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ABSTRACT 

This article reviews graded logics. A brief overview of various kinds of logics, classical, fuzzy and graded, 

is given. Their role in modelling reasoning and differences between logics are discussed. Graded logic 

specifically is discussed. Possible and some realised applications of graded logic are pointed out. 

Conclusions about relations between considered logics are given. 
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INTRODUCTION 

The intelligence of humans is achieved by reflex mechanisms and by processes of reasoning 

that operate on internal representations (models) of knowledge [1, 2]. 

Logic is one of the tools for modelling the observable properties of human reasoning. It is the 

study of correct reasoning. It includes both formal and informal logic. Formal logic is the 

study of deductively valid inferences or logical truths. Human communication is based on 

natural languages and consists of linguistic sentences. Some sentences are truth-bearers, they 

can be true or false (or partially true and partially false). In logic, such sentences are called 

propositions or statements. Formal logic deals with premises and inference rules. A premise 

is a true or false declarative statement (a proposition) used in an inference rule to prove the 

truth of another proposition called a conclusion. Inference rules consist of a set of premises 

and a conclusion. An inference rule examines how the conclusion follows from the premises 

due to the structure of the inference rule alone, independent of the topic and content of the 

premises, and the rule uses formal language So, the term ‘logic’ in this paper refers to a logical 

formal system that articulates a reasoning system. 

In the paper, a brief overview of various kinds of logic, classical (Boolean), fuzzy (Zadeh’s) 

and graded (Dujmović’s), is given, and relationships between them are discussed. 

Relationships between the classical logic, the fuzzy logic and the graded logic have been 

discussed in [4], as well as in [9]. Dujmović’s results (beginning from [6], and later) are a 

strong contribution to the development and generalization of aggregation not only as part of fuzzy 

logic and soft computing. Those results, [6] to its current status [7, 8], improve Zadeh’s 

approach in dealing with uncertain and vague information common in human reasoning. 

Relationships between the classical Boolean logic (BL), the graded logic (GL) and the fuzzy logic 

(FL) have been broadly discussed in [7] and it has been shown that those logics are subset-

structured as follows: BL  GL  FL. BL is primarily a crisp bivalent propositional calculus. 

GL includes BL plus graded truth, graded idempotent conjunction/disjunction, weight-based 

semantics and (less frequently) nonidempotent hyperconjunction/hyperdisjunction, among 

other notions. FL includes GL, various forms of nonidempotent conjunction/disjunction, and 

other generalisations of multivalued logic. 

The paper highlights the role of considered logics in modelling reasoning and the differences 

between them. In Section 2 classical logic is considered. Section 3 deals with fuzzy logic. In 

Section 4 graded logic is described. Possible and some realised applications of graded logic, 

described in the literature, are mentioned. Conclusions about relationships between considered 

logics are given in Section 5. A list of references is provided. 

CLASSICAL LOGIC 

Logic [1, 2, 7], has its origins in ancient Greek philosophy and mathematics. The first known 

systematic study of logic was carried out by Aristotle (Organon). Stoics took five basic 

inference rules (chains of conclusions that lead to the desired goal) as valid without proof, 

including the rule we now call Modus Ponens (Latin for: a mode that affirms): 

  ,   

 

whenever sentences of the form ‘  ’ (implication, if – then statement:  implies ), and 

‘’ are given, then the sentence ‘’ can be inferred. 

George Boole introduced the first comprehensive and workable system of formal logic 

(Boole, G. The mathematical analysis of logic, 1847). Boole’s logic was closely modelled on 
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the ordinary algebra of real numbers and used substitution of logically equivalent expressions 

as its primary inference method.  

That logic is nowadays known as classical bivalent propositional calculus with crisp truth 

values (from the set {0, 1} ) formalised as Boolean algebra. In propositional logic (calculus) 

methods for correct use of propositions are studied. In general, propositions can be crisp or 

graded, depending on the type of truth value they bear. Declarative sentences expressing 

assertions that are either completely true (coded as 1) or completely false (coded as 0) are 

called crisp propositions or statements. Classical logic (a propositional calculus from Aristotle 

to G. Boole) deals with crisp propositions only: the only logic values are true (numerically 

coded as 1) and false (numerically coded as 0), and all logic variables belong to the set {0, 1}. 

The basic logic functions are the pure conjunction (and) z = x  y = min(x, y), the pure 

disjunction (or) z = x  y = max(x, y) and negation �̅� = 1 – x. Obviously, �̿� = x (involution), x 

 �̅� = 1, x  �̅� = 0, x  x = x  x = x. Under these assumptions a Boolean function of n variables 

z = f(𝑥1, 𝑥2, …, 𝑥n) (𝑥𝑖  {0,1} is defined using 2n combinations (variations) of input values 

(from 00 … 0, to 11 …1): [Let A is a set of elements A = {𝑎1, 𝑎2, …, 𝑎k}. The variations with 

repetition of k elements taken n by n are the arranged groups formed by n elements from A 

(which may be repeated). This is represented as �̅�k
𝑛 = k  k  … k = kn. For k = 2, it is 2n.] 

Consequently, there are 22𝑛
 different Boolean functions of n variables. 

If n = 1, there are four different Boolean functions of one element, as shown in Table 1. 

Table 1. Boolean functions y = f(x). 

x 0 1 Function Name 

𝑦0 0 0 𝑦0 = 0 Constant 0 

𝑦1 0 1 𝑦1 = x Variable x 

𝑦2 1 0 𝑦2 = �̅� Negation 

𝑦3 1 1 𝑦3 = 1 Constant 1 

If n = 2, there are 16 different Boolean functions of n elements, as shown in Table 2. 

Pure conjunction and disjunction are idempotent (2.1), commutative (2.2), associative (2.3) 

and distributive (2.4), have neutral elements (2.5), annihilators (2.6), and inverse elements 

(2.7): 

xx = x,                                               xx = x,                                                      (2.1) 

xy = yx,                                          xy = yx,                                                  (2.2) 

xyz = (xy)z = x(yz),               xyz = (xy)z = x(yz),                       (2.3) 

x(yz) = (xy)(xz),                      x(yz) = (xy)(xz),                               (2.4) 

x1 = x,                                               x0= x,                                                       (2.5) 

x0 = 0,                                               x1= 1,                                                       (2.6) 

x�̅� = 0,                                               x�̅�= 1.                                                       (2.7) 

The negation of Boolean functions is based on De Morgan’s laws: 𝑥 ∧ 𝑦̅̅ ̅̅ ̅̅ ̅ = �̅��̅�, 𝑥 ∨ 𝑦̅̅ ̅̅ ̅̅ ̅ = �̅��̅�. 

