏

k+1≤m≤n

(
id−X{k,k+1,...,m}

)
,(2.15)

ε∗n−k+1 :=
∑

g∈Sk1×Sn−k

∏
i∈Des(g−1)

X{k,k+1,...,i} · g∗.(2.16)

We consider here that for each permutation g ∈ Sk1 × Sn−k the corre-
sponding descent set of its inverse g−1 ∈ Sk1 × Sn−k is given by Des(g−1) =
{k + 1 ≤ i ≤ n− 1 | g−1(i) > g−1(i+ 1)}. On the other hand, from the fact
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that g∗ is given by (2.3), it follows that (2.16) can be written in the following
form

(2.17) ε∗n−k+1 =
∑

g∈Sk1×Sn−k

∏
i∈Des(g−1)

X{k,k+1,...,i} ·
∏

(a,b)∈I(g−1)

Xa b g

so it goes without saying that the corresponding set of inversions of g−1 ∈ Sk1×
Sn−k is given by I(g−1) = {(a, b) | k + 1 ≤ a < b ≤ n− 1, g−1(a) > g−1(b)}.
Note that for each 1 ≤ k ≤ n− 1, the factors X{k,k+1,...,m} for k + 1 ≤ m ≤ n
on the right-hand side of (2.15) and also X{k,k+1,...,i} for i ∈ Des(g−1) on the
right-hand side of (2.16) are given by (2.9).

3. A twisted regular representation on the generic weight
subspaces BQ of the algebra B

In what follows we use a natural representation of the twisted group al-
gebra A(Sn) on the generic weight subspaces of the multiparametric quon
algebra B, so we first briefly recall the main notions of the algebra B. A
multiparametric quon algebra B is the free unital associative complex alge-
bra B = C ⟨ei1 , ei2 , . . . , eiN ⟩ generated by N generators {ei}i∈N each of de-
gree one, equipped with a multiparametric q-differential structure given by
q-differential operators {∂i}i∈N acting on B according to the twisted Leibniz
rule

(3.1) ∂i(ejx) = δijx+ qijej∂i(x)

where ∂i(1) = 0 and ∂i(ej) = δij . The algebra B is graded by the total
degree, and more generally it is multigraded and has a finer decomposition
into multigraded weight subspaces

(3.2) BQ = spanC

{
ej1...jn = ej1 · · · ejn | j1 . . . jn ∈ Q̂

}
,

for each x ∈ B, i, j ∈ N , where each weight subspace BQ corresponds to a

multiset Q = {l1 ≤ · · · ≤ ln} of cardinality n. Here Q̂ denotes the set of all

distinct permutations of Q and hence dimBQ = Card Q̂. We note that the al-
gebra B can be written as the following direct sum B = Bgen⊕Bdeg, where Bgen
denotes the (generic) subspace of B, spanned by all multilinear monomials,
and Bdeg denotes the (degenerate) subspace of B spanned by all monomials
which are nonlinear in at least one variable. The weight subspace BQ corre-
sponding to the set Q = {l1, . . . , ln} (li ̸= lj , 1 ≤ i < j ≤ n) is called generic,
otherwise it is called degenerate. In what follows we consider only the generic
weight subspaces BQ of the algebra B, so we give a special case of the action of
∂i on a typical monomial ej1...jn in the monomial basis of the generic weight
subspace BQ ⊆ B given by

(3.3) ∂jk(ej1...jn) = qjkj1 · · · qjkjk−1
ej1...ĵk...jn ,
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for 1 ≤ k ≤ n, j1 . . . jn ∈ Q̂, where ĵk denotes the omission of the correspond-
ing index jk (see Section 2 of [6] for more details). In this (generic) case,

where Card Q = n, it follows that dimBQ = Card Q̂ = n!.
Before we define a representation ϱ : A(Sn)→ End(BQ) (see (3.10)) of

the twisted group algebra A(Sn) = Rn ⋊ C[Sn] on the generic weight sub-
space of the algebra B, we recall that Rn = C[Xa b | 1 ≤ a, b ≤ n] denotes the
polynomial ring with unit element 1 ∈ Rn and C[Sn] =

{∑
σ∈Sn cσσ | cσ ∈ C

}
denotes the usual group algebra in which multiplication is given by(∑

σ∈Sn

cσσ

)
·

(∑
τ∈Sn

dττ

)
=

∑
σ,τ∈Sn

(cσdτ )στ,

where στ denotes the composition σ ◦ τ , i.e., the product of σ and τ in Sn. We
first consider a representation ϱ1 : Rn → End(BQ) on the generatorsXa b ∈ Rn
defined by

(3.4) ϱ1(Xa b) := Qa b

for j1 . . . jn ∈ Q̂, where Qa b denotes a diagonal operator on BQ given by (cf. [3,
p6])

(3.5) Qa b ej1...jn := qjajb ej1...jn .

With reference to the notation (2.8) and also (3.4), (3.5), we obtain that
ϱ1(X{a,b}) = Q{a,b}, where Q{a,b} = Qa b ·Qb a, 1 ≤ a < b ≤ n is a diagonal
operator which can be written with the notation σjajb = qjajbqjbja as follows

(3.6) Q{a,b} ej1...jn = σjajb ej1...jn .

Similarly, referring to the notation (2.9), for each subset P of the set of car-
dinality n we obtain ϱ1(XP ) = QP , where QP =

∏
{a,b}⊆P Q{a,b} denotes the

corresponding diagonal operator given by

(3.7) QP ej1...jn =
∏

{a,b}⊆P

σjajb ej1...jn ,

where we applied (3.6). We emphasize that QP on the right-hand side of
(3.7) corresponds to σj1...jk if P = {1, 2, . . . , k} ⊆ {1, 2, . . . , n}, which is also
consistent with (1.5). Therefore, we denote by

(3.8) Q{1,2,...,k} ej1...jn = σj1j2...jk ej1...jn ,

where σj1j2...jk ej1...jn =
∏

{a,b}⊆{1,2,...,k}

σjajb ej1...jn .

