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THE INVERSE OF A QUANTUM BILINEAR FORM OF
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ABSTRACT. We follow here the results of Varchenko, who assigned
to each weighted arrangement A of hyperplanes in the n-dimensional real
space a bilinear form, which he called the quantum bilinear form of the ar-
rangement A. We briefly explain the quantum bilinear form of the oriented
braid arrangement in the n-dimensional real space. The main concern of
this paper is to compute the inverse of the matrix of the quantum bilinear
form of the oriented braid arrangement in R™, n > 2. To solve this prob-
lem, in [3] the authors used some special matrices and their factorizations
in terms of simpler matrices. So, to simplify some matrix calculations, we
first introduce a twisted group algebra A(Sy) of the symmetric group Sy,
with coefficients in the polynomial ring in n? commutative variables and
then use a natural representation of some elements of the algebra A(Sy)
on the generic weight subspaces of the multiparametric quon algebra B,
which immediately gives the corresponding matrices of the quantum bilin-
ear form.

1. INTRODUCTION

We first briefly explain the basic concepts of an arrangement and of the
oriented braid arrangement in R™, n > 2. An arrangement is a finite set of
hyperplanes in R", n > 1. Connected components of the complement of the
union of all hyperplanes of A are called regions (chambers or domains). An
edge of A is any nonempty intersection of a subset of A, including the empty
intersection, where the space R™ can be regarded as the intersection of the
empty set of hyperplanes. We denote by L4 the intersection poset consisting
of all edges of A, where L4 is partially ordered by reverse inclusion. We denote
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by L)y = L4\R"™ the intersection poset except R". Let R4 = Z[ay | H € A]
be the commutative polynomial ring in variables ag, H € A. First we assign
a weight ag € R4 to each hyperplane H of A, and then we define the weight
of an edge L € L, as the product of the weights of all hyperplanes containing
L. Note that in particular the weight of the space R™ is equal to one, which
is not considered here. Then a quantum bilinear form B associated to A is
the bilinear form on the module M4 of all R 4-linear combinations of regions
of A defined by

(1.1) B(P.Q) = [[an

where the product runs over all hyperplanes H € A separating regions P and
Q. The matrix B with the entries (1.1) is a symmetric square matrix which
Varchenko called the quantum bilinear form of the arrangement A and proved
that the determinant of B is given by the formula

(1.2) det B = H (1—a2)iD)
LeL),

where ay, is the weight of the edge L € Ly and I(L) is the multiplicity of the
edge L, see [10] for more details.

We now consider the braid arrangement in a real affine space R", n > 2,
denoted by B,,, consisting of all diagonal hyperplanes

Hij:{(xl,xg,...,a:n)ER"\xizxj}, 1<i<j<n

Moreover, if we introduce the orientation of the braid arrangement, we obtain
the oriented braid arrangement in a real affine space R™, n > 2, denoted by
B}, consisting of open half-spaces

H:;:{(mlaanvx’ﬂ) €]Rn|ml >xj}’

H»L; :{($1;x27"'7xn) ER” | T <‘(I‘.J}

for all 1 < i < j <n. Then to every open half-space H, jj' we associate a weight
qij = a(H;jf) and similarly to every open half-space H;; we associate a weight
qji = a(Hi;) in the polynomial ring in variables g;;, ¢;;. Therefore, g;; # g;; for
all 1 <1i < j <n. In agreement with the fact that the braid arrangement B,
is the reflection arrangement of the symmetric group Sy, see [2,4], the regions
of B,, and also of B} are directly connected to S, so that each region P, is
in one-to-one correspondence with the corresponding permutation o € S,,, as
follows

P, ={(z1,22,...,2n) ER" | 25, < Ty < -++ < Ty, }

Let us denote by B the quantum bilinear form associated to the oriented
braid arrangement B} in a real affine space R, n > 2. Then the entries of
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B are the monomials of the form

(1.3) By (Py, Pr) = I w%wew
(a,b)el(r10)

where ¢o(5)5(a) 7 Go(a)o(v) a0d I(t7to) = {(a,b) | a < b, 77 o(a) > 77 1o(b)}
denotes the set of inversions of 77!, cf. [7, Proposition 3.2 and Proposi-
tion 3.5]. Then the matrix B} with the entries (1.3) is non-symmetric. We
call the matrix B} the quantum bilinear form B} of the oriented braid arrange-
ment B} . In the following we will explain the determination of the inverse of
the matrix B};. Before that we recall that the formula for the determinant of
the quantum bilinear form B; of the oriented braid arrangement B} is given
by

(14) det B,:; = H (1 _ UT)(m—Q)! (n—m+1)!

TEe(Q;m)
2<m<n

(cf. [7, Theorem 3.8]). Here (Q;m) ={T C Q | Card T'= m} denotes the set
of all subsets T' of the set Q = {l1,la,...,l,} of cardinality n such that the
cardinality of T is equal to m, and

(1.5) or = H Oij = H ij

{e.g}cT i#jeT

where o5 1= g;5¢;; for i < j and oy =1, which is consistent with g;; = 1.
Compare (1.4) with [3, Theorem 1.9.2], where the matrix B} is denoted by
A®)and see also [6], where the author uses the notation A for this matrix.
The quantum bilinear form of the braid arrangement and the formula for its
determinant can be found in [1]. A decomposition of the matrix B/, by matrix-
level factorizations are given in [3]. Here we are motivated to simplify these
algebraic manipulations. By labeling the regions of the braid arrangements by
permutations from the symmetric group S, (i.e., the set of all permutations
of the first n natural numbers), we can simplify these algebraic manipulations
by replacing these matrix-level factorizations by more appropriate and alge-
braically much simpler algebraic expressions in a twisted group algebra A(S,,)
of the symmetric group 5,, with coefficients in the commutative polynomial
ring R, = C[X4p | 1 < a,b < n] with 1 € R,, as unit element of R, where we
studied the nontrivial factorization of certain canonically defined elements [8].
Furthermore, by using a natural representation of some factorizations of these
elements of A(S,,) on the generic weight subspaces Bg of the multiparamet-
ric quon algebra B, which is equipped with a multiparametric g¢-differential
structure, we then obtain the corresponding factorizations of the matrix (B})
and hence of the matrix (B})™!, cf. [5,6].