De Morgan’s laws (De Morgan, A. Formal logic or the calculus of inference necessary and 

probable, London: Taylor and Walton, 1847) show the duality of conjunction and disjunction: 

if we have one of these operations, the other one can be obtained as a mirrored dual operation. 

To make a conjunction from a disjunction we use xy = �̅� ∨ �̅�̅̅ ̅̅ ̅̅ ̅, and to make a disjunction from 

a conjunction we use xy = �̅�  ∧ �̅�̅̅ ̅̅ ̅̅ ̅. De Morgan’s law can be written for general Boolean 

function f: {0, 1}n→{0, 1} as follows: 

𝑓(𝑥1, … , 𝑥n,∧,∨ ,0,1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = f(𝑥1̅̅̅,…,𝑥n̅̅ ̅, ,,1,0). 
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Table 2. Boolean functions z = f(x, y). 

x 0 1 0 1 
Function Name 

y 0 0 1 1 

𝑧0 0 0 0 0 z0= 0 Constant 0 

𝑧1 1 0 0 0 𝑧1= x  y = �̅�  �̅� = 𝑥 ∨ 𝑦̅̅ ̅̅ ̅̅ ̅ Nor 

𝑧2 0 1 0 0 𝑧2= x  �̅� =  𝑥 ⟶ 𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅ Abjunction 

𝑧3 1 1 0 0 𝑧3= �̅� Negation of y 

𝑧4 0 0 1 0 𝑧4=�̅� ∧ 𝑦= y→x Abjunction 

𝑧5 1 0 1 0 𝑧5 = �̅� Negation of x 

𝑧6 0 1 1 0 𝑧6= x  y = (x�̅�)(�̅�y) = 𝑥 ∼ 𝑦̅̅ ̅̅ ̅̅ ̅ Exclusive or 

𝑧7 1 1 1 0 𝑧7= x  y = �̅��̅� = 𝑥 ∧ 𝑦̅̅ ̅̅ ̅̅ ̅ Nand 

𝑧8 0 0 0 1 𝑧8 = x  y Conjunction (and) 

𝑧9 1 0 0 1 𝑧9= x y = (�̅�  �̅�)(xy) = 𝑥⨁𝑦̅̅ ̅̅ ̅̅   Equivalence 

𝑧10 0 1 0 1 
𝑧10 = (𝑥𝑦 ̅) ∨ ( x  y) = x(𝑦 ̅ ∨ y) 

= x 
Absorption of y 

𝑧11 1 1 0 1 𝑧11 = y→x = 𝑦 ∧ 𝑥 ̅̅̅ ̅̅ ̅̅ ̅ = �̅�x Implication 

𝑧12 0 0 1 1 𝑧12 = (�̅�y)(xy) = y(�̅�  ∨ 𝑥) = 𝑦 Absorption of x 

𝑧13 1 0 1 1 𝑧13= x→y = 𝑥 ∧ 𝑦 ̅̅̅ ̅̅ ̅̅ ̅ = �̅�  y Implication 

𝑧14 0 1 1 1 𝑧14 = xy Disjunction (or) 

𝑧15 1 1 1 1 𝑧15 = 1 Constant 1 

Classical Boolean logic can be derived in a deductive axiomatic way as Boolean algebra using 

a set with two elements B = {0, 1} and binary internal operations  and :  

x,y  B  xy  B, xy  B, 

using the following three axioms: 

A1. Binary operations  and  are commutative and distributive: 

           x,y  B:  

          xy = yx,                                          xy = yx, 

          x(yz) = (xy)(xz),                      x(yz) = (xy)(xz). 

A2. On set B binary internal operations have two different neutral elements: 

         (x  B) (0  B)  x0= x, 

         (x  B) (1  B)  x1 = x. 

A3. On set B each element x has a unique inverse element: 

         (x  B) (�̅�  B)  x�̅� = 1, 

         (x  B) (�̅�  B)  x�̅� = 0. 

Using these axioms, it is possible to prove various properties (idempotency, De Morgan’s 

laws, etc.). 

In classical Boolean logic, simultaneity and substitutability are not graded. Conjunction is the 

only model of simultaneity and disjunction is the only model of substitutability. Conjunction 

and disjunction are dual based on the De Morgan’s laws: 

          xy = (𝑥 ∧ 𝑦)̿̿ ̿̿ ̿̿ ̿̿ ̿ = �̅�  ∨ �̅�̅̅ ̅̅ ̅̅ ̅ = 1 – (1 – x)(1 – (1 – y), 

         xy =  (𝑥𝑦)̿̿ ̿̿ ̿̿ ̿̿  = �̅� �̅�̅̅ ̅̅ ̅̅  = 1 – (1 – x)(1 – (1-y). 

Tautologies are defined as formulas that are always true. Following are some tautologies that 

are frequently used in bivalent logic reasoning. 
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The law of the excluded middle: x�̅� = 1. 

Modus Ponens (if x is satisfied and x implies y, then that implies that y is also satisfied): 

(x(x→y))→y = (x(�̅�  ∨ 𝑦)) ⟶ 𝑦 = (𝑥y) ⟶ 𝑦 = �̅�  ∨ �̅�  ∨ 𝑦) =  𝑥 ̅ ∨ 1 = 1. 

It was said that classical Boolean functions of n variables are defined only in 2n isolated 

vertices {0, 1}n of the unit hypercube [0, 1]n. For n = 3, there are 23 vertices, Figure 1. 

 
Figure 1. Boolean function f domain for n = 3. 

Classical logic was the basis for the realization of many applications in the field of artificial 

intelligence [1]. 

FUZZY LOGIC 

Jan Lukasiewicz and his school developed logics with intermediate truth values and stimulated 

considerable interest in multivalued logics during the 1930s (Łukasievicz J.: O logice 

trójwartościowej, Ruch Filozoficzny 5, 169-171, 1920 – in English: On Three-Valued Logic, 

McCall, S., ed., Polish Logic 1920-1939, Claredon Press, Oxford, 1967). 

