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ABSTRACT 

Synchronous motors are essential in various industrial and commercial applications because of their 

efficiency and constant speed operation. Accurate modelling of these motors is crucial for optimizing 

performance, control, and maintenance. Traditional modelling methods, such as the d-q reference frame 

method, often fall short in terms of complexity and accuracy, especially under dynamic conditions. This 

study aims to enhance synchronous motor modelling using machine learning algorithms, specifically 

focussing on predicting the excitation current, a critical parameter for motor performance. 

In this research, a dataset comprising synchronous motor operational parameters was analysed using 

various machine learning techniques. The primary methods evaluated include regression and M5 

algorithms. The evaluation criteria were the time required to build and test the models and the accuracy 

of their predictions. Our findings indicate that both the regression and M5 algorithms significantly 

outperform traditional methods, providing more precise and efficient models for synchronous motor 

behaviour under diverse operating conditions. 
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INTRODUCTION 

Synchronous motors are widely used in industrial and commercial applications because of their 

high efficiency, reliability, and constant-speed operation. These motors work by maintaining a 

constant rotation speed regardless of the load on the motor. This makes them ideal for use in 

applications where rotation speed is critical, such as pumps, fans, and compressors. 

Accurate modelling of the behaviour of synchronous motors is crucial for efficient operation 

and control. The models can be used to predict the performance of the motor under different 

operating conditions and to develop control strategies that optimize the performance of the 

motor. The models can also be utilized for fault detection and troubleshooting, which helps 

lower maintenance costs and minimize downtime. 

Traditional modelling methods, such as the dq reference frame method, have been used to 

model the behaviour of synchronous motors. However, these methods are limited by their 

complexity and accuracy. For example, the synchronous reference frame control, which is also 

known as the dq