If we define a linear operator ϱ2 : C[Sn]→ End(BQ) by

(3.9) ϱ2(g) ej1...jn := ejg−1(1)...jg−1(n)
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for each g ∈ C[Sn], then ϱ2 is a regular representation. Now if we define a
map ϱ : A(Sn)→ End(BQ) on decomposable elements

(3.10) ϱ (pg) := ϱ1(p) · ϱ2(g)

for each p ∈ Rn and g ∈ C[Sn] and extended by additivity, then ϱ is a repre-
sentation, see [5, Proposition 4.5], where it was shown that ϱ preserves the
basic relations (2.2) of multiplication in the algebra A(Sn) given by (2.1). In
other words, from the application of (2.2), (3.4), (3.5) and (3.9) it follows that

ϱ (Xa b ·Xc d) = Qa b ·Qc d = Qc d ·Qa b = ϱ (Xc d ·Xa b),

ϱ (g.Xa b) ej1...jn = ϱ (Xg(a) g(b) g) ej1...jn = qjajb ejg−1(1)...jg−1(n)

for j1 . . . jn ∈ Q̂. In the generic case (i.e., when BQ is the generic weight
subspace of the algebra B) a representation ϱ is called a twisted regular repre-
sentation, so in what follows we consider only a twisted regular representation
ϱ. We note that the trivial cases of a (twisted) representation ϱ are given by

ϱ(1 · g) ej1...jn = ϱ1(1) · ϱ2(g) ej1...jn = 1 · ejg−1(1)...jg−1(n)
= ejg−1(1)...jg−1(n)

,

ϱ(Xa b id) ej1...jn = ϱ1(Xa b) · ϱ2(id) ej1...jn = Qa b ej1...jn = qjajb ej1...jn .

Proposition 3.1. Let ϱ : A(Sn)→ End(BQ) be the twisted regular rep-
resentation on the generic weight subspace BQ of the algebra B. Then the
multiplication of the operators ϱ (p1(.., Xa b, ..) g1) and ϱ (p2(.., Xc d, ..) g2) of
End(BQ) is given by the following formula

ϱ (p1(.., Xa b, ..) g1) · ϱ (p2(.., Xc d, ..) g2) ej1...jn

(3.11)

= p1(.., qj
g
−1
2 g

−1
1 (a)

j
g
−1
2 g

−1
1 (b)

, ..) · p2(.., qj
g
−1
2 (c)

j
g
−1
2 (d)

, ..) ej
g
−1
2 g

−1
1 (1)

...j
g
−1
2 g

−1
1 (n)

.

Proof. Applying the formula (3.10) to the multiplication of any two
elements p1(.., Xa b, ..) g1 and p2(.., Xc d, ..) g2 of A(Sn), given by (2.1), yields

ϱ ((p1(.., Xa b, ..) g1) · (p2(.., Xc d, ..) g2)) ej1...jn

= ϱ
(
p1(.., Xa b, ..) · p2(.., Xg1(c) g1(d), ..) g1g2

)
ej1...jn

= ϱ1
(
p1(.., Xa b, ..) · p2(.., Xg1(c) g1(d), ..)

)
· ϱ2 (g1g2) ej1...jn

= p1(.., Qa b, ..) · p2(.., Qg1(c) g1(d), ..) ejg−1
2 g

−1
1 (1)

...j
g
−1
2 g

−1
1 (n)

= p1(.., qj
g
−1
2 g

−1
1 (a)

j
g
−1
2 g

−1
1 (b)

, ..) · p2(.., qj
g
−1
2 (c)

j
g
−1
2 (d)

, ..) ej
g
−1
2 g

−1
1 (1)

...j
g
−1
2 g

−1
1 (n)

.

On the other hand, it holds that

ϱ ((p1(.., Xa b, ..) g1) · (p2(.., Xc d, ..) g2)) ej1...jn

= ϱ (p1(.., Xa b, ..) g1) · ϱ (p2(.., Xc d, ..) g2) ej1...jn

so the formula (3.11) follows directly.
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Lemma 3.2. The twisted regular representation ϱ : A(Sn)→ End(BQ) ap-
plied to the element g∗ =

∏
(a,b)∈I(g−1)

Xa b g of the algebra A(Sn) is given by

(3.12) ϱ (g∗) ej1...jn =
∏

(a,b)∈I(g)

qjbja ejg−1(1)...jg−1(n)
,

where I(g) = {(a, b) | 1 ≤ a < b ≤ n, g(a) > g(b)}.

Proof. If we first rewrite the element g∗ ∈ A(Sn) into the following form
g∗ =

∏
(a′,b′)∈I(g−1)Xa′b′ g, then by applying (3.10) with (3.4) and (3.9) we

obtain

ϱ (g∗) ej1...jn =
∏

(a′,b′)∈I(g−1)

ϱ (Xa′b′ g) =
∏

(a′,b′)∈I(g−1)

ϱ1 (Xa′b′) · ϱ2 (g) ej1...jn

=
∏

(a′,b′)∈I(g−1)

Qa′b′ ejg−1(1)...jg−1(n)

=
∏

(a′,b′)∈I(g−1)

qjg−1(a′)jg−1(b′)
ejg−1(1)...jg−1(n)

=
∏

(b,a)∈I(g)

qjajb ejg−1(1)...jg−1(n)
=

∏
(a,b)∈I(g)

qjbja ejg−1(1)...jg−1(n)

with a = g−1(a′), b = g−1(b′). Note that (a′, b′) ∈ I(g−1) implies a′ < b′ and
g−1(a′) > g−1(b′). If we assume that a = g−1(a′), b = g−1(b′), then it fol-
lows directly a > b and g(a) < g(b), where g(a) = a′, g(b) = b′, which implies
(b, a) ∈ I(g).

Remark 3.3. By considering Lemma 3.2 and its proof, we obtain that
the operator ϱ (g∗) ∈ End(BQ) corresponding to the element g∗ ∈ A(Sn) of
the form g∗ =

∏
(a,b)∈I(g−1)Xa b g can be written in two ways: first, as given

in (3.12), and second, as follows

(3.13) ϱ (g∗) ej1...jn =
∏

(a,b)∈I(g−1)

qjg−1(a)jg−1(b)
ejg−1(1)...jg−1(n)

which follows directly from the application of (3.10). We emphasize that the
notation (3.12) of ϱ (g∗) ∈ End(BQ) is more appropriate here, but (3.13) is
also used in what follows because it fits better with the other notations, see
Proposition 3.5.

Moreover, by applying (3.12) we obtain

(3.14)
ϱ (t∗b,a) ej1...jaja+1...jb...jn =

∏
a≤i≤b−1

qjbji ej1...jbja...jb−1...jn

= qjbjaqjbja+1 · · · qjbjb−1
ej1...jbjaja+1...jb−1...jn
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for 1 ≤ a ≤ b ≤ n and in the special case

(3.15) ϱ ((t∗a)
2) ej1...jn = σjaja+1

ej1...jn

for 1 ≤ a ≤ n− 1.