54 M. SOSIC

2. A TWISTED GROUP ALGEBRA OF THE SYMMETRIC GROUP

In [8] we obtained a factorization of certain canonically defined elements
in the algebra A(S,,) first as a product of previously defined simpler elements
and then as a product of still simpler elements. Now we briefly recall the
algebra A(S,) and some of its canonically defined elements. We use the
standard notation .S, for the symmetric group on n letters, i.e., the set of all
permutations of the first n natural numbers. Let R, = C[X,p | 1 < a,b < n]
be the polynomial ring of all polynomials in n? variables X, over the set of
complex numbers. Then we define a twisted group algebra of the symmetric
group S,, with coefficients in the commutative polynomial ring R,,, denoted by
A(Sp) = Rn, x C[S,], where x denotes the semidirect product. The elements
of A(S,) are the linear combinations gi€S,, Pi Gis with p; belonging to R,.
Consider the action of S,, on R, given by ¢.p(.., Xap,..) = p(--s Xg(a) g(b)> --)
for each g € S,, and each p € R,,, the multiplication in A(S,) is then given
by

(2.1) (P1(-s Xab, ) 91) - (P2(-s Xed, --) g2)
=p1(e, Xavy ) - 02 Xg, (¢) gr(d)> -) 9192

where g1g2 is the product (i.e., the composition g1 © g2) of g1 and go in S,.
Note that (2.1) is the consequence of the following two kinds of basic relations

(2.2) Xob Xea=Xea  Xavs  9-Xab = Xg(a)g) 9-

The algebra A(S),) is associative but not commutative.
To each g € S,, we first assign a unique element g* in the algebra A(S,,) by

(2.3) o= JI Xag

(a,b)€I(g™1)

where I(g7%) ={(a,b) |1 <a<b<mn, g '(a)>g ' (b)} denotes the set of
inversions of the permutation g=! € S,, (i.e., the inverse of g € S,,), and we
then consider the following canonical element of the algebra A(S,,) as follows

(2.4) a=> g

gESn

cf. [8]. Of particular interest is its factorization into the product of the sim-
pler elements of the algebra A(S,,). So before we perform the decomposition
of o € A(S,) and also of g* € A(S,) for all g € S,,, we first consider the
cyclic permutation ¢, € S, which maps b to b—1to b—2 --- to a to b,
and then its inverse ¢, € S, which maps a to a+1to a+2 --- to b to
a for all 1 < a <b<mn, where in both cyclic permutations all 1 <k <a—1
and b+ 1 <k <n are fixed. Thus in the algebra A(S,,) the corresponding
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elements are given by
tap = H Xip tay, tha = H Xajtha
a<i<b—1 a+1<5<b
1§agbgn,wheret;k:idforeach1§k§n.

Then a permutation g € S,, can be decomposed into cycles from the left
as follows g = th, n *th,_yn—1""th;j - thy2 - try,1, Where kj > j (see [8, Sec-
tion 3] and compare with [3], where g € S,, is decomposed into cycles from
the right), so that the corresponding element of the algebra A(.S,,) is given by

g* = tznyn ’ t;::n,17n—1 e tzjmj e t22a2 ’ tzlvl.
Moreover, in the algebra A(S,,) we define the following element

(2.5) Bp—ki1 =tnk Tth1p+ Fthpir Ttk

for all 1 < k < n (cf. [8, Definition 3.2]), where ¢} , =id. Note that k =n
implies 87 = id, so for 1 <k <n —1 we define the simpler elements v} _, .,
and 0 _, 41 @8 follows

(2.6) Vooppr = (id =ty 1) - (id =t ) - (id — g1 1)
(2.7) S gqr = (id = (t5)2 5 1) - (id = (t5)2 51 y1)
e (id = (t5) thyo ) - (id — (8)%)

with (t7)* = X{k, k41y 7d, where ¢} := 5|, and t; ., = id, see [8, Defini-
tion 3.5, Corollary 2.7 and Remark 2.6]). Here we have applied the notation

(28) X{a,b} = Xav Xba

1 <a < b<n. In addition, we denote by

(2.9) Xp = H X{ab}
{a,b}CP

for each P C {1,2,...,n}. Considering Theorem 3.4 and Proposition 3.6 of
[8], we obtain that the canonical element (2.4) has the following nontrivial
factorization

(2.10) o, =P335,

of simpler elements (2.5) over all 1 < k <mn — 1, where each 5,2 <i <nis
given as a product

(2.11) Br=6;-()7"

in terms of even simpler elements v} and ¢, given by (2.6) and (2.7).
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REMARK 2.1. We emphasize that the elements defined by (2.5), (2.6) and
(2.7) can be written as follows

Bi =tnm—it1 tthin—it1 T Tl iton—it1 T theit 1 n—it1s
’Y? = (id - tii,n_m) : (id - t;kz—l,n—i+1) T (id - tZ—i+2,n—i+1) )
67 = (id = (th 1) th i ina) - (3d — (8 i) b1 mig2)
e (id = (8 _i)? b ivon_its) - (id— (th_it1)?)
for all 2 <4 < n. In particular, i = 1 implies 87 = t;,,, = id. However,
comparing the corresponding right-hand sides of 5}, v, 07, 2 < k < n with

B ka1 Vm—es1s On_pa1> L <k <n—1 (each written in reverse order), we see
that (2.5), (2.6), (2.7) are better suited for further algebraic manipulations.

Thus, from the application of (2.10) and (2.11) it follows directly that
o € A(Sy) has the following factorization
—

(2.12) o= ] 0ser (ign) ™
1<k<n-—1

so that its inverse is given by

(2.13) (@)= T s Grken)
1<k<n-—1

Note that the product on the right-hand side of (2.12) is written from right to
left for all 1 < k < n — 1. We reproduce here Proposition 3.10 of [8] because it
is so important for the further calculation of the inverse matrix of the quantum
bilinear form of the oriented braid arrangement. For simplicity, we shall omit
the second index n in Proposition 3.10 of [8] when written as Proposition 2.2
below. Let Des(o) ={1 <i<n—1|0(i) > (i + 1)} be the descent set of a
permutation o € S,,.

PROPOSITION 2.2. For all 1 <k <n —1 the inverse of (5;_k+1 s given
by the following formula

* -1 - *
(214) ( n—k-l—l) = (An—k+1) ! “Ep—k+1s
where
(2.15) Ap_gi1 = H (id — X{k,k+1,4..7m}) )
k+1<m<n

(2.16) = > II Xowria-o
geSk xS, 1 i€Des(g—1)

We consider here that for each permutation g € S¥ x S, the corre-
sponding descent set of its inverse g~ € SF x S,,_}, is given by Des(g7!) =
{k+1<i<n—1|g7'i) > g i+ 1)} On the other hand, from the fact
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that ¢g* is given by (2.3), it follows that (2.16) can be written in the following
form

(2.17) € _jy1 = Z H Xk, i} H Xav g

gES{“XSn_k i€Des(g™1) (a,b)eI(g—1)

so it goes without saying that the corresponding set of inversions of g=! € S¥ x
Sn_k is given by I(g7!) ={(a,b) |k +1<a<b<n-—1,g 1 (a) > g 1(b)}.
Note that for each 1 <k < n — 1, the factors Xy x11,.. . m) for k+1<m <n
on the right-hand side of (2.15) and also Xy, j41,... 4} for i € Des(g™") on the
right-hand side of (2.16) are given by (2.9).