Most concepts in human reasoning (such as truth, importance, suitability, simultaneity, etc.) 

are a matter of degree. Consequently, some areas of human logic reasoning are not reducible 

to zeroes and ones, and it cannot be modelled only in the vertices of the hypercube {0, 1}n as 

in the case of classical bivalent Boolean logic. Since the truth is a matter of degree, it belongs 

to interval I = [0, 1], and all humanized models of logic reasoning must be applicable 

everywhere inside the hypercube [0, 1]n, Figure 2. 

In 1965 Lotfi Zadeh introduced fuzzy sets [3], the first successful step toward the wide use of 

graded concepts in science, computing, and engineering. Important concepts of fuzzy logic 

(linguistic variables, the calculus of fuzzy if-then rules), were also introduced by Zadeh. For 

more information about that and about references, [4] can be consulted, here is a short 

overview. 

FUZZY SETS 

Fuzzy logic is an extension of Boolean logic based on the mathematical theory of fuzzy sets, 

which is a generalization of the classical set theory. Just as there is a connection between the 

classical (Boolean) logic and the classical (Cantorian) notion of a set, there is a connection 

between fuzzy logic and fuzzy set theory. By introducing the notion of degree in the verification 

of a condition, thus enabling a condition to be in a state other than true or false, fuzzy logic 

provides very valuable flexibility for reasoning, which makes it possible to take into account 

inaccuracies and uncertainties. 
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Figure 2. Function f domain for n = 3, x,y,z [0, 1], for graded logics, fuzzy and graded (in the 

narrow sense). 

One advantage of fuzzy logic to formalize human reasoning is that the inference rules are set 

in natural language [4, 5]. For example, here are some rules of conduct that a guest of a 

restaurant follows with the specific objective of deciding the amount of a tip at the end of a 

meal, depending on the quality of the food and the quality of service: 

   If the quality of the food is awful … and if the quality of service is poor … then the tip is low. 

   If the quality of the food is awful … and if the quality of service is good ... then the tip is low. 

   If the quality of the food is awful… and if the quality of service is excellent ... then the tip is medium. 

   If the quality of the food is delicious… and if the quality of service is good ... then the tip is high. 

   If the quality of the food is delicious… and if the quality of service is excellent ... then the tip is high. 

Intuitively, it thus seems that the input variables like in this example are approximately 

appreciated by the brain, such as the degree of verification of a condition in fuzzy logic. 

To exemplify each definition of fuzzy logic, we will consider some elements of a fuzzy 

inference system whose specific objective is to apply some rules of conduct that a driver 

follows in front of a traffic light, assuming that he does not want to lose his driver's licence. 

Saying that the theory of fuzzy sets is a generalization of the classical set theory means that the 

latter is a special case of fuzzy sets theory, the classical set theory is a subset of the theory of 

fuzzy sets, as Figure 3 illustrates. 

Fuzzy logic is based on fuzzy set theory, which is a generalization of the classical set theory. 

Following the habits of the literature, we will use the terms fuzzy sets instead of fuzzy subsets. 

The classical sets are also called clear sets, as opposed to vague, and by the same token classical 

(Boolean ) logic is also known as binary (bivalent). 

 
Figure 3. The classical set theory is a subset of the theory of fuzzy sets. 

Figure 4 shows the membership function chosen to characterize the subset of “average” speeds. 
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Figure 4. Membership function characterizing the subset of “average” speed. 

Definition 1. Let X be a set. A fuzzy subset A of X is characterized by a membership function f: 

X → [0; 1]. Note: This membership function is equivalent to the identity function of a classical 

set. 

In our traffic light example, we will redefine membership functions for each fuzzy set of each 

of the following three variables. 

• Input 1: speed. Subsets: low, medium and high; 

• Input 2: distance (from the traffic light). Subsets: close and far; 

• Output: braking (pressure). Subsets: mild, average and hard. 

The shape of the membership function is chosen arbitrarily by following the advice of the 

expert or by statistical studies: sigmoid, hyperbolic, tangent, exponential, Gaussian or any other 

form can be used. 

Figure 5 shows the difference between a conventional set and a fuzzy set. 

 

Figure 5. Graphical representation of a conventional set and a fuzzy set. 

To define the characteristics of fuzzy sets, we are redefining and expanding the usual 

characteristics of classical sets. 

Fuzzy sets have some properties. Here are definitions of the most important properties. 

Let X be a set (also known as universe of discourse), A fuzzy subset of X and A the membership 

function characterizing fuzzy set A. Function A(x) is called the membership degree of x, x  

X, in A. 

The set X can be, for example, the set of positive real numbers, the quality of the food at a 

restaurant on the subjective scale from 0 to 10, speeds (in km/h), set of braking pressures (here 

in unnamed subjective numbers on the scale from 0 to 30, etc.). 

In Figure 6 comparison of the two membership (the indicator and the membership) functions 

corresponding to the previous sets is given. 

Definition 2. The height of A, denoted h(A), corresponds to the upper bound of the codomain 

of its membership function: h(A) = sup {A(x)  x  X}. 
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Figure 6. Comparison between an indicator (characteristic) function of a conventional set (left) 

and a membership function of fuzzy set (right). 

Definition 3. Fuzzy set A is said to be normalised if and only if h(A) = 1. In practice, it is 

extremely rare to work on non-normalised fuzzy sets. 

Definition 4. The support of fuzzy set A is the set of elements of X belonging to at least some 

A (i.e. the membership degree of x is strictly positive). In other words, the support is the set  

supp(A) = {x  X  A(x) > 0}. 

Definition 5. The kernel of fuzzy set A is the set of elements of X belonging entirely to A. In 

other words,  

kernel(A) = {x  X  A(x) = 1}. 

By construction, kernel(A)  supp(A). 

Definition 6. An -cut of a fuzzy set A is the classical subset of elements with a membership 

degree greater than or equal to  

-cut(A) = {x  X  A(x)  }. 

Another membership function for a variable ‘braking’ (X) (in unnamed (subjective) units on the scale 

from 0 to 30) through which we have included the above properties is presented in Figure 7. 

 
Figure 7. A membership function 𝜇Average with properties displayed. 

We can see that if A was a conventional set, we would simply have  

supp(A) = kernel(A) and h(A) = 1, (h(A) = 0, A = ). 

Our definitions can therefore recover the usual properties of classical sets. 

THE LINGUISTIC VARIABLES 

The concept of the membership function discussed above allows us to define fuzzy systems in 

natural language, as the membership function couples fuzzy logic with linguistic variables that 

we will define in the sequel. 
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Definition 7. Let V be a variable (speed, braking, etc.), X the range of values of the variable 
(universe of discourse), and TV a finite or infinite set of fuzzy sets. A linguistic variable 
corresponds to the triplet (V, X; TV ). 