Remark 3.4. We now write the elements β∗n−k+1, γ
∗
n−k+1, δ

∗
n−k+1 ∈

A(Sn) given by (2.5), (2.6) and (2.7) as follows:

β∗n−k+1 =

←∑
k≤m≤n

t∗m,k =

←∑
k+1≤m≤n

t∗m,k + id,

γ∗n−k+1 =

←∏
k+1≤m≤n

(
id− t∗m,k

)
, δ∗n−k+1 =

←∏
k+1≤m≤n

(
id− (t∗k)

2 t∗m,k+1

)
for each 1 ≤ k ≤ n− 1. We note that the sum and products are written from

right to left. Let us introduce the abbreviation j := j1 . . . jn ∈ Q̂. Then it is
easy to verify that by applying (3.10) and (3.4), (3.9) as well as (3.14), (3.15),
the corresponding operators ϱ (β∗n−k+1), ϱ (γ

∗
n−k+1), ϱ (δ

∗
n−k+1) of End(BQ),

1 ≤ k ≤ n− 1 are given by

ϱ (β∗n−k+1) ej =

←∑
k≤m≤n

ϱ (t∗m,k) ej

=

←∑
k≤m≤n

qjmjkqjmjk+1
· · · qjmjm−1 ej1...jmjkjk+1...jm−1...jn

ϱ (γ∗n−k+1) ej =

←∏
k+1≤m≤n

ϱ
(
id− t∗m,k

)
ej

ϱ (δ∗n−k+1) ej =

←∏
k+1≤m≤n

ϱ
(
id− (t∗k)

2 t∗m,k+1

)
ej

for each 1 ≤ k ≤ n− 1, j = j1 . . . jn ∈ Q̂. Recall that for m = k we obtain
that ϱ (t∗k,k) ej = ϱ (1 · id) ej = ej , which means that in this case the prod-

uct qjmjk · · · qjmjm−1
is equal to one. Similarly, for m = k + 1 we obtain

that ϱ (id− (t∗k)
2 t∗k+1,k+1) ej = ϱ (id− (t∗k)

2) ej = σjaja+1
ej . We note that

the products in ϱ (γ∗n−k+1) and ϱ (δ∗n−k+1) should be computed below using
the formula (3.11), which are not considered here because of the complexity
of their notations, see Proposition 3.1.

Considering first that ϱ (g∗) ∈ End(BQ) is given by (3.13), see Remark 3.3,
and then the canonical element α∗n of the algebra A(Sn), given by (2.4), it
follows that the operator ϱ (α∗n) ∈ End(BQ) can be written as follows

(3.16) ϱ (α∗n) ej =
∑
g∈Sn

∏
(a,b)∈I(g−1)

qjg−1(a)jg−1(b)
ejg−1(1)...jg−1(n)

.
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From the factorization of α∗n ∈ A(Sn) given by (2.10) with (2.11), we also
obtain directly that ϱ (α∗n) has the following factorization

(3.17) ϱ (α∗n) ej =

←∏
1≤k≤n−1

ϱ (β∗n−k+1) ej

(
= ϱ (β∗2) · ϱ (β∗3) · · · ϱ (β∗n) ej

)
with

(3.18) ϱ (β∗n−k+1) ej = ϱ (δ∗n−k+1) · ϱ ((γ∗n−k+1)
−1) ej

for 1 ≤ k ≤ n− 1. Thus, we obtain

(3.19) ϱ ((α∗n)
−1) ej1...jn =

∏
1≤k≤n−1

ϱ (γ∗n−k+1) · ϱ ((δ∗n−k+1)
−1) ej1...jn

see also (2.13). Thus, to determine the operator ϱ ((α∗n)
−1), the operators

ϱ ((γ∗n−k+1)
−1) are not involved in it, so they are not computed here. We

recall that the operators ϱ (γ∗n−k+1), 1 ≤ k ≤ n− 1 are given in Remark 3.4.

On the other hand, the computation of the operators ϱ ((δ∗n−k+1)
−1) for all

1 ≤ k ≤ n− 1 is of special interest, see (2.14). If we consider previously
the identity (2.15) and also (2.9), then for each 1 ≤ k ≤ n− 1 the element
∆n−k+1 of the algebra A(Sn) has the form of the product of the invertible ele-
ments

(
id−X{k,k+1,...,m}

)
of the algebra A(Sn) for all k + 1 ≤ m ≤ n, so that

∆n−k+1 is also invertible for all 1 ≤ k ≤ n− 1, see also [8, Proposition 3.10].
In this way the identity (2.14) can be written in accordance with (2.15) and
(2.17) in the following form

(δ∗n−k+1)
−1 = (∆∗n−k+1)

−1 · ε∗n−k+1

=

∑
g∈Sk1×Sn−k

∏
i∈Des(g−1)

X{k,k+1,...,i} ·
∏

(a,b)∈I(g−1)

Xab g∏
k+1≤m≤n

(
id−X{k,k+1,...,m}

)

=
∑

g∈Sk1×Sn−k

∏
i∈Des(g−1)

X{k,k+1,...,i} id∏
k+1≤m≤n

(
1−X{k,k+1,...,m}

)
id
·

∏
(a,b)∈I(g−1)

Xab g

=
∑

g∈Sk1×Sn−k

∏
i∈Des(g−1)

X{k,k+1,...,i}∏
k+1≤m≤n

(
1−X{k,k+1,...,m}

) id · ∏
(a,b)∈I(g−1)

Xab g,
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where by applying the formula (2.1) for multiplication in the algebra A(Sn)
we obtain
(3.20)

(δ∗n−k+1)
−1 =

∑
g∈Sk1×Sn−k


∏

i∈Des(g−1)

X{k,k+1,...,i}∏
k+1≤m≤n

(
1−X{k,k+1,...,m}

) · ∏
(a,b)∈I(g−1)

Xab

 g.

Then the formula for determining the operator ϱ ((δn−k+1)
−1) ∈ End(BQ) for

each 1 ≤ k ≤ n− 1 is given in the following proposition.

Proposition 3.5. Let ϱ : A(Sn)→ End(BQ) be the twisted regular rep-
resentation on the generic weight subspace BQ of the algebra B. Suppose that
for every g ∈ Sk1 × Sn−k the conditions 1− σjg−1(k)jg−1(k+1)...jg−1(m)

̸= 0 hold

true for all k + 1 ≤ m ≤ n. Then the operator ϱ ((δ∗n−k+1)
−1) ∈ End(BQ),

1 ≤ k ≤ n− 1 is given as follows

ϱ ((δ∗n−k+1)
−1) ej1...jn

=
∑

g∈Sk1×Sn−k

∏
i∈Des(g−1)

σj
g−1(k)

...j
g−1(i)

·
∏

(a,b)∈I(g−1)

qj
g−1(a)

j
g−1(b)∏

k+1≤m≤n

(
1− σj

g−1(k)
j
g−1(k+1)

...j
g−1(m)

) ej
g−1(1)

...j
g−1(n)

.