3. A TWISTED REGULAR REPRESENTATION ON THE GENERIC WEIGHT
SUBSPACES By OF THE ALGEBRA B

In what follows we use a natural representation of the twisted group al-
gebra A(S,) on the generic weight subspaces of the multiparametric quon
algebra B, so we first briefly recall the main notions of the algebra B. A
multiparametric quon algebra B is the free unital associative complex alge-
bra B = C/{e;,,€i,,...,€iy) generated by N generators {e;}icn each of de-
gree one, equipped with a multiparametric ¢-differential structure given by
g-differential operators {0; };cnr acting on B according to the twisted Leibniz
rule

(3.1) 6¢(ejx) = (5@'1‘ + qijejﬁi(x)

where 0;(1) = 0 and 0;(e;) = 0;;. The algebra B is graded by the total
degree, and more generally it is multigraded and has a finer decomposition
into multigraded weight subspaces

(3'2) BQ = spanc {ej1~~jn = €5, "€, | Ji---Jn € Q} ,

for each x € B, i,j € N, where each weight subspace By corresponds to a
multiset @ = {l; <--- <1,} of cardinality n. Here Q denotes the set of all
distinct permutations of ) and hence dim Bg = Card @ We note that the al-
gebra B can be written as the following direct sum B = B8" @398 where 5"
denotes the (generic) subspace of B, spanned by all multilinear monomials,
and B9 denotes the (degenerate) subspace of B spanned by all monomials
which are nonlinear in at least one variable. The weight subspace Bg corre-
sponding to the set Q = {l1,...,l,} (l; #1;, 1 <i < j <n) is called generic,
otherwise it is called degenerate. In what follows we consider only the generic
weight subspaces Bg of the algebra B, so we give a special case of the action of
0; on a typical monomial e;, . ;, in the monomial basis of the generic weight
subspace Bg C B given by

(3.3) 05t (€j1.cjn) = G " G154y o i



58 M. SOSIC

for1<k<mn,j1...jn € @, where j/;g denotes the omission of the correspond-
ing index ji (see Section 2 of [6] for more details). In this (generic) case,

where Card @) = n, it follows that dim By = Card @ =nl.

Before we define a representation ¢: A(S,) — End(Bg) (see (3.10)) of
the twisted group algebra A(S,) = R, x C[S,] on the generic weight sub-
space of the algebra B, we recall that R,, = C[X, | 1 < a,b < n] denotes the
polynomial ring with unit element 1 € R,, and C[S,,] = {}_,cg ¢s0 | ¢z € C}
denotes the usual group algebra in which multiplication is given by

(5 o) (£ o) 5 i

oES, TESH 0,TESK

where o7 denotes the composition o o 7, i.e., the product of o and 7in S,,. We
first consider a representation g1 : R, — End(Bg) on the generators X, € R,
defined by

(34) Ql(Xab) = Qab

for jy...jn € @, where @, denotes a diagonal operator on Bg given by (cf. [3,
p6])
(3.5) Qab€jr.j = Gjajo Cjr.jn-

With reference to the notation (2.8) and also (3.4), (3.5), we obtain that
01(Xap}) = Qapy, Where Qrqp = Qav - Qva, 1 <a <b<n is a diagonal

operator which can be written with the notation o;,;, = ¢;,;,¢;,;. as follows
(3.6) Q@{a,b} €jroin = Tjajs €i1-oin-

Similarly, referring to the notation (2.9), for each subset P of the set of car-
dinality n we obtain 01(Xp) = Qp, where Qp = H{a,b}CP Q{a,p} denotes the
corresponding diagonal operator given by

(3.7) Qprej . j, = H Ojajv €j1..dn>
{a,b}CP

where we applied (3.6). We emphasize that Qp on the right-hand side of
(3.7) corresponds to o, j, if P ={1,2,...,k} C{1,2,...,n}, which is also
consistent with (1.5). Therefore, we denote by

(3.8) Q{1,2,...,k} €j1.dn = Tjrja.egi Chreegns
where 0,4, 5, €1 G = H Ojads €jreiin-
{a,b}C{1,2,....k}

If we define a linear operator go: C[S,] — End(Bg) by

(39) QQ(Q) ejl-ujn = ejg—1(1)‘--jg—1(n)
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for each g € C[S,], then gs is a regular representation. Now if we define a
map ¢: A(S,) — End(Bg) on decomposable elements

(3.10) 0 (pg) := 01(p) - 02(9)

for each p € R,, and g € CI[S,,] and extended by additivity, then o is a repre-
sentation, see [5, Proposition 4.5), where it was shown that g preserves the
basic relations (2.2) of multiplication in the algebra A(S,) given by (2.1). In
other words, from the application of (2.2), (3.4), (3.5) and (3.9) it follows that

Q(Xab . Xcd) = Qab . ch = ch . Qab = Q(Xcd . Xab)7
0(9-Xab) €j...in = € (Xg(a) g(0) 9) €ir-dn = Baids €5,—1.1yGy—1.ny
for j1...j5, € @ In the generic case (i.e., when Bg is the generic weight
subspace of the algebra B) a representation g is called a twisted regular repre-

sentation, so in what follows we consider only a twisted regular representation
0. We note that the trivial cases of a (twisted) representation g are given by

o(1-9)ej .5, = 01(1) - 02(9) €jy..j, =1+ €11y Tg=1(my = Cdg=1(1y+Fg=1(my

o(Xavid) €jy..5, = 01(Xav) - 02(id) €j..5, = Qab €j1...j = Gy €.+
PROPOSITION 3.1. Let o: A(S,) = End(Bg) be the twisted regular rep-

resentation on the generic weight subspace By of the algebra B. Then the
multiplication of the operators o (p1(.., Xap,..)g1) and 0 (p2(.., Xca,..) g2) of
End(Bg) is given by the following formula
(3.11)
o(p1(-s Xab, ) 91) - @ (p2(-, Xea, ) 92) €515,

:pl("’qjgz—l 7") 'pQ("’qjggl(C)j 7") €j 1 J

1 —1 -1 -1 ] -1 -1 .
go ~(d) g9 g7 (1) 9o "g97 " (n)

o H@az T (o)

PROOF. Applying the formula (3.10) to the multiplication of any two
elements p (.., Xas,..) g1 and pa(.., Xcq, ..) g2 of A(S,), given by (2.1), yields
o((p1(-; Xav, ) 91) - (P2(-; Xeds ) 92)) €51

=0 (pl(..7Xab, ) 2(es Xgi () g1 (d) s -+) glgg) €y ...
=01 (P1(-s Xabs ) P2y X gy (¢) ga(d)s --)) * 02 (9192) €)1 in
=p1(., Qab, ) - P2(-, Qg, (¢) g1 () -~)6jg_1g_1< gt

95 " 97 L(n)

e ; )
@Jor @’ ) Togtar Yy ey tar tin)

:pl("7qj92—1 - J -1 -1 )'}72( qJ ;1

91 L) 99 971 ®’
On the other hand, it holds that
0 ((p1(ss Xav, ) 1) - (P2(rs Xeds ) G2)) €5y
=0P1(-, Xav, ) 1) - 0 (P2(-, Xeas ) 92) €54,
so the formula (3.11) follows directly. d
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LEMMA 3.2. The twisted regular representation o: A(S,) — End(Bg) ap-

plied to the element g* = H Xub g of the algebra A(S,,) is given by
(ab)el(g™1)
(3.12) 0(g%) €jy.j, = H Djvda €ig—1(1)Tg—1(m)°
(a,b)el(9g)

where I(g) = {(a,b) | 1 <a<b<n,gla) > g(b)}.