Here are some examples of linguistic variables, in Figures 8-10. 

 
Figure 8. Linguistic variable “Speed”. 

 

Figure 9. Linguistic variable “Distance” (from the traffic light). 

 

Figure 10. Linguistic variable “Braking” (in unnamed subjective numbers on the scale from 0 
to 30, i.e. in positive real numbers). 
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When we define the fuzzy sets of linguistic variables, the goal is not to exhaustively define the 

linguistic variables. Instead, we only define a few fuzzy (sub)sets that will be useful later in the 

definition of the rules that we apply. This is for example the reason why we have not defined 

the subset “middle” for the distance from the traffic lights. Indeed, this subset could not be 

useful in our rules. Similarly, it is also the reason why (for example) 30 represents a harder 

braking pressure than 25, while 25 however belongs more to the fuzzy set “hard” than 30: this 

is because 30 is seen not as hard but very hard (or exorbitant if you want to change adjective). 

However, we have not created the fuzzy set “very hard” because we do not need it in our rules. 

THE FUZZY OPERATORS 

To easily manipulate fuzzy sets, we are redefining the operators of the classical set theory to 

fit the specific membership functions of fuzzy logic for values strictly between 0 and 1. Unlike 

the definitions of the properties of fuzzy sets that are always the same, the definition of 

operators on fuzzy sets is chosen, like membership functions. Here are the two sets of operators 

for the complement (NOT), the intersection (AND) and the union (OR) most commonly used, 

Table 3. 

Table 3. Most commonly used fuzzy operators. 

Name 
Intersection AND 

AB(x) 

Union OR 

AB(x) 

Complement NOT 

𝝁�̅�(x) 

Zadeh operators 

min/max 
min(A(x), B(x)) max(A(x), B(x)) 1 – A(x) 

Probabilistic 

prod/probor 
A(x)B(x) 

A(x) + B(x) – 

A(x)B(x) 
1 – A(x) 

With the usual definitions of fuzzy operators, we always find the properties of commutativity, 

distributivity, and associativity classics. However, there are two notable exceptions: 

• in fuzzy logic, the law of excluded middle is contradicted: A�̅�  X, i.e. 𝜇𝐴∪�̅�(x)  1; 

• in fuzzy logic, an element can belong to A and not A at the same time: 

A  �̅�  , i.e. 𝜇𝐴�̅�(x)  0. 

Note that these elements correspond to the set supp(A) – kernel(A). 

REASONING IN FUZZY LOGIC 

As we know, in classical logic, the inference rules may be of the form (already mentioned 

here): 

{
𝐼𝑓 𝑝 𝑡ℎ𝑒𝑛 𝑞, 𝑝 𝑡𝑟𝑢𝑒

𝑡ℎ𝑒𝑛 𝑞 𝑡𝑟𝑢𝑒
 

In fuzzy logic, fuzzy reasoning, also known as approximate reasoning, is based on fuzzy rules 

that are expressed in natural language using linguistic variables which we have given the 

definition previously. A fuzzy rule has the form:  

If x  A and y  B then z  C, 

with A, B and C fuzzy sets. For example: 

’If (the distance is close), then (the braking is hard)’. 

The variable “braking” belongs to the fuzzy set “hard” to a degree that depends on the degree 

of validity of the premise, i.e. the membership degree of the variable “distance” to the fuzzy 

set “close”. The underlying idea is that the more propositions in the premise are checked, the 
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more the suggested output actions must be applied. To determine the degree of truth of the 

fuzzy proposition “braking will be hard”, we must define the fuzzy implication. 

Like other fuzzy operators, there is no single definition of the fuzzy implication: the fuzzy 

system designer must choose among the wide choice of fuzzy implications already defined, or 

set it by hand. Table 4 contains four definitions of fuzzy implication most commonly used. 

Table 4. Some fuzzy implications. 

Name Truth value 

Mamdani min(fa(x), fb(x)) 

Larsen fa(x)  fb(x) 

Zadeh max(1 – fa(x), min(fa(x), fb(x)) 

Kleene-Dienes max(1 – fa(x), fb(x)) 

Notably, not all of these four implications generalize the classical implication. There are other 

definitions of fuzzy implication generalizing the classical implication, but are less commonly 

used. 

If we choose the Mamdani implication, here is what we get for the fuzzy rule  

'If (the distance is close), then (braking is hard)', 

where the distance is rated 18.7 (m) (if the rating is done by an autonomous car pilot in a 

self-driving car), a graphical interpretation of obtaining the conclusion is presented in Figure 11. 

 
Figure 11. Example of fuzzy implication, fuzzy sets “Hard” and “Conclusion” are depicted by 

their membership degrees. 

Similarly, [4], the conclusion would be obtained by rating ’approximately 20 m’, (if it is done 

by a driver trying not to lose his driver's license). 

Thus, fuzzy logic allows building inference systems in which decisions are without 

discontinuities, flexible, and nonlinear, i.e. closer to human behaviour than classical logic is. 

The fuzzy logic theory offers a multitude of connectives that can be used as aggregators to 

aggregate membership values representing uncertain information. In the case of Zadeh's 

operators, min for conjunction and max for disjunction, used as aggregators, only inputs with 

extreme values affect the value of the output fuzzy set. However, both intuitive and formal 

criteria of human reasoning contain numerous requirements that are combined using models of 

simultaneity and substitutability (partial conjunction and partial disjunction), which set 

requirements for further development of graded aggregators. 

GRADED LOGIC 

Aristotle, Boole, De Morgan, and others developed bivalent classical logic, Łukasievicz and 

others dealt with trivalent and multivalent logics, Zadeh and others developed n-valent fuzzy 

logic, and Dujmović developed graded logic, as a continuous generalization of classical 

bivalent Boolean logic. All variables belong to the unit interval I = [0, 1], all logical 



Graded logics 

 

287 

phenomena and their models appearing in graded logic also occur inside the unit hypercube 

In, where n > 1 (refer to Figure 2). Therefore, graded logic is continuous. 

The statement “Vučević is a tall man” is not crisp because it is neither completely true nor 

completely false. Of course, those who know basketball will agree that it is truer than the 

statement “Ivanović is a tall man”. These statements assert the value of the evaluated person 

and their degree of truth is located between true and false. Such statements (graded 

propositions) are called value statements. The degree of truth of a value statement is a human 

percept, interpreted as the degree of satisfaction of requirements. Truth comes in degrees. 