Proof. Considering that (δ∗n−k+1)
−1 ∈ A(Sn) is given by (3.20) for each

1 ≤ k ≤ n− 1, we obtain by applying (3.10) and also (3.4), (3.9) that

ϱ ((δ∗n−k+1)
−1) ej =

∑
g∈Sk1×Sn−k

ϱ


∏

i∈Des(g−1)

X{k,k+1,...,i} ·
∏

(a,b)∈I(g−1)

Xab

∏
k+1≤m≤n

(
1−X{k,k+1,...,m}

) g

 ej

=
∑

g∈Sk1×Sn−k

ϱ1


∏

i∈Des(g−1)

X{k,k+1,...,i} ·
∏

(a,b)∈I(g−1)

Xab

∏
k+1≤m≤n

(
1−X{k,k+1,...,m}

)
 · ϱ2(g) ej

=
∑

g∈Sk1×Sn−k


∏

i∈Des(g−1)

Q{k,k+1,...,i} ·
∏

(a,b)∈I(g−1)

Qab

∏
k+1≤m≤n

(
1−Q{k,k+1,...,m}

)
 ej

g−1(1)
...j

g−1(n)

=
∑

g∈Sk1×Sn−k

∏
i∈Des(g−1)

σj
g−1(k)

...j
g−1(i)

·
∏

(a,b)∈I(g−1)

qj
g−1(a)

j
g−1(b)∏

k+1≤m≤n

(
1− σj

g−1(k)
j
g−1(k+1)

...j
g−1(m)

) ej
g−1(1)

...j
g−1(n)

j = j1 . . . jn ∈ Q̂, where the operator ϱ ((δ∗n−k+1)
−1), 1 ≤ k ≤ n− 1 is in-

vertible if for every g ∈ Sk1 × Sn−k it holds that

1− σjg−1(k)jg−1(k+1)...jg−1(m)
̸= 0
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for all k + 1 ≤ m ≤ n.

We recall that Des(g−1) = {k+1 ≤ i ≤ n−1 | g−1(i) > g−1(i+1)} denotes a
descent set of g−1 ∈ Sk1 ×Sn−k and I(g−1) = {(a, b) | a < b, g−1(a) > g−1(b)}
denotes a set of inversions of the permutation g−1 ∈ Sk1 × Sn−k. Note that
g ∈ Sk1 × Sn−k implies g−1 ∈ Sk1 × Sn−k. We also note that in the special case
Des(g−1) = ∅ if and only if I(g−1) = ∅, which implies that in this case the
product over Des(g−1) and likewise the product over I(g−1) is equal to one.
Moreover, the following theorem follows from the above.

Theorem 3.6. Let ϱ : A(Sn)→ End(BQ) be the twisted regular represen-
tation on the generic weight subspace BQ of the algebra B. Then the inverse
of the operator ϱ (α∗n) ∈ End(BQ), n ≥ 2 given by

ϱ (α∗n) ej =
∑
g∈Sn

∏
(a,b)∈I(g−1)

qjg−1(a)jg−1(b)
ejg−1(1)...jg−1(n)

has the following factorization

ϱ ((α∗n)
−1) ej =

∏
1≤k≤n−1

ϱ ((β∗n−k+1)
−1) ej

with ϱ ((β∗n−k+1)
−1) ej = ϱ (γ∗n−k+1) · ϱ ((δ∗n−k+1)

−1) ej .

We recall that the operators ϱ (γ∗n−k+1) ∈ End(BQ), 1 ≤ k ≤ n− 1 are

given in Remark 3.4 and ϱ ((δ∗n−k+1)
−1) ∈ End(BQ), 1 ≤ k ≤ n− 1 are given

in Proposition 3.5.

Example 3.7. Let us take n = 3. Then, considering Remark 3.4 for
k = 1, 2, we obtain the following operators ϱ (γ∗3 ), ϱ (γ

∗
2 ) ∈ End(BQ) given by

ϱ (γ∗3 ) ej1j2j3 = ϱ
(
id− t∗3,1

)
· ϱ
(
id− t∗2,1

)
ej1j2j3

= ej1j2j3 − qj2j1 ej2j1j3 − qj3j1qj3j2 ej3j1j2 + qj3j2qj3j1qj2j1 ej3j2j1 ,

where we used the formula (3.11) for multiplying the operators of End(BQ).
If we apply the Johnson-Trotter order of permutations in S3 given in the
monomial basis of BQ with ej1j2j3 , ej1j3j2 , ej3j1j2 , ej3j2j1 , ej2j3j1 , ej2j1j3 , then
we obtain

ϱ (γ∗3) ej1j2j3 = ej1j2j3 − qj3j1qj3j2 ej3j1j2 + qj3j2qj3j1qj2j1 ej3j2j1 − qj2j1 ej2j1j3 .

Similarly, we get

ϱ (γ∗2 ) ej1j2j3 = ϱ
(
id− t∗3,2

)
ej1j2j3 = ej1j2j3 − qj3j2 ej1j3j2 .

On the other hand, considering Proposition 3.5, we obtain that the operators
ϱ ((δ∗3)

−1), ϱ ((δ∗2)
−1) ∈ End(BQ) are given as follows.
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We note that for k = 1 there are two permutations g1 = 123 = id and
g2 = 132 in S1 × S2, therefore we obtain

ϱ ((δ∗3)
−1) ej1j2j3

=
1(

1− σj
g
−1
1 (1)

j
g
−1
1 (2)

)(
1− σj

g
−1
1 (1)

j
g
−1
1 (2)

j
g
−1
1 (3)

) ej
g
−1
1 (1)

j
g
−1
1 (2)

j
g
−1
1 (3)

+
σj
g
−1
2 (1)

j
g
−1
2 (2)

qj
g
−1
2 (2)

j
g
−1
2 (3)(

1− σj
g
−1
2 (1)

j
g
−1
2 (2)

)(
1− σj

g
−1
2 (1)

j
g
−1
2 (2)

j
g
−1
2 (3)

) ej
g
−1
2 (1)

j
g
−1
2 (2)

j
g
−1
2 (3)

=
1

(1− σj1j2) (1− σj1j2j3)
ej1j2j3 +

σj1j3 qj3j2
(1− σj1j3) (1− σj1j2j3)

ej1j3j2

=
1

1− σj1j2j3

(
1

1− σj1j2
ej1j2j3 +

qj3j2σj1j3
1− σj1j3

ej1j3j2

)
,

where we used that Des(g−11 ) = I(g−11 ) = ∅ and Des(g−12 ) = {2}, I(g−12 ) =
{(2, 3)}. Note that g−12 = g2 = 132 and also that σj1j3j2 = σj1j2j3 .