PROOF. If we first rewrite the element g* € A(S,,) into the following form
9" = Il(w pyerg-1) Xarvr g, then by applying (3.10) with (3.4) and (3.9) we
obtain

0(9%) €ejy...j, = H o0(Xaw g) = H 01 (Xan) - 02 (9) €414,
(a’,0")€I(g™") (a’,b)€I(g™")

= H Qarvr Clg=101)Tg=1(n)

(a’,b")el(g™1)

= H qjgfl(ul)jgfl(bq ejgil(l)"'jgfl(n)
(a’,b)el(g—1)

= H Qjajo Cly—1(1yTg=1(ny — H Bjvja Ciy—101y--Tg—1(n)
(b:a)el(g) (a,b)€I(g)

with a = g=%(a’), b = g~1(¥'). Note that (a/,b’) € I(g~1) implies @’ < b’ and
g Ya") > g71(V). If we assume that a =g~ 1(a’), b =g 1 (b'), then it fol-
lows directly a > b and g(a) < g(b), where g(a) = a’, g(b) = b/, which implies
(b,a) € I(g). O

REMARK 3.3. By considering Lemma 3.2 and its proof, we obtain that
the operator ¢ (g*) € End(Bg) corresponding to the element g* € A(S,,) of
the form ¢* = H(a,b)el(gfl) X5 g can be written in two ways: first, as given
in (3.12), and second, as follows

(3.13) 0@ engn = TI G, 10ds 10 sty
(@b)el(g=1)

which follows directly from the application of (3.10). We emphasize that the
notation (3.12) of ¢ (¢*) € End(Bg) is more appropriate here, but (3.13) is
also used in what follows because it fits better with the other notations, see
Proposition 3.5.

Moreover, by applying (3.12) we obtain

* P .. . .. . .
e (tb,a) €1 Jadatiedoedn — H Qjvji €j1---Gvda---Jo—1---dn
(3.14) a<i<b—1

= Qvjaiviarr * " Divjo—1 €1 doiadat1--do—1.-n
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for 1 <a < b<mn and in the special case
(3.15) 0((t2)*) €41 g = Tjujuss €r-in
for1<a<n-1.

REMARK 3.4. We now write the elements 5;7k+1,7;7k+1,(5;7k+1 S
A(S,,) given by (2.5), (2.6) and (2.7) as follows:

— —
n—k+1 — tm,k - tm,k + Zd,
k<m<n k4+1<m<n
— —
* _ . * * _ . *\2 gk
Vrn—kt1 = H (id — 1) - Op—ki1 = H (id — (1) troes1)
k+1<m<n k+1<m<n

for each 1 < k < n — 1. We note that the sum and products are written from
right to left. Let us introduce the abbreviation j := j;...j, € @ Then it is
easy to verify that by applying (3.10) and (3.4), (3.9) as well as (3.14), (3.15),
the corresponding operators o (8 _11), @ (_ki1), (65 _441) of End(Bg),

1<k <n-—1 are given by

0(Br_ry1)ej = Z o(thr)e)

k<m<n

P
= Z Qi DGmie+1 " Dmim—1 €1 Imirie+i---Jm—1---dn
k<m<n
+—
* . *
0 (7n—k:+1) 61 = H 1Y (Zd - tm,k) 61
k4+1<m<n
+—
0(0n—r41) € = H 1% (ld - (tZ)Q t:n,kJrl) €j
k+1<m<n

foreach 1<k<n-—-1,j=7j1...Jn € @ Recall that for m = k we obtain
that o(t; ;) e; =o(1 -id) e; = e;, which means that in this case the prod-
uct qj, ix - Qjojm o 18 equal to one. Similarly, for m =k +1 we obtain
that o (id — (t5)* th 1 py1) € = 0(id — (t;)%) €j = Gj,j.,, €j-  We note that
the products in o (v, _j41) and 0(0) _pi1) should be computed below using
the formula (3.11), which are not considered here because of the complexity

of their notations, see Proposition 3.1.

Considering first that ¢ (¢*) € End(Bg) is given by (3.13), see Remark 3.3,
and then the canonical element o of the algebra A(S,,), given by (2.4), it
follows that the operator ¢ (o) € End(Bg) can be written as follows

(3.16) olan)e; = Z H Big=1(ayIg=10) CIg=1(1)~Tg=1(n)"

9€Sn (a,b)el(g—1)
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From the factorization of o, € A(S,) given by (2.10) with (2.11), we also
obtain directly that o (a) has the following factorization

(6317 elan)es = I e@ise (<o) o8 e(8e)
1<k<n—1

with

(3.18) 0 (Bripr) €3 = 0 Gnip) -0 ((air) s

for 1 <k <n —1. Thus, we obtain

319) o) Nejgn = I eGnorin) - 0(@rri) ) e

1<k<n—1

see also (2.13). Thus, to determine the operator o ((a)~1), the operators
0((v_j41)” ") are not involved in it, so they are not computed here. We
recall that the operators o (7;;_;, 1), 1 <k <n—1 are given in Remark 3.4.
On the other hand, the computation of the operators ¢ ((d;;_,,,)~") for all
1<k<n-—11is of special interest, see (2.14). If we consider previously
the identity (2.15) and also (2.9), then for each 1 <k <n —1 the element
Ay _g+1 of the algebra A(S,,) has the form of the product of the invertible ele-
ments (id — X{k,k+1,4..,m}) of the algebra A(S,,) for all k + 1 < m < n, so that
Ay —g+1 is also invertible for all 1 < k < n — 1, see also [8, Proposition 3.10].
In this way the identity (2.14) can be written in accordance with (2.15) and
(2.17) in the following form

( :Lkarl)_l = ( :sz+1)_ '527k+1
> I Xowira I Xeg
_ gESYXSn_y i€Des(g™!) (a,b)el(g=1)
I Gd—Xpnr,m)
k4+1<m<n

H Xikkt1,..iy d

_ Z i€Des(g—1) H X
= - ab 9
gESF X Sn_k H (1 - X{k,k+17...,m}) id (a,b)eI(g1)
k+1<m<n

H Xk kt1,...4}

i€Des(g—1) .
= Z id - H Xab 9,
gESEX S,y H (1 = X{kk41,.., m}) (a,b)€I(g~1)

k+1<m<n
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where by applying the formula (2.1) for multiplication in the algebra A(S,,)
we obtain

(3.20)
H Xikk+1,....i}

" _ i€Des(g—1)
(0 —ks1) b= Z ‘ H Xab | 9
QGSfXSn_k H (1 - X{k7k+17“'vm}) (a,b)e[(gil)
k+1<m<n

Then the formula for determining the operator o ((6,—,+1)"") € End(Bg) for
each 1 < k <n —1is given in the following proposition.