Graded propositions use a degree of truth that can be continuously adjustable from false to 

true in the interval [0, 1]. Such a degree of truth can also be interpreted as the degree of 

membership in a fuzzy set where the full membership corresponds to the degree of truth 1, 

and no membership corresponds to the degree of truth 0. 

Graded logic (GL) uses graded truth and processes it using graded aggregators.  

The main concepts in GL are means and aggregation, [7]. 

If we have n real numbers 𝑥1, … , 𝑥n, n  1, the mean value of these numbers is a value 

M(𝑥1, … , 𝑥n), located somewhere between the smallest and the largest of the numbers: 

min(𝑥1, … , 𝑥n)  M(𝑥1, … , 𝑥n)  max(𝑥1, … , 𝑥n) .                                 (4.1) 

This property of function is called internality. In GL 𝑥1, … , 𝑥n are degrees of truth, and they 

belong to the unit interval I = [0, 1]: 𝑥𝑖  I, i = 1, …, n, and M: In→ I. 

Relation (4.1) can be rewritten as follows: 

AND = 𝑥1… 𝑥n  M(𝑥1, … , 𝑥n) = 𝑥1… 𝑥n =  OR.                          (4.1a) 

In GL, means are logic functions, modelling observable properties of human reasoning. 

Relation (4.1) indicates that the mean M (as a logic function) can be linearly interpolated 

between AND and OR as follows: 

M(𝑥1, … , 𝑥n) = (1 – )(𝑥1… 𝑥n) + (𝑥1… 𝑥n), 0   1.             (4.3) 

Parameter   I defines the location of M in the space between conjunction and disjunction, 

or proximity of M to disjunction, and it is called orness (disjunction degree). From (4.3) orness 

of M is: 

𝜔 =  
𝑀(𝑥1,…,𝑥n)–(𝑥1… 𝑥n) 

(𝑥1… 𝑥n)– (𝑥1… 𝑥n)
 .                                                (4.4) 

Similarly, parameter   I which defines the location of M in the space between conjunction 

and disjunction, or proximity of M to conjunction, andness (conjunction degree), is: 

 =  
(𝑥1… 𝑥n)–𝑀(𝑥1,…,𝑥n)

(𝑥1… 𝑥n)– (𝑥1… 𝑥n)
 .                                                (4.4a) 

Relations (4.3) and (4.4) indicate that each mean could be interpreted as a mix of disjunctive 

and conjunctive properties. In GL parameterized means are of particular interest. Such means 

have adjustable parameters r() (or r()), that can be used to adjust the logical properties of 

means and provide a continuous transition from AND to OR: 

AND = 𝑥1… 𝑥n  M(𝑥1, … , 𝑥n; 𝑟() ) = 𝑥1… 𝑥n =  OR, 

M(𝑥1, … , 𝑥n;  𝑟(0)) = 𝑥1… 𝑥n,                                         (4.5) 

M(𝑥1, … , 𝑥n;  𝑟(1)) =𝑥1… 𝑥n. 

The function M(𝑥1, … , 𝑥n; 𝑟() ) can be interpreted as a logic function: it has an adjustable 

degree of similarity to disjunction (or to conjunction) and represents a fundamental 

component for building GL.  
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In GL a name to this function M is: graded (or generalized) conjunction/disjunction (GCD) 

[7]. 

For GL, logic aggregators are functions that aggregate two or more degrees of truth and return 

a degree of truth in a way similar to observable patterns in human reasoning, in order to serve 

as mathematical models of human evaluation reasoning. Families of functions that are closely 

related to logic aggregators are means, and also, general aggregation functions, and triangular 

norms. 

A function f(x, y), to be considered a mean, and should have the following fundamental 

properties [7]. 

• Continuity: lim
𝛿𝑥→0
𝛿𝑦→0

(𝑓(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) = f(x, y), 

• Internality: min(x, y)  f(x, y)  min(x, y), 

• Idempotency: f(x, x) = x, 

• Symmetry: f(x, y) = f(y, x), 

• Homogeneity: f(ax, ay)  a f(x, y). 

In a general case, we assume that symmetry is excluded because each argument may have a 

different degree of importance and commutativity is not desirable. 

Definition 8. A general aggregation function (general aggregator) of n variables is a function 

A: In→ I that is nondecreasing in each argument (monotonicity) and idempotent in extreme 

points 0 and 1(i.e. it must satisfy two boundary conditions) as follows: 

     x = (𝑥1, … , 𝑥n), y = (𝑦1, … , 𝑦n), 𝑥𝑖  I, 𝑦𝑖  I, i = 1, ..., n 

x  y  A(x)  A(y)   (or 𝑥𝑖 𝑦𝑖 ,  i = 1, ... , n  implies A(𝑥1, … , 𝑥n)  A(𝑦1, … , 𝑦n)        (4.7) 

    A(0, … , 0) = 0, A(1, …, 1) = 1 

A general aggregator is defined less restrictively than a mean (internality, idempotency). 

Mathematical literature, [10] uses the following classification of aggregators: 

1) Disjunctive aggregators A: 1  A(𝑥1, … , 𝑥n)  max(𝑥1, … , 𝑥n) = 𝑥1… 𝑥𝑛. 

2) Conjunctive aggregators A: 0  A(𝑥1, … , 𝑥n)  min(𝑥1, … , 𝑥n) = 𝑥1… 𝑥𝑛. 
3) Averaging aggregators A: min(𝑥1, … , 𝑥n)  A(𝑥1, … , 𝑥n)  max(𝑥1, … , 𝑥n).  

4) Mixed aggregators: aggregators that do not belong to groups 1), 2), 3). 

But, in 1) – 4) the variables 𝑥1, … , 𝑥𝑛 are not assumed to be degrees of truth of corresponding 

statements, and aggregators are not assumed to be functions of propositional calculus. 

Simultaneity (conjunctive aggregation) is recognized only in the lower region of the unit 

hypercube, and substitutability (disjunctive aggregation) is recognized only in the highest 

region of the unit hypercube. This is not consistent with the propositional logic interpretation 

of aggregation functions [0, 1]n → [0, 1]. 

So, logic aggregators in GL are defined in a more restrictive way. 