On the other hand, considering that only the permutation g = 123 = id ∈
S2
1 ×S1 fixes the first two indices and that Des(g−1) = I(g−1) = ∅, we obtain

ϱ ((δ∗2)
−1) ej1j2j3 =

1

1− σjg−1(2)jg−1(3)

ejg−1(1)jg−1(2)jg−1(3)
=

1

1− σj2j3
ej1j2j3 .

From the application of Theorem 3.6 we then first obtain

ϱ ((β∗3)
−1) ej1j2j3 = ϱ (γ∗3) · ϱ ((δ∗3)−1) ej1j2j3

= (ej1j2j3 − qj3j1qj3j2 ej3j1j2 + qj3j2qj3j1qj2j1 ej3j2j1 − qj2j1 ej2j1j3)

· 1

1− σj1j2j3

(
1

1− σj1j2
ej1j2j3 +

qj3j2σj1j3
1− σj1j3

ej1j3j2

)
=

1

1− σj1j2j3

(
1

1− σj1j2
ej1j2j3 +

qj3j2σj1j3
1− σj1j3

ej1j3j2 −
qj3j1qj3j2
1− σj1j2

ej3j1j2

− qj2j1qj2j3qj3j2σj1j3
1− σj1j3

ej2j1j3 +
qj3j2qj3j1qj2j1

1− σj1j2
ej3j2j1

+
qj2j3qj2j1qj3j1qj3j2σj1j3

1− σj1j3
ej2j3j1 −

qj2j1
1− σj1j2

ej2j1j3

−qj3j1qj3j2σj1j3
1− σj1j3

ej3j1j2

)
,

where we used the formula (3.11) for multiplying the operators of End(BQ).
After sorting the expression (by summing the same elements of the monomial
basis of BQ) and applying the Johnson-Trotter order of permutations in S3,
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we obtain:

(3.21)

ϱ ((β∗3)
−1) ej1j2j3 =

1

1− σj1j2j3

(
1

1− σj1j2
ej1j2j3 +

qj3j2σj1j3
1− σj1j3

ej1j3j2

− qj3j1qj3j2(1− σj1j2σj1j3)
(1− σj1j2)(1− σj1j3)

ej3j1j2 +
qj3j2qj3j1qj2j1

1− σj1j2
ej3j2j1

+
qj2j1qj3j1σj1j3σj2j3

1− σj1j3
ej2j3j1

−qj2j1(1− σj1j3 + σj1j3σj2j3 − σj1j2j3)
(1− σj1j2)(1− σj1j3)

ej2j1j3

)
.

Similarly, from ϱ ((β∗2)
−1) ej1j2j3 = ϱ (γ∗2) · ϱ ((δ∗2)−1) ej1j2j3 , i.e.,

ϱ ((β∗2)
−1) ej1j2j3 = (ej1j2j3 − qj3j2 ej1j3j2) ·

1

1− σj2j3
ej1j2j3

it follows

(3.22) ϱ ((β∗2)
−1) ej1j2j3 =

1

1− σj2j3
ej1j2j3 −

qj3j2
1− σj2j3

ej1j3j2 .

Finally, by applying Theorem 3.6, we obtain that the inverse of the operator
ϱ (α∗n) ∈ End(BQ), n ≥ 2 is given by

ϱ((α∗3)
−1) ej1j2j3 = ϱ ((β∗3)

−1) · ϱ ((β∗2)−1) ej1j2j3

=
1

1− σj1j2j3

(
1

1− σj1j2
ej1j2j3 +

qj3j2σj1j3
1− σj1j3

ej1j3j2

− qj3j1qj3j2(1− σj1j2σj1j3)
(1− σj1j2)(1− σj1j3)

ej3j1j2

+
qj3j2qj3j1qj2j1

1− σj1j2
ej3j2j1 +

qj2j1qj3j1σj1j3σj2j3
1− σj1j3

ej2j3j1

−qj2j1(1− σj1j3 + σj1j3σj2j3 − σj1j2j3)
(1− σj1j2)(1− σj1j3)

ej2j1j3

)
·
(

1

1− σj2j3
ej1j2j3 −

qj3j2
1− σj2j3

ej1j3j2

)
,
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where from the application of the formula (3.11) and the addition of the same
elements of the monomial basis of BQ) it follows that

(3.23)

ϱ((α∗3)
−1) ej1j2j3 =

1

(1− σj1j2)(1− σj1j3)(1− σj2j3)(1− σj1j2j3)
·

[(1− σj1j3)(1− σj1j2σj2j3) ej1j2j3
qj3j2(1− σj1j2)(1− σj1j3) ej1j3j2
− qj3j1qj3j2σj1j2(1− σj1j3)(1− σj2j3) ej3j1j2
+ qj3j2qj3j1qj2j1(1− σj1j3)(1− σj1j2σj2j3) ej3j2j1
− qj2j1qj3j1σj2j3(1− σj1j2)(1− σj1j3) ej2j3j1
−qj2j1(1− σj1j3)(1− σj2j3) ej2j1j3 ] .

4. A decomposition of the matrix (B∗n)
−1

We first introduce the appropriate matrix notations for the operators dis-
cussed above. Then, with respect to the monomial basis of a generic weight
subspace BQ of the algebra B (considered with Johnson-Trotter order of per-
mutations, see [9]), we denote the matrix of the operator ϱ (α∗n) with An and
with Bn−k+1, Cn−k+1, Dn−k+1, 1 ≤ k ≤ n− 1 respectively the matrix of the
operator ϱ (β∗n−k+1), ϱ (γ

∗
n−k+1), ϱ (δ

∗
n−k+1). Similarly, we denote by Tm,k,

T2k Tm,k+1, 1 ≤ k ≤ n− 1, k + 1 ≤ m ≤ n respectively the matrix of the op-
erators ϱ (tm,k), ϱ((t

∗
k)

2 t∗m,k+1). In particular, we denote the unit matrix

corresponding to the operator ϱ (id) by I. Then the rows and columns of all
introduced matrices are indexed by the elements ej of the monomial basis of

BQ ⊆ B for each j ∈ Q̂. So these matrices are square matrices whose order is

equal to dimBQ = Card Q̂ = n!, where we assume that Card Q = n.

Remark 4.1. Let Q be a set of cardinality n and let j = j1 . . . jn ∈ Q̂
and k = k1 . . . kn ∈ Q̂ be arbitrary permutations in the set Q̂ of all (distinct)
permutations of the set Q. Then it is easy to verify that there exists a per-
mutation g ∈ Sn such that g satisfies the condition k = g.j, that is,

(4.1) k1 . . . kn = jg−1(1) . . . jg−1(n)

or in the shorter form kp = jg−1(p) for all 1 ≤ p ≤ n.