PROPOSITION 3.5. Let o: A(S,) = End(Bg) be the twisted regular rep-
resentation on the generic weight subspace By of the algebra B. Suppose that
for every g € Sf X Sp—_k the conditions 1 — O 1 0 d =1 (k1) T g1 o) # 0 hold
true for all k+1<m <mn. Then the operator o((0}_,.,)"") € End(Bg),
1<k<n-—1is given as follows
g((észﬂ»l)_l)e]’l“-jn

I1 Tig=1(ryIg=10) I1 D g=1(ayTg=1 (1)

Z i€Des(g—1) (a,b)eI(g—1)
= €J 1y Tg—1(py "
R . . g7 (1) g T (n)
9EST X Sn_t I1 (1 Ujg—lwc)]g—l(k+1>"']g—1(m>)
k+1<m<n

PRrROOF. Considering that (6%, ;)" € A(S,) is given by (3.20) for each
1 <k <n-—1, we obtain by applying (3.10) and also (3.4), (3.9) that

H Xikkt1,...,1} H Xab

1 i€Des(g—1) (a,b)eI(g—1)
065 gy) Des = > — gle
gESF XS, i H ( - {k,k+1,m,m})
k+1<m<n
[T Xt II Xa
i€Des(g—1) (a,b)eI(g—1)
= >, @ ~02(9) 5
9€SE XS, 1 IT 0= Xgerstmy)
k+1<m<n
II  Qurstiy- II Qa
Z i€Des(g—1) (a,b)€I(g—1)
= €j _1qgydy—1
_ g— (1) MgT H(n)
gE€SE XS,y II C-Qurri,my)
kE+1<m<n
I odere I @,0000,-10)
- Z i€Des(g—1) (a,b)eI(g—1) . .
B (1 o . . ) Clg=1(1)Jg=1(n)
gESE XS, 1 Tg=1 (k)T g=1 (k1) Fg=1(m)
k+1<m<n

J=J1---n € CA), where the operator Q(((Sr*hkﬂ)_l), 1<k<n-1lisin-
vertible if for every g € SF x S,,_1 it holds that

L =05, i1 sty T =1 () 70
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forallk+1<m<n. 0

We recall that Des(g™!) = {k+1<i<n—1|g (i) > g 1(i+1)} denotes a
descent set of g~ € S¥ xS, and I(g™1) = {(a,b) | a < b, g~ (a) > g~ 1(b)}
denotes a set of inversions of the permutation g~ € S¥ x S,,_;. Note that
g e Sf X Syp_j implies g~ € Sf X Snh_k. We also note that in the special case
Des(g™t) = 0 if and only if I(g~') = (), which implies that in this case the
product over Des(g~!) and likewise the product over I(g~!) is equal to one.
Moreover, the following theorem follows from the above.

THEOREM 3.6. Let o: A(S,,) — End(Bg) be the twisted reqular represen-
tation on the generic weight subspace Bg of the algebra B. Then the inverse
of the operator o (o) € End(Bg), n > 2 given by

o(el)ej =) 11 Big=1(a)9g=1(y CIg=1(1) 9= 1(m)
9ESn (ab)el(g~1)
has the following factorization

o) ™Meg= I o) ™e

1<k<n—1
with Q((ﬁ;—k+1)71) ej =0V _ps1) 0 ((5Z—k+1)71) €j-

We recall that the operators o (v;_,. 1) € End(Bg), 1 <k <n-—1 are
given in Remark 3.4 and o ((6%_,1)~") € End(Bg), 1 <k < n —1 are given
in Proposition 3.5.

ExAMPLE 3.7. Let us take n =3. Then, considering Remark 3.4 for
k = 1,2, we obtain the following operators ¢ (v3), 0 (v3) € End(Bg) given by
o (’7;) €j1j2js = O (Zd - tg,l) Y (Zd - t;,l) €j1j253

= €1jags — jagi Chagrgs — Disjr Disjz Chagrge T LisgaLisgr Diagr €iajagns
where we used the formula (3.11) for multiplying the operators of End(Bg).
If we apply the Johnson-Trotter order of permutations in S3 given in the
monomial basis of BQ with €j1j2d3s €j1jsjer Cisjrjer Cisiajir Cizisiir €jajijss then
we obtain
0(13) €j1jajs = €jrjajs — GisjiLisia Cajrz + LisjeTisir Qizis €isjain — Ladr Cjajrja-
Similarly, we get
0 (%) €jigajs = 0 (id = 13 2) €jijajs = €jijajs = Qjsjs €jrjaja-

On the other hand, considering Proposition 3.5, we obtain that the operators
0((83)71),0((63)™") € End(Bg) are given as follows.
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We note that for k =1 there are two permutations g; = 123 = id and
go = 132 in 7 x S9, therefore we obtain

0 ((‘%)71) €j1j2js
1

e , 4

(1 0. } ) (1 o , ‘ ) Tortwlar @7 o)
Tortmylart@ Tortwart@7ar e

o . . _

n Tortyley t qﬂggluﬂg;l(a)

e _
) Tog ey 1@ 795 t(3)

l—o; . ) (1 Y
( Tor ezt Tor ey @795 3
1 0315 j3jo

= € i +
(1= 0j55) (L= 0j,5055) 7% (1= 0,5,) (1= 0, jags

_ 1 1 ei i+ 9535295153 P
- 1—0g. . 1— g, . J1I23s 1— g, . Jwsiz >
O j1jajs O j1ja Oj1js

) €j1j3j2

where we used that Des(g; ') = I(g;') =0 and Des(g5 ') = {2}, I(95 ") =
{(2,3)}. Note that g5 ' = go = 132 and also that 0}, j,j, = T}y jnjs-

On the other hand, considering that only the permutation g = 123 = id €
S? x Sy fixes the first two indices and that Des(g~!) = I(g~!) = 0, we obtain

1 1
*)—1 _ . . . _ L
Q(((SZ) )ej1j2j3 - 1— 0 . 6‘7971(1)]971(2).]‘(171(3) - 1— .. €j15233 -
Jg=1(2)dg—1(3) J2J3

From the application of Theorem 3.6 we then first obtain
*\—1 * *\—1
0((B3)77) €jrjags = 0(73) - 0((03) ™) €j1jais
= (ejljzja = Qisj1jsga Ciajije T LsgoDiaji Qiajr Chageir — Do ej2j1j3)

1 1 Q50 -
' (1 €jyjajs + LIS %jm)

~ Oj1j273 — Oj1j2 L —0jjs
_ 1 1 o QjsjoTgrgs , Dair%sj>
1o .\ 10 €j17273 1 —o. . €j17352 l—o0 . €317z
01273 Oj1j2 04173 Oj1j2
9251952539352 %Ghds + Qzjodjzjn Dagr
1—0. . 327193 1= . 737271
Oj1ja 04152
+ Do js Vo ji Vs jn s g2 Ogrgs . Do o
1=, . 27371 1— 0. . 727173
Oj1j3 Tj1j2

953519352 %5hjs
1= . €jzjijz |
04173

where we used the formula (3.11) for multiplying the operators of End(Bg).
After sorting the expression (by summing the same elements of the monomial
basis of Bg) and applying the Johnson-Trotter order of permutations in Ss,
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we obtain:
1 1 QjninCiri
=1y, o J3J2 7913
0((B3)77) €jujngs = 1 —0 . \1_g. . G2 + 1— o, Giisi
Oj1j27s Oj1j2 Oji1js
_ qj3jlqj3j2(1 _Ujlj2gj1j3) oy Qjsjojzjr Qjasn
. . J3J1J2 o J3J271
(3.21) (1 - a]l]2)(1 UJ1J3) 1 O j1ja
+ Q5251953519143 jajs ei i
1— L 727371
Oj1js