In GL classification of logic aggregators is based on the fact that basic logic aggregators are 

models of simultaneity or models of substitutability. The centroid of all logic aggregators is 

logic neutrality, modelled as the arithmetic mean. Therefore, assuming nonidentical 

arguments, the following basic classification of logic aggregators is used: 

1) Neutral logic aggregators: A(𝑥1, … , 𝑥n) = MID(𝑥1, … , 𝑥n) = (𝑥1 + ⋯ + 𝑥n)/2, 

2) Conjunctive aggregators: 0  A(𝑥1, … , 𝑥n)  MID(𝑥1, … , 𝑥n), 

3) Disjunctive aggregators: MID(𝑥1, … , 𝑥n)  A(𝑥1, … , 𝑥n). 
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All nonidempotent conjunctive aggregators that satisfy 0  A(𝑥1, … , 𝑥n)  min(𝑥1, … , 𝑥n) are 

denoted as hyperconjunctive. All nonidempotent disjunctive aggregators that satisfy 

max(𝑥1, … , 𝑥n)  A(𝑥1, … , 𝑥n)  1 are denoted as hyperdisjunctive. 

The areas of hyperconjunctive and hyperdisjunctive aggregators offer models of very high 

degrees of simultaneity and substitutability and overlap with the areas of triangular norms (t-

norms, T) and triangular conorms (t-conorms, S), see, for example [4]. Among these 

aggregators, two of them, min/max (TM , SM), and product (TP , SP)) are sometimes used in 

logic aggregation for modelling very high levels of simultaneity and substitutability: 

TM(x, y) = min(x, y),              SM(x, y) = max(x, y), 

TP(x, y) = xy         ,              SP(x, y) = x + y  – xy. 

Other t-norms and t-conorms have rather low applicability due to incompatibility with 

observable and proven properties of human reasoning, [7]. 

The concept of logic aggregator in GL is defined as consistent with observable and proven 

properties of human reasoning. 

Definition 9. A logic aggregator A(𝑥1, … , 𝑥n ) is a continuous function of two or more 

variables A: In →I that satisfies the following additional conditions: 

   x = (𝑥1, … , 𝑥n), y = (𝑦1, … , 𝑦n), 𝑥𝑖  I, 𝑦𝑖  I,  i = 1, ..., n, n  1;  

   x  y      A(x)  A(y),                                                         (nondecreasing monotonicity ), 

   A(0, … , 0) = 0,                                                                    (boundary conditions for falsity), 

   A(1, … 1) = 1,                                                                      (boundary conditions for truth), 

   A(𝑥1, … , 𝑥𝑛)  0 if 𝑥𝑖  0, i = 1, ... , n,                                (sensitivity to positive truth),        

   A(𝑥1, … , 𝑥𝑛)  1 if 𝑥𝑖  1, i = 1, ... , n,                                (sensitivity to incomplete truth).       

(The continuity of the logic aggregation function is requested, as well as two additional logic 

conditions.) 

Having models of simultaneity and substitutability in mind and according to [6] the area of 

partial conjunction is located between the arithmetic mean and the pure conjunction 

𝑥1… 𝑥𝑛  = min(𝑥1, … , 𝑥𝑛 ), and the area of partial disjunction is located between the 

arithmetic mean and the pure disjunction 𝑥1… 𝑥𝑛  = max(𝑥1, … , 𝑥𝑛 ). The intensity of 

partial conjunction (disjunction) is measured by andness (conjunction degree) , (orness, 

disjunction degree, ), [6], [7]: 

 = 
𝑛–(𝑛+1) ∫ … ∫ 𝐴(𝑥1,…,𝑥n)d𝑥1…d𝑥n

1
0

1
0

𝑛–1
                                              (4.8) 

 = 1– = 
(𝑛+1) ∫ … ∫ 𝐴(𝑥1,…,𝑥n)d𝑥1…d𝑥n

1
0

1
0 –1

𝑛–1
                                     (4.9) 

A high orness permits that a bad criterion be compensated by a good one. On the other hand, 

a high andness requires all criteria to be satisfied to a great degree. Andness and orness are 

related and add up to one. So, andness-directed transition from conjunction to disjunction 

(introduced in 1973 [6] to its current status [7]), is the history of an effort to interpret 

aggregation as a soft computing propositional calculus. Andness (orness) allows adjustable 

aggregators to be defined, with variable conjunction (disjunction) degree. When operators are 

between minimum and maximum, andness is for any number of inputs in the range [0, 1]. 

Operators that can return values smaller than the minimum (as t-norms) or larger than the 

maximum (as t-conorms) will provide andness outside [0, 1], reaching the minimum and the 

maximum of the interval with drastic disjunction and drastic conjunction [7]. 
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The resulting analytic framework is a graded logic [7], based on analytic models of graded 

simultaneity (various forms of conjunction), graded substitutability (various forms of 

disjunction), and complementing (negation).  

Definition 10. [7] Graded logic (GL) is an infinite-valued propositional calculus based on 

continuous, monotonic, noncommutative (weighted), and compensative models of graded 

simultaneity (conjunction) and graded substitutability (disjunction), and used primarily to 

create aggregation structures for computing the degree of truth of compound value statements. By 

combining the graded conjunction, disjunction, and standard negation, GL becomes a 

seamless generalization of the classic bivalent Boolean logic, extending it from {0, 1}n to [0, 1]n. 

The degree of truth of a value statement can be interpreted as the degree of suitability or the 

degree of preference. Suitability means the human percept of suitability. One of the main 

objectives is to compute the overall suitability of a complex object as a logic function of the 

suitability degrees of its components (attributes). 

Basic graded logic functions can be conjunctive, disjunctive, or neutral. Conjunctive functions 

have andness (4.8) greater than orness (4.9), (𝛼 > 𝜔). Similarly, disjunctive functions have 

orness greater than andness (𝛼 < 𝜔), and neutral is only the arithmetic mean where 𝛼 = 𝜔 = 

1/2. Between the drastic conjunction and the drastic disjunction, we have andness-directed 

logic aggregators that are special cases of a fundamental logic function GCD [6]. GCD 

(symbol ) has the status of a logic aggregator, and it can be idempotent or nonidempotent, as 

well as hard (supporting annihilators) or soft (not supporting annihilators). The annihilator of 

hard conjunctive aggregators is 0, and the annihilator of hard disjunctive aggregators is 1.  

The whole range of conjunctive aggregators is presented in Figure 12 [7]. 