Proposition 4.2. The (k, j)-entry of the matrix An is a monomial given
by

(4.2) (An)k,j =
∏

(a,b)∈I(g−1)

qjg−1(a)jg−1(b)

where k = g.j (g ∈ Sn, j = j1 . . . jn ∈ Q̂, k = k1 . . . kn ∈ Q̂).
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Proof. By considering that An denotes the matrix of the operator ϱ (α∗n)
given by (3.16) and applying (4.1), we obtain

ϱ (α∗n) ej =
∑
g∈Sn

∏
(a,b)∈I(g−1)

qjg−1(a)jg−1(b)
eg.j

from which it follows directly that the (k, j)-entry of the matrix An is given
by (4.2).

We note that the operators ϱ (α∗n) ∈ End(BQ) and ϱ ((α∗n)
−1) ∈ End(BQ)

play an important role in determining the inverse of a matrix of the quantum
bilinear form of the oriented braid arrangement in Rn. Furthermore, if we
assume that An denotes the matrix of the operator ϱ (α∗n), then by comparing
(4.2) with (1.3), we find that the matrices An and B∗n are equal, i.e., have the
same inverse matrix. In other words, computing the inverse of the matrix B∗n
leads to computing the inverse of the matrix An. In this way we can write the
matrix B∗n instead of the matrix An. Thus, from Proposition 4.2 it follows that
the (k, j)-entry of the matrix B∗n is a monomial given by (4.2). Moreover, by

applying Theorem 3.6 in a matrix notation, we obtain that the inverse (B∗n)
−1

of B∗n can be factorized in the following form

(4.3) (B∗n)
−1 = B−1n · B−1n−1 · · · B

−1
2

=
∏

1≤k≤n−1

B−1n−k+1


with B−1i = Ci · D−1i for all 2 ≤ i ≤ n.

Before we determine the matrix B−1i , 2 ≤ i ≤ n, we should note that the
(k, j)-entry of the matrix Tm,k and T2k Tm,k+1, 1 ≤ k ≤ n− 1, k + 1 ≤ m ≤ n
is respectively given by

(4.4) (Tm,k)k,j =

{
qjmjkqjmjk+1

· · · qjmjm−1
if k = tm,k.j

0 otherwise
,

(4.5)
(
T2k Tm,k+1

)
k,j

=

{
σjkjmqjmjk+1

· · · qjmjm−1
if k = tm,k+1.j

0 otherwise
,

where

tm,k.j = jtk,m(1) . . . jtk,m(n) = j1 . . . jmjkjk+1 . . . jm−1 . . . jn,

tm,k+1.j = jtk+1,m(1) . . . jtk+1,m(n) = j1 . . . jkjmjk+1 . . . jm−1 . . . jn.

We recall that tk,m = t−1m,k, tk+1,m = t−1m,k+1 and that T2k Tk+1,k+1 = T2k is the

diagonal matrix with σjkjk+1
as its j-th diagonal entry, see (3.14), (3.15) and

also Remark 3.4. Then each matrix Bn−k+1, 1 ≤ k ≤ n− 1 can be written as
the following sum of matrices

Bn−k+1 =
∑

k≤m≤n

Tm,k,
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where Tk,k = I is the unit matrix. Thus, by applying (4.4), we obtain that
the (k, j)-entry of the matrix Bn−k+1 is given by

(Bn−k+1)k,j =

{
qjmjkqjmjk+1

· · · qjmjm−1 if k = tm,k.j for all k ≤ m ≤ n
0 otherwise.

In accordance with the above, the following theorem follows.

Theorem 4.3. The (k, j)-entry of the quantum bilinear form B∗n of the
oriented braid arrangement is given by

(4.6) (B∗n)k,j =
∏

(a,b)∈I(g−1)

qjg−1(a)jg−1(b)

where j = j1 . . . jn ∈ Q̂, k = k1 . . . kn ∈ Q̂ and g ∈ Sn satisfies the condition

that kp = jg−1(p) for all 1 ≤ p ≤ n. Then the inverse (B∗n)
−1 of B∗n is given

as follows
(B∗n)

−1 = B−1n · B−1n−1 · · · B
−1
2

with B−1i = Ci · D−1i , 2 ≤ i ≤ n and

Cn−k+1 = (I− Tn,k) · (I− Tn−1,k) · · · (I− Tk+1,k) ,

D−1n−k+1 =
(
I− T2k Tk+1,k+1

)−1 · (I− T2k Tk+2,k+1

)−1 · · · (I− T2k Tn,k+1

)−1
for 1 ≤ k ≤ n− 1, where the (r, s)-entry of the matrix D−1n−k+1, 1 ≤ k ≤ n− 1
is given by

(
D−1n−k+1

)
r,s

=
∑

g∈Sk1×Sn−k

∏
i∈Des(g−1)

σjg−1(k)...jg−1(i)
·

∏
(a,b)∈I(g−1)

qjg−1(a)jg−1(b)∏
k+1≤m≤n

(
1− σjg−1(k)jg−1(k+1)...jg−1(m)

) .

Here r = r1 . . . rn ∈ Q̂, s = s1 . . . sn ∈ Q̂ and g ∈ Sk1 × Sn−k satisfies the con-
dition that rp = sg−1(p) for all 1 ≤ p ≤ n and 1− σjg−1(k)jg−1(k+1)...jg−1(m)

̸= 0

for all k + 1 ≤ m ≤ n.

Remark 4.4. Taking into account [5, Lemma 4.11], where the author
found the formulas for determining det(I− Tb,a), 1 ≤ a < b ≤ n and det(I−
(Ta−1)

2 Tb,a), 1 < a ≤ b ≤ n, we get that

det(I− Tm,k) =
∏

T∈(Q;m−k+1)

(1− σT )(m−k)!·(n−m+k−1)!,

det(I− T2k Tm,k+1) =
∏

T∈(Q;m−k+2)

(1− σT )(m−k)!·(m−k+2)·(n−m+k−2)!

for 1 ≤ k ≤ n− 1, k + 1 ≤ m ≤ n, where we denote by

(Q;m) = {T ⊆ Q | Card T = m} with σT =
∏

i ̸=j∈T

qij .
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Then we get the following formulas

det Cn−k+1 =
∏

2≤m≤n−k+1

∏
T∈(Q;m)

(1− σT )(m−1)!·(n−m)!,

det Dn−k+1 =
∏

2≤m≤n−k+1

∏
T∈(Q;m)

(1− σT )(m−2)!·m·(n−m)!,

det Bn−k+1 =
∏

2≤m≤n−k+1

∏
T∈(Q;m)

(1− σT )(m−2)!·(n−m)!

for 1 ≤ k ≤ n− 1, where we used that det(Bn−k+1) =
det(Dn−k+1)
det(Cn−k+1)

, cf. (3.18).