7qj2j1(1 — Ojijs T 04143 Tgags — Uj1j2j3) - >
(1 - Uj1j2)(1 - 0j1j3) g

Similarly, from Q((ﬂ;)il) Cj1j25s = O (75) ’ Q(((s;)il) €j15273> Le.,

*\ — 1
0((85)7") €1jass = (€gujus — Lisin €grisda) - T Civais
JJ2J3
it follows
(3'22) Y ((5;)71) €j1jajs = ! €j1j2js — Qi Cj1jsiz-
1- Ojajs 1- Ojajs

Finally, by applying Theorem 3.6, we obtain that the inverse of the operator

o(ag) € End(Bg), n > 2 is given by

o((e3) ) ejrjags = 0((B5) 1) - 0((B5) ") €51

1 1 oy 9535295153
1—0. €j17273
Oj1j2

J1J3J2
1- 0415253 1- 04153
_ YGsirBaga (L~ 9512 ngs)
J3J1J2
(1=0j,5,)(1 = 0j,45)

+ Q352 9z Dz g1 4525195351 951439 5233
1- 034152 1- 03153
 @oj (1 = 0jujs + 0413sOnjs — Ojujngs) )

727173
(1= 0j,5,)(1 = 0j,55)

. 1 o Ysge
1— 0. 14275 . €jjsge |
J2J3

jajagr T

J273J1
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where from the application of the formula (3.11) and the addition of the same
elements of the monomial basis of Bg) it follows that

1
- Uj1j2)(1 - Ujlja)(l - szjs)(l - O'j1j2j3)
[(1 - Ujljs)(l - Uj1j20j2j3) €j1j2js

qjsjz(l - Ujljz)(l - UjljB) €j1jsj2

0((a3) ™) €jyjugs = a

(3.23)

= Qjaj1 GjagaOirja (1 = 0j1ja) (1 = 0jajs) €
+ Qs Bjsjr Gizgr (1 = 05153 ) (1 = 051520 5as) €5 ain
— Qjaja qJ3J10]2J3(1 UJlJz)(l Ujljs) Cjajai
~jajs (L = 05135 ) (1 = 0jaja) €jajrjs] -

4. A DECOMPOSITION OF THE MATRIX (B:;)’1

We first introduce the appropriate matrix notations for the operators dis-
cussed above. Then, with respect to the monomial basis of a generic weight
subspace Bg of the algebra B (considered with Johnson-Trotter order of per-
mutations, see [9]), we denote the matrix of the operator ¢ (o) with 4,, and
with B,—k+1, Cn—k+1s Dn—k+1, 1 < k <n — 1 respectively the matrix of the
operator o (B _j11), 0 (Vh_jy1)s 0(05_4yq). Similarly, we denote by Ty, x,
Ti Tmkt1, 1 <k <n—1, k+1<m <n respectively the matrix of the op-
erators @ (tmr), o((t;)*th, ry1)- In particular, we denote the unit matrix
corresponding to the operator g (id) by I. Then the rows and columns of all
introduced matrices are indexed by the elements e; of the monomial basis of

Bg C B for each j € @ So these matrices are square matrices whose order is

equal to dim Bg = Card @ = n!, where we assume that Card Q = n.

REMARK 4.1. Let @ be a set of cardinality n and let j =j1...7, € @

andk=Fk ...k, € @ be arbitrary permutations in the set @ of all (distinct)
permutations of the set ). Then it is easy to verify that there exists a per-
mutation g € S, such that g satisfies the condition k = g.j, that is,

(4.1) koo kn = jg-1(1)--Jg-1(n)
or in the shorter form k, = jg,-1(,) for all 1 <p < n.

PROPOSITION 4.2. The (k, j)-entry of the matriz A, is a monomial given
by

(4.2) (An)ﬁ,j = H Dig—1(ayig—1(0)

© (ab)el(gTY)

where k = g.j (gGSn,i:jl...jnGQ,E:kl...kHGQ}
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PROOF. By considering that A,, denotes the matrix of the operator o (a)
given by (3.16) and applying (4.1), we obtain

o(ap) €= Z H Tig—1(aydg—1(») €93

9g€Sn (a,b)el(g—1)

from which it follows directly that the (&, j)-entry of the matrix A, is given
by (4.2). O

We note that the operators o (aj,) € End(Bg) and o ((a})™!) € End(Bg)
play an important role in determining the inverse of a matrix of the quantum
bilinear form of the oriented braid arrangement in R™. Furthermore, if we
assume that A,, denotes the matrix of the operator o (), then by comparing
(4.2) with (1.3), we find that the matrices A,, and B} are equal, i.e., have the
same inverse matrix. In other words, computing the inverse of the matrix B}
leads to computing the inverse of the matrix A,. In this way we can write the
matrix B; instead of the matrix A,,. Thus, from Proposition 4.2 it follows that
the (k, j)-entry of the matrix B} is a monomial given by (4.2). Moreover, by
applying Theorem 3.6 in a matrix notation, we obtain that the inverse (B})~!
of B} can be factorized in the following form

oy —1 —1 -1 -1 -1
(43) (Bn) = Bn : anl e B2 = H Bn—k—i—l
1<k<n—1
with B; ' = C; -D; ' forall2<i<n.
Before we determine the matrix Bi_l, 2 < i < n, we should note that the
(k, j)-entry of the matrix T, ; and Ti Tmptt, L<k<n—-1k+1<m<n
is respectively given by

_ S Guir @i G K=t kg
(4.4) (Tm,k)@,l' - { 0 otherwise

2
(45) (TR Tmas1),,; = 0 otherwise

)

_{ OjrimGiminer " Gmim—r L E=tmpi1.J

where
tnk-J = Jtem(1) -+ Jtim(n) = J1 -+ JmJkJk+1 -« Jm—1 - Jn,
tnkt1-J = Jtrsrm(1) -+ Jtrgrm(n) =1« JkImIk+1 -+ Jm—1 - - Jn-
We recall that tg,m =t ', thyim = t, 1 and that T Tryy k1 = Tf is the
diagonal matrix with ¢, ;, ., as its j-th diagonal entry, see (3.14), (3.15) and

also Remark 3.4. Then each matrixiBn_kH, 1 <k <n-—1 can be written as
the following sum of matrices

Bn—k+1: Z Tm,kv

k<m<n
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where Ty, = I is the unit matrix. Thus, by applying (4.4), we obtain that
the (k, j)-entry of the matrix B,, ;41 is given by

(B ) - qjmrjkquij{»l e qjmj”m—l if E = tmvkl for all k S m S n
n—kt+1)k,j 0 otherwise.

In accordance with the above, the following theorem follows.