 

Figure 12. The range of conjunctive aggregators: border aggregators and aggregation segments. 

A detailed classification of GCD aggregators, based on combinations of conjunctive/ 

disjunctive, idempotent/nonidempotent, and hard/soft aggregators is presented in Table 5 [7]. 

As both BL and GL share the same concept of duality (in De Morgan’s sense) all disjunctive 

aggregators can be realized as De Morgan duals of conjunctive aggregators, so, it is sufficient 

to analyse only the conjunctive aggregators. 

The interpolative method for implementation of GCD consists of implementing the border 

aggregators shown in Figure 12 and then using interpolative aggregators in the range of 

andness between them. 

Taking into account that simplicity is the fundamental requirement for all aggregators, in GL 

the weighted power mean (WPM) 

y = (𝑤1𝑥1
𝑟 + ⋯ + 𝑤𝑛𝑥n

𝑟)1/r,   –  r  +,   𝑤1 + ⋯ + 𝑤n = 1 

is used as the main component, (the others exist, also) for building idempotent logic aggregator. 

The desired andness of the aggregator is easily adjusted by selecting the appropriate value 
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Table 5. Classification of andness-directed GL functions and aggregators. 
 Logic 

function/aggregator 
I T A Global andness ()  
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Medium 
hyperconjunction 

N H 0  =t = (n 2n – n – 1) / (n – 

1) 2n 

Low 
hyperconjunction 

N H 0 
1 < < t 

Full conjunction Y H 0  = 1 

Hard partial 
conjunction 

Y H 0 
θ     < 1; 1/2 < θ < 1 

Soft partial 
conjunction 

Y S - 
1/2 <  < θ 

Neutrality Y S -  = 1/2 

 

D 

I 

S 

J 

U 

N 

C 

T 

I 

V 

E 

Soft partial 
disjunction 

Y S - 
1 – θ    < 1/2 

Hard partial 
disjunction 

Y H 1 
0 <   1 – θ 

Full disjunction Y H 1  = 0 

Low 
hyperdisjunction 

N H 1 
1 – t  <   < 0 

Medium 
hyperdisjunction 

N H 1 
 = 1 – t 

High 
hyperdisjunction 

N H 1 

min <   < 1 – t 

Drastic disjunction 
N H 1 

 = min =  –1/(n  – 1) 
 

Columns: I = idempotent, Y/N = yes/no; T = type, H/S = hard/soft; A = 
annihilator 

 

of exponent r, and the degrees of importance of attributes are selected using the normalized 
positive weights.  

The most frequent human aggregation pattern of subjective categories reflects the condition 
for simultaneous satisfaction of two or more requirements. The degree of simultaneity 

(andness) can vary in a range from low to high, and partial conjunction (symbol ) is 
considered. 

The other aggregation pattern (partial disjunction, symbol ) reflects the condition where the 

satisfaction of two or more requirements significantly satisfies an evaluation criterion, orness 
(degree of substitutability) can vary in the range of low to high. 

The partial conjunction  has the andness , dual partial disjunction  has the orness . In 

GL standard negation is strictly used. In the case of partial conjunction and partial disjunction, 
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aggregators  and  are dual if xy = �̅� ∇�̅�̅̅ ̅̅ ̅̅  and xy = �̅� �̅�̅̅ ̅̅ ̅̅ , and the andness of  must be 

equal to the orness of . 

For weighted aggregators, if the partial conjunction  has the andness , then the dual partial 

disjunction  has the orness  = , so it follows: 

𝑊1𝑥1∇ … ∇𝑊n𝑥n
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = W1�̅�1∆ … ∆Wn�̅�n    𝑊1𝑥1∇ … ∇𝑊n𝑥n = 1 – 𝑊1(1 – 𝑥1) ∆ … ∆ 𝑊n(1 – 𝑥n), 

𝑊1𝑥1…𝑊n𝑥n
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = W1�̅�1∇ … ∇Wn�̅�n    𝑊1𝑥1∆ … ∆𝑊n𝑥n = 1 – 𝑊1(1 – 𝑥1) ∇ … ∇ 𝑊n(1 – 𝑥n). 

WPM has asymmetric conjunctive and disjunctive properties, and no natural duality 

(exponential mean has natural duality). For WPM, De Morgan’s laws are not naturally 

satisfied. Unless the asymmetric properties of WPM are not needed, it is necessary to redefine 

this aggregator using De Morgan’s duals. If soft and hard aggregators are needed, then the 

dualized GDC aggregator can be defined as follows: 

         W1𝑥1∆ … ∆𝑊n𝑥n = (𝑊1𝑥1
𝑟 + ⋯ + 𝑊n𝑥n

𝑟)1/r, r = 1 – p, 0  p  +, 

        W1𝑥1…𝑊n𝑥n = 1 – 𝑊1(1 – 𝑥1) ∆ … ∆ 𝑊n(1 – 𝑥n) 

                                 = 1 – (𝑊1(1 – 𝑥1)2–𝑝 + ⋯ + 𝑊n(1 – 𝑥n)2–𝑝)1/(2–𝑝)
, r = 1 + p, 0  p  +. 

If p = 0, the resulting aggregator is the arithmetic mean. For 0  p  1 this aggregator is a soft 

partial conjunction or the soft partial disjunction. For 1  p  +, the aggregator is a hard 

partial conjunction or the hard partial disjunction. The pure conjunction/disjunction are 

obtained for p = +. The parameter p is used to adjust the desired values of andness and 

orness: the andness that corresponds to the exponent r = 1 – p is the same as the orness that 

corresponds to the exponent r = 1 + p, 0  p  +. 

Compound functions can also have their De Morgan’s duals [7]. 

Logical aggregators are practical models of observable human reasoning [7], and 

consequently, they belong to logic that is graded and defined as a strict generalization of 

classic Boolean logic. All aggregators that are related to human reasoning must be capable of 

modelling ten fundamental graded logic functions: (1) hyperconjunction, (2) conjunction, (3) 

hard partial conjunction, (4) soft partial conjunction (5) logic neutrality, (6) soft partial 

disjunction, (7) hard partial disjunction, (8) disjunction, (9) hyperdisjunction, and (10) 

negation. These functions are observable and provably present, in human reasoning; the 

graded logic conjecture [6] claims that they are both necessary and sufficient. Except for 

negation, all of them are special cases of the GCD aggregator (symbol ) which is a model of 

simultaneity and substitutability in GL. GCD and negation are observable in human intuitive 

reasoning, and necessary and sufficient to form a graded propositional calculus. 