Then considering (3.17), we obtain that the determinant of the quantum
bilinear form B∗n of the oriented braid arrangement is given by

(4.7) detB∗n =
∏

2≤m≤n

∏
T∈(Q;m)

(1− σT )(m−2)!·(n−m+1)!,

cf. [5, Theorem 4.12]. We recall that B∗n and An are the same matrices, from
which it follows that their determinants are the same.

Example 4.5. For n = 2 the quantum bilinear form and its determinant
of the braid arrangement B2 are given by

B∗2 =
e12
e21

(
1 q12
q21 1

)
, detB∗2 = 1− σ12,

with σ12 = q12q21. If we assume that 1− σ12 ̸= 0, then B∗2 is an invertible
matrix. In this trivial case it is easy to verify that

(B∗2 )
−1 =

1

1− σ12

(
1 −q12
−q21 1

)
.

Example 4.6. For n = 3 the matrix B∗3 (i.e., the quantum bilinear form
of the oriented braid arrangement) has the following form

B∗3 =

e123
e132
e312
e321
e231
e213


1 q23 q13q23 q12q13q23 q12q13 q12
q32 1 q13 q13q12 q13q12q32 q12q32

q31q32 q31 1 q12 q32q12 q31q32q12
q32q31q21 q31q21 q21 1 q32 q32q31
q21q31 q23q21q31 q23q21 q23 1 q31
q21 q21q23 q21q23q13 q23q13 q13 1

,
where

detB∗3 = (1− σ12)2 · (1− σ13)2 · (1− σ23)2 · (1− σ123)
with σij = qijqji and σ123 = σ12σ13σ23, see (4.7). We have used here the
Johnson-Trotter order of permutations in S3 given by 123, 132, 312, 321, 231,
213. Let detB∗3 ̸= 0, i.e., 1 − σ12 ̸= 0 and 1 − σ13 ̸= 0 and 1 − σ23 ̸= 0 and
1 − σ123 ̸= 0. Then B∗3 is an invertible matrix, so from Theorem 4.3 we get
the following:

(B∗3 )
−1 = B−13 · B

−1
2 =

(
C3 · D−13

)
·
(
C2 · D−12

)
.
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with C2 = I− T3,2, D−12 =
(
I− T22

)−1
, C3 = (I− T3,1) · (I− T2,1),

D−13 =
((
I− T21 T3,2

)
·
(
I− T21

))−1
=
(
I− T21

)−1 · (I− T21 T3,2
)−1

,

where T22 = T22 T3,3 and T21 = T21 T2,2. We first calculate B−13 and then B−12 , see
also Example 3.7. Thus we obtain:

I− T3,1 =

e123
e132
e312
e321
e231
e213


1 0 0 0 −q12q13 0
0 1 0 −q13q12 0 0

−q31q32 0 1 0 0 0
0 0 0 1 0 −q32q31
0 0 −q23q21 0 1 0
0 −q21q23 0 0 0 1

,

I− T2,1 =

e123
e132
e312
e321
e231
e213


1 0 0 0 0 −q12
0 1 −q13 0 0 0
0 −q31 1 0 0 0
0 0 0 1 −q32 0
0 0 0 −q23 1 0

−q21 0 0 0 0 1

 ,

C3 =

e123
e132
e312
e321
e231
e213


1 0 0 q12q13q23 −q12q13 −q12
0 1 −q13 −q13q12 q13q12q32 0

−q31q32 −q31 1 0 0 q31q32q12
q32q31q21 0 0 1 −q32 −q32q31

0 q23q21q31 −q23q21 −q23 1 0
−q21 −q21q23 q21q23q13 0 0 1

,

I− T21 T3,2 =

e123
e132
e312
e321
e231
e213


1 −σ12q23 0 0 0 0

−σ13q32 1 0 0 0 0
0 0 1 −σ13q12 0 0
0 0 −σ23q21 1 0 0
0 0 0 0 1 −σ23q31
0 0 0 0 −σ12q13 1

,

I− T21 =

e123
e132
e312
e321
e231
e213


1− σ12 0 0 0 0 0

0 1− σ13 0 0 0 0
0 0 1− σ13 0 0 0
0 0 0 1− σ23 0 0
0 0 0 0 1− σ23 0
0 0 0 0 0 1− σ12

,

(
I− T21 T3,2

)−1
=

1

1− σ123


1 σ12q23 0 0 0 0

σ13q32 1 0 0 0 0
0 0 1 σ13q12 0 0
0 0 σ23q21 1 0 0
0 0 0 0 1 σ23q31
0 0 0 0 σ12q13 1

,
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(
I− T21

)−1
=



1
1−σ12

0 0 0 0 0

0 1
1−σ13

0 0 0 0

0 0 1
1−σ13

0 0 0

0 0 0 1
1−σ23

0 0

0 0 0 0 1
1−σ23

0

0 0 0 0 0 1
1−σ12

,

D−13 =

e123
e132
e312
e321
e231
e213



1
1−σ12

σ12q23
1−σ12

0 0 0 0
σ13q32
1−σ13

1
1−σ13

0 0 0 0

0 0 1
1−σ13

σ13q12
1−σ13

0 0

0 0 σ23q21
1−σ23

1
1−σ23

0 0

0 0 0 0 1
1−σ23

σ23q31
1−σ23

0 0 0 0 σ12q13
1−σ12

1
1−σ12

 ·
1

1− σ123
.

The multiplication of the obtained matrices C3 and D−13 results in
B−13 = C3 · D−13 = 1

1−σ123
·

1
1−σ12

q23σ12

1−σ12

q13q23σ23σ12

1−σ23
q32σ13

1−σ13

1
1−σ13

− q13(1−σ23+σ23σ12−σ123)
(1−σ13)(1−σ23)

− q31q32(1−σ12σ13)
(1−σ12)(1−σ13)

− q31(1−σ12+σ12σ23−σ123)
(1−σ13)(1−σ12)

1
1−σ13

q32q31q21
1−σ12

q31q21σ12σ23

1−σ12

q21σ23

1−σ23
q21q31σ13σ23

1−σ13

q23q21q31
1−σ13

− q23q21(1−σ13σ23)
(1−σ13)(1−σ23)

− q21(1−σ13+σ13σ23−σ123)
(1−σ12)(1−σ13)

− q21q23(1−σ12σ13)
(1−σ12)(1−σ13)

q21q23q13
1−σ13

q12q13q23
1−σ23

− q12q13(1−σ12σ23)
(1−σ12)(1−σ23)

− q12(1−σ23+σ23σ13−σ123)
(1−σ12)(1−σ23)