THEOREM 4.3. The (k, j)-entry of the quantum bilinear form B} of the
oriented braid arrangement is given by

(4.6) (Bn)k,g = H Dig=1(a)dg=10)
(a,b)€I(g™1)
where j = j1...Jn € @, k=k ... k,€ @ and g € S, satisfies the condition
that ky = jg—1(p) for all 1 < p < n. Then the inverse (Br)~! of By is given
as follows
(By) ™' =B," B,y By

with B;' =¢;-D; %, 2<i<n and

Crott1 = (I —Tnk) (T —Tn—1k) - (T —Tet1,5),

_ —1 -1
D, s = (T = Th Tosrner) - (T—Ti Tosaner) o (T— T3 Toggr)

for 1 <k <n—1, where the (r,s)-entry of the matriz D;ikH, 1<k<n-1

-1

s given by
H Tig=1ydg=10) H Big=1(a)dg=100)
—1 . i€Des(g™1) (a,b)€I(g™")
(Dn—kz-&-l)zé - § : 1
gEST X Sn_k H ( _Ujg—1<k>jg—1<k+1>"'jg—l(m)
k4+1<m<n

Herer=mry...1, € @, §=61...8, € @ and g € S{“ X Sp_k satisfies the con-
dition that rp = sg-1(;) foralll<p<nandl-— O 1y dg=1 (k1) -Gg—1 () #0
forallk4+1<m <n.

REMARK 4.4. Taking into account [5, Lemma 4.11], where the author

found the formulas for determining det(I — Tp,), 1 < a < b < n and det(I —
(Ta—1)?Tpa), 1 <a < b<n, we get that

det(I — Ty 1) = H (1 — o)M=k =mtk=1)!
Te(Qim—k+1)
det(I — T2 T pr1) = H (1 — op)(m=R)-(m—k+2)-(n—m-+k—2)!

Te(Qm—k+2)
for1<k<n-—1,k+1<m <mn, where we denote by

(@m)={TCQ|Card T=m} with or= [] g
i#jeT
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Then we get the following formulas

det Cp—gt1 = H H (1 — op)(m=DE(=m)!

2<m<n—k+1 Te(Qim)

detD,_py1 = H H (1- o) (M=) (n=m)!
2<m<n—k+1 Te(Q;m)

det Bn—kt+1 = H H (1 _ O-T)(m—Q)I~(n—7rL)I

2<m<n—k+1 T€(Q;m)

for 1 <k <n—1, where we used that det(B,_x+1) = %, cf. (3.18).

Then considering (3.17), we obtain that the determinant of the quantum
bilinear form B of the oriented braid arrangement is given by

(4.7) det B, = H H (1 — o)M=t (=mt Dl
2<m<n Te(Q;m)
cf. [5, Theorem 4.12]. We recall that B} and A,, are the same matrices, from

which it follows that their determinants are the same.

EXAMPLE 4.5. For n = 2 the quantum bilinear form and its determinant
of the braid arrangement By are given by

* €12 I qi2 *
B; = , det By =1 — 019,
2 €91 ( g1 1 ) 2 2

with 019 = ¢12¢g21. If we assume that 1 — 012 # 0, then B3 is an invertible
matrix. In this trivial case it is easy to verify that

_ 1 1 —q2
B* 1 _ .
(B5) 1—012<—Q21 1
EXAMPLE 4.6. For n = 3 the matrix Bj (i.e., the quantum bilinear form
of the oriented braid arrangement) has the following form

€123 1 q23 q13923 412413923 q12q13 q12
€132 q32 1 q13 q13912 13912932 q12932
B — €312 431932 q31 1 q12 432912 431932912
3 €321 | 32931921 431921 q21 1 q32 432431 ’
€231 G21431 q23421931 G23921 q23 1 q31
€213 q21 421923 421923913 q23413 q13 1
where

det B; = (1 — 0'12)2 . (1 — 0'13)2 . (1 — 0'23)2 . (1 — 0'123)
with 05 = 4ij45ji and J123 — 012013023, See (47) We have used here the
Johnson-Trotter order of permutations in S3 given by 123, 132, 312, 321, 231,
213. Let det By #0,ie,1—012 #0and 1 — o33 # 0 and 1 — 093 # 0 and
1 — 01923 # 0. Then B3 is an invertible matrix, so from Theorem 4.3 we get
the following:

(B;) ' =By By = (Cs-Dz") - (Ca-Dy ).
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. _ —1
with Co=I—Tso, Dy =(I—-T3) , C3=(I—Ts1) (I—Ta1),

07 = (1= T Taa) - (1= 1) = (=) (1-mim)

where T2 = T2 T3 3 and T7 = T? To 5. We first calculate B; ' and then B, ', see
also Example 3.7. Thus we obtain:

€123 1 0 0 0 —q12q13 0
€132 0 1 0 —q13G12 0 0
Ty, = 12 —g31932 0 1 0 0 0
’ €321 0 0 0 1 0 —{32431
€231 0 0 —(Q23G21 0 1 0
€213 0 —G21423 0 0 0 1
€123 1 0 0 0 0 —q12
€132 0 1 —q13 0 O O
I-Ty, = es12 0 —q31 1 0 0 0
’ €321 0 0 0 1 —(Q32 0 ’
€231 0 O O —(@23 1 O
€213 —q21 0 0 0 0 1
€123 1 0 0 q12q913923  —qi12q13 —q12
€132 0 1 —q13 —q134G12 413912432 0
o e312 | —qs31q32 —@31 1 0 0 q31432q12
Cs = €321 | g32¢31¢21 0 0 1 —(q32 —q32q31 |’
€231 0 4234921431 —q23G21 —q23 1 0
€213 —q21 —@21G23  21423q13 0 0 1
€123 1 —012423 0 0 0 0
e132 | —013¢32 1 0 0 0 0
2 €312 0 0 1 —o13qi2 0 0
I=TiTs2 = 0 0 —owsgn 1 0 0 '
€231 0 0 0 0 1 —023G31
€213 0 0 O 0 —012413 1
€123 1—o012 0 0 0 0 0
€132 0 1-— 013 0 0 0 0
T_T2— 12 0 0 1—o013 0 0 0
€321 0 0 0 1— o023 0 0 ’
€231 0 0 0 0 1-— g23 0
€213 0 0 0 0 0 1—o012
1 012323 0 0 0 0
o13q32 1 0 0 0 0
2 —1 1 0 0 1 o13¢12 O 0
(I — T1 T372) — 1_ o123 0 0 023G21 1 0 0 )
0 0 0 0 1 023q31
0 O 0 O 012413 1
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— 0 0
o012
0 —L 0
—013 1
1 0 0
(1-1}) = 1-o1s
0 0 0
0 0 0
0 0 0
1 0124923
€123 l1—0oq2 1-012 0 0
013432 1 0 0
€132 1—o0o13 l1—-0o13 1
013912
D?:l _ €312 0 0 1—013 1—f‘13
- . 023421
€321 0 0 1—o23 1—o23
€231 0 0 0 0
€213 0 0 0 0
The multiplication of the obtained matrices C3 and D3 !
1 _ @~ n-1_ 1
By =C3-D3 = jEr——
i _1 923012
1—012 1—012
432013
1—0'13 1_0'13