To be certified as a basic logic aggregator, an aggregator must satisfy a spectrum of 

conditions [7]. Ten core conditions include the following: (1) two or more input logic 

arguments that are degrees of truth and have clearly defined semantic identity, (2) the 

capability to cover the complete range of andness, making a continuous transition from drastic 

conjunction to drastic disjunction, (3) nondecreasing monotonicity in all arguments, and 

nonincreasing monotonicity in andness, (4) andness-directness for penalty or reward in the 

case of partial absorption aggregators, (5) importance weighting of inputs, (6) selectivity of 

conjunctive and disjunctive annihilators (0 and 1), (7) adjustability of threshold orness, (8) 

sensitivity to positive and incomplete truth, (9) absence of discontinuities and oscillatory 

properties, and (10) simplicity, readability, performance and the suitability for building 

compound aggregators. Except for GCD, huge set of aggregators were not introduced to create 

a complete system of logic functions with necessary human-centric properties. 

Graded logic aggregators are indispensable components of most decision models. In the areas 

of logic aggregation and decision engineering, properties of human reasoning, generality, 
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functionality and complexity are best satisfied by GCD aggregator [7]. In most practical 

problems GCD and negation create aggregation structures that efficiently implement 

expressions of graded propositional calculus. 

From the theoretical basis of GL and aggregation, the Logic Scoring of Preference (LSP) 

Decision Engineering Framework (DEF) has been developed [7]. LSP DEF is developed for 

solving professional evaluation problems (i.e. problems that need a significant level of domain 

expertise), for example: the evaluation of computer systems, medical conditions, military 

equipment, complex software systems, urban plans, and ecological solutions. So, in many 

cases, domain experts are interested in evaluation methodology and evaluation problems 

solving using the LSP method.  

Evaluation problems that are less dependent on professional expertise in a specific domain are 

usually personal decision problems, such as evaluating and selecting jobs, cars, homes, and 

schools for students. The LSP method has been successfully applied to those problems, also. 

CONCLUSIONS 

GL is a successor and seamless generalization of classical bivalent Boolean logic. All main 

properties of GL can be derived within the framework of classical logic, without explicitly 

using the concept of fuzzy set. On the other hand, the partial truth of a value statement can also 

be interpreted as a degree of membership of the evaluated object in a fuzzy set of maximum-

value objects. So, the link between fuzzy logic and GL exists. 

Relationships between the classical bivalent Boolean logic (BL), the graded logic (GL), and 

the fuzzy logic (FL) are subset-structured as follows: BL  GL  FL. BL is primarily a crisp 

bivalent propositional calculus. GL includes BL plus graded truth, graded idempotent 

conjunction/disjunction, weight-based semantics, and (less frequently) nonidempotent 

hyperconjunction/hyperdisjunction. GL also supports all nonidempotent basic logic functions 

(e.g. partial implication, partial equivalence, partial nand, partial nor, partial exclusive or, and 

others). All such functions are ”partial” in the sense that they use adjustable degrees of 

similarity or proximity (andness and orness) to their ”crisp” equivalents in traditional bivalent 

logic. FL includes GL, various forms of nonidempotent conjunction/disjunction, and other 

generalizations of multivalued logic. Fuzzy logic in a wide sense includes FL plus a wide 

variety of reasoning and computation based on the concept of fuzzy set. 

GL is a descendant of both the BL and the FL. In the case of logic interpretation, all variables 

represent suitability, i.e. the degrees of truth of value statements that assert the highest values 

of evaluated objects or their components. In the case of fuzzy interpretation, the variables 

represent the degrees of membership in corresponding fuzzy sets of highest-value objects. In 

the case of bivalent logic, GL is a direct and natural seamless generalization of BL. (In points 

{0, 1}n of hypercube [0, 1]n we have BL = GL.) In the case of FL, GL is a special case because 

GL excludes various fuzzy concepts and techniques that are not related to logic. Since GL is 

primarily a propositional calculus, it is more convenient and more natural to interpret GL as a 

weighted compensative generalization of classical bivalent Boolean logic, than to interpret GL 

as a relatively narrow subarea in a heterogeneous set of models of reasoning and computation 

derived from the concept of fuzzy set. 

GL is a soft logic based on GCD and means, and used primarily for evaluation. As opposed 

to that, in fuzzy logic, emphasis is not on evaluation problems. GL is a generalization of 

traditional Boolean logic based on concepts of graded conjunction and graded disjunction. FL 

is based on the graded concept of a fuzzy set, which is a generalization of the concept of a 

traditional crisp set. Figure 13 shows relations between various types of propositions and logics. 
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Figure 13. Relations between various types of propositions and logics. 

The LSP method, developed from the theoretical basis of GL and aggregation, has been 

successfully applied to a plethora of problems. 

Dujmović’s results (beginning from [6], and later) are a strong contribution to the 

development and generalization of aggregation not only as part of fuzzy logic and soft 

computing. Those results, [6] to its current status [7], [8], improve Zadeh’s approach in 

dealing with uncertain and vague information common in human reasoning, and also generate 

a special kind of logic, the graded logic. GL offers systematic, consistent controlled (by 

parameters) aggregators with gradual transitions from conjunctivity to disjunctivity, not only 

for use in FL, but GL is the whole one logic, accommodated to hierarchical structures 

characteristics for decision processes. GL brings to FL a consistently developed system of 

aggregators with a continuous transition between conjunction (simultaneity) and disjunction 

(substitutability) and the conditions of their partial validity required for all approaches that 

require aggregation. As GL and FL depend on degrees (GL on truth degree, FL on 

membership degree) so both are kind of graded logic in wide sense. 

The topic discussed in the paper is of interest for many applications related to the development 

of intelligent systems: neural networks, vision systems, robotics, multicriteria decision-

making systems in general, robotic networks (for example, platforms in smart cities [11], self-

driving car networks, obviously [12]), and others, accommodated to automated hierarchical 

structures of decision processes closer to those processes humans apply. 

And to explain the use of the word ‘logics’ in plural form in this article. Such somewhat 

unusual usage emphasizes multiple theories of logic, classical, fuzzy and graded logics, 

different logics to be used in different circumstances. 

Development of GL shows that a significant insight into reality can still be achieved by 

carefully observing that reality (in time), without huge, expensive, experiments. 
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