− q13q12(1−σ13σ23)
(1−σ13)(1−σ23)

q13q12q32
1−σ23

q12q32σ23σ13

1−σ23
q12σ13

1−σ13

q32q12σ12σ13

1−σ12

q31q32q12
1−σ12

1
1−σ23

− q32(1−σ12+σ12σ13−σ123)
(1−σ23)(1−σ12)

− q32q31(1−σ12σ23)
(1−σ12)(1−σ23)

− q23(1−σ13+σ13σ12−σ123)
(1−σ23)(1−σ13)

1
1−σ23

q31σ23

1−σ23
q23q13σ13σ12

1−σ13

q13σ12

1−σ12

1
1−σ12


(cf. (3.21)), where we assume that the rows and columns are indexed in the
order 123, 132, 312, 321, 231, 213. We now calculate B−12 , taking into ac-

count that B−12 = C2 · D−12 with C2 = I− T3,2 and D−12 =
(
I− T22

)−1
. Thus,

we obtain:

C2 = I− T3,2 =

e123
e132
e312
e321
e231
e213


1 −q23 0 0 0 0
−q32 1 0 0 0 0
0 0 1 −q12 0 0
0 0 −q21 1 0 0
0 0 0 0 1 −q31
0 0 0 0 −q13 1

 .
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We note that D2 = I − T22 is a diagonal matrix, therefore its inverse D−12 =(
I− T22

)−1
is also a diagonal matrix, so that:

D−12 =
(
I− T22

)−1
=

e123
e132
e312
e321
e231
e213



1
1−σ23

0 0 0 0 0

0 1
1−σ23

0 0 0 0

0 0 1
1−σ12

0 0 0

0 0 0 1
1−σ12

0 0

0 0 0 0 1
1−σ13

0

0 0 0 0 0 1
1−σ13


.

The multiplication of the obtained matrices C2 and D−12 gives then

B−12 =



1
1−σ23

− q23
1−σ23

0 0 0 0

− q32
1−σ23

1
1−σ23

0 0 0 0

0 0 1
1−σ12

− q12
1−σ12

0 0

0 0 − q21
1−σ12

1
1−σ12

0 0

0 0 0 0 1
1−σ13

− q31
1−σ13

0 0 0 0 − q13
1−σ13

1
1−σ13


cf. (3.22). In agreement with the obtained matrices B−13 and B−12 , it follows
that the inverse (B∗3 )

−1 = B−13 · B−12 of the quantum bilinear form of the
oriented braid arrangement in R3 is given in the following form

(B∗3 )
−1 = 1

(1−σ12)(1−σ13)(1−σ23)(1−σ123)
·

(1 − σ13)(1 − σ12σ23) −q23(1 − σ12)(1 − σ13) −q13q23σ12(1 − σ13)(1 − σ23)
−q32(1 − σ12)(1 − σ13) (1 − σ12)(1 − σ13σ23) −q13(1 − σ12)(1 − σ23)

−q31q32σ12(1 − σ13)(1 − σ23) −q31(1 − σ12)(1 − σ23) (1 − σ23)(1 − σ12σ13)
q32q31q21(1 − σ13)(1 − σ12σ23) −q31q21σ23(1 − σ12)(1 − σ13) −q21(1 − σ13)(1 − σ23)
−q21q31σ23(1 − σ12)(1 − σ13) q23q21q31(1 − σ12)(1 − σ13σ23) −q23q21σ13(1 − σ12)(1 − σ23)

−q21(1 − σ13)(1 − σ23) −q21q23σ13(1 − σ12)(1 − σ23) q21q23q13(1 − σ23)(1 − σ12σ13)

q12q13q23(1 − σ13)(1 − σ12σ23) −q12q13σ23(1 − σ12)(1 − σ13) −q12(1 − σ13)(1 − σ23)
−q13q12σ23(1 − σ12)(1 − σ13) q13q12q32(1 − σ12)(1 − σ13σ23) −q12q32σ13(1 − σ12)(1 − σ23)

−q12(1 − σ13)(1 − σ23) −q32q12σ13(1 − σ12)(1 − σ23) q31q32q12(1 − σ23)(1 − σ12σ13)
(1 − σ13)(1 − σ12σ23) −q32(1 − σ12)(1 − σ13) −q32q31σ12(1 − σ13)(1 − σ23)
−q23(1 − σ12)(1 − σ13) (1 − σ12)(1 − σ13σ23) −q31(1 − σ12)(1 − σ23)

−q23q13σ12(1 − σ13)(1 − σ23) −q13(1 − σ12)(1 − σ23) (1 − σ23)(1 − σ12σ13)

,
where the rows and columns are indexed in the order 123, 132, 312, 321, 231,
213; compare with (3.23).

Remark 4.7. We note that the matrices B3 and B2 are given by

B3 =

e123
e132
e312
e321
e231
e213


1 0 0 0 q12q13 q12
0 1 q13 q13q12 0 0

q31q32 q31 1 0 0 0
0 0 0 1 q32 q32q31
0 0 q23q21 q23 1 0
q21 q21q23 0 0 0 1

 ,
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B2 =

e123
e132
e312
e321
e231
e213


1 q23 0 0 0 0
q32 1 0 0 0 0
0 0 1 q12 0 0
0 0 q21 1 0 0
0 0 0 0 1 q31
0 0 0 0 q13 1

 ,
where

det B3 = (1− σ12) · (1− σ13) · (1− σ23) · (1− σ123) ,

det B2 = (1− σ12) · (1− σ13) · (1− σ23) .
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INVERZ KVANTNE BILINEARNE FORME
ORIJENTIRANOG PLETENIČNOG ARANŽMANA

Milena Sošić

Sažetak. Slijedimo rezultate Varchenka, koji je svakom težinskom

aranžmanu A hiperravnina u n-dimenzionalnom realnom prostoru
pridružio bilinearnu formu, koju je nazvao kvantna bilinearna forma

aranžmana A. Ukratko objašnjavamo kvantnu bilinearnu formu ori-
jentiranih pleteničnih aranžmana u n-dimenzionalnom realnom prostoru.

Glavni interest ovog rada je izračunati inverznu matricu kvantne bilinearne

forme orijentiranog pleteničnog aranžmana u Rn, n ≥ 2. Da bi riješili ovaj
problem, u [3] autori su koristili neke posebne matrice i njihove faktor-

izacije u terminima jednostavnijih matrica. Stoga, da bismo pojednostavili

neke matrične izračune, prvo uvodimo zakrenutu grupovnu algebru A(Sn)
simetrične grupe Sn s koeficijentima u prstenu polinoma u n2 komuta-

tivnih varijabli, a zatim koristimo prirodnu reprezentaciju nekih elemenata

algebre A(Sn) na generičkim težinskim potprostorima multiparametarske
quonske algebre B, što odmah daje odgovarajuće matrice kvantne bilin-

earne forme.