_ g31932(1—012013)

O O O O

1—o023
0124913
l—0o12

0 0
0 0
0 0
0 0 ’
1
l1—o23 (1)
1-0o12
0
0
0 1
0 1 —o0123
023431
e
l—0o12

results in

913923023012
170’23

_ q13(1—023+023012—0123)

_ g31(1=0124012023—0123)

1—012

1—0’13

(I-012)(1-013)
932931921

421931013023

g21(1—013+013023—0123)

(170’13)(170’12)
431421012023

1—012
923921931
1—0'13

_g21923(1—012013)

912913923
170'23

L - (170‘12)(170‘13)

_ q13q12(1—013023)
(1—013)(1—023)

412013
170'13

1—o023

_ q23(l—0134+013012—0123)

(170‘12)(170‘13)

_ q12q13(1—012023)

_ q12(1—023+023013—0123) 7]

(1—013)(1—023)
_1
170’13
421023
1—0‘2

3
_q23921(1—013023)

(1—0'13)(1—0'23)
4219234913
1—-0o13

(170‘12)(170‘23)

913912932
1—0’23

432412012013

170'12

_ g32(1—012+012013—0123)

(170’23)(170’13)

423413013012
1—0’13

170’23
$13012
1—0’12

(1—0‘23)(1—0‘12)
1

_ 932931(1—012023)

(I—-012)(1—023)
412932023013
1—0'23
931932912
170‘12

(I—012)(1—023)
9431023
1—o023

1

1—012 J

(cf. (3.21)), where we assume that the rows and columns are indexed in the
order 123, 132, 312, 321, 231, 213. We now calculate B;l, taking into ac-

count that By = Cy - Dy with C = T —Tg5 and Dy ' = (I —T2) . Thus,

we obtain:

Co=1—-T392=

€123
€132
€312
€321
€231
€213

1

—(32
0

0
0
0

—q23
1

0
0
0
0

OO»& _ o o

[y

0 0
0 0
0 0
0 0
I —gn
—q13 1
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We note that Dy = I — T3 is a diagonal matrix, therefore its inverse Dy ' =

(I — T%)_1 is also a diagonal matrix, so that:

- -
€123 1—023 (1) 0 0 0 0
€132 0 1—023 ? 0 0 0
-1 _ (1 _ 2\"1 _ €312 0 0 T_o1s 0 0 0
Dy = (I T2) T eso1 0 0 0 1_}712 0 0
€231 0 0 0 0 — 0
J13
€213 0 0 0 0 1_1
L g13 |
The multiplication of the obtained matrices Co and Dy ! gives then
[ — 28 0 0 0 0 ]
1—o023 1—-o023
e ! 0 0 0 0
1—o023 1—o023 1
-1 0 0 = — 0 0
B — g12 1012
2 0 0 T = 0 0
g12 g12 1 3
0 0 0 0 T —
013 013
0 0 0 0 -
L 1—0o13 1—013 |

cf. (3.22). In agreement with the obtained matrices B * and B!, it follows
that the inverse (Bf)~! = B3'-B;' of the quantum bilinear form of the
oriented braid arrangement in R? is given in the following form

(B) " =

(1—012)(1—013)(1—023)(1—0123) '

(1 —013)(1 — 012023) —q23(1 — 012)(1 — 013) —q13923012(1 — 013)(1 — 023)
—gq32(1 — 012)(1 — 013) (1 —012)(1 — o13023) —q13(1 — 012)(1 — 023)
—¢31932012(1 — 013)(1 — 023) —q31(1 — 012)(1 — 023) (1 —023)(1 —o12013)
932931921(1 — 013)(1 — 012023) —g31921023(1 — 012)(1 — 013) —q21(1 — o13)(1 — 023)
—q21931023(1 — 012)(1 — 013) q23921931(1 — 012)(1 — 013023) —q23921013(1 — 012)(1 — 023)
—q21(1 —013)(1 — o023 —q21923013(1 — 012)(1 — 023) q21923913(1 — 023)(1 — 012013)
q12913923(1 — 013)(1 — 012023) —q12q13023(1 — 012)(1 — 013) —q12(1 — 013)(1 — 023)
—q13912023(1 — 012)(1 — 013) q13q912932(1 — 012)(1 — 013023) —q12932013(1 — 012)(1 — 023)
—q12(1 — o13)(1 — o23) —aq32q12013(1 — 012)(1 — 023) @31932q12(1 — 023)(1 — 012013)
(1 —013)(1 —o12023) —q32(1 — 012)(1 — 013) —g¢32931012(1 — 013)(1 — 023) |
—q23(1 — 012)(1 — o13) (1 = 012)(1 — o13023) —q31(1 — 012)(1 — 023)
—q23q13012(1 — 013)(1 — 023) —q13(1 — 012)(1 — 023) (1 —o023)(1 —o012013)

where the rows and columns are indexed in the order 123, 132, 312, 321, 231,
213; compare with (3.23).

REMARK 4.7. We note that the matrices Bg and By are given by

€123 1 0 0 0 q12913 412

€132 0 1 @13 Q13912 0 0
B, — 312 431932 431 1 0 0 0

€321 0 0 0 1 32 q32q31 |’

€231 0 0 G23G21  ¢23 1 0

€213 21 421423 0 0 0 1
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€123 1 g3 O 0 0 0
€132 gz2 1 0 0 0 0
B, — €312 0 0 1 q12 0 0

7 esm 0 0 g 1 0 0 |’
€231 0 0 0 0 1 qs1
€213 0 0 0 0 q13 1
where
detB3 = (]. - 0'12) . (]. — 013) . (]. - 0'23) . (]. - 0123),
detB2 = (1 — 012) . (1 — 0'13) . (1 — 023) .
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INVERZ KVANTNE BILINEARNE FORME
ORIJENTIRANOG PLETENICNOG ARANZMANA

MILENA SoS1¢

SAZETAK.  Slijedimo rezultate Varchenka, koji je svakom tezinskom
aranzmanu A hiperravnina u n-dimenzionalnom realnom prostoru
pridruzio bilinearnu formu, koju je nazvao kvantna bilinearna forma
aranzmana A. Ukratko objasnjavamo kvantnu bilinearnu formu ori-
jentiranih pleteni¢nih aranzmana u n-dimenzionalnom realnom prostoru.
Glavni interest ovog rada je izracunati inverznu matricu kvantne bilinearne
forme orijentiranog pleteni¢nog aranzmana u R™, n > 2. Da bi rijesili ovaj
problem, u [3] autori su koristili neke posebne matrice i njihove faktor-
izacije u terminima jednostavnijih matrica. Stoga, da bismo pojednostavili
neke matri¢ne izracune, prvo uvodimo zakrenutu grupovnu algebru A(Sy)
simetriéne grupe S, s koeficijentima u prstenu polinoma u n? komuta-
tivnih varijabli, a zatim koristimo prirodnu reprezentaciju nekih elemenata
algebre A(Sy) na generickim tezinskim potprostorima multiparametarske
quonske algebre B, sto odmah daje odgovaraju¢e matrice kvantne bilin-
earne forme.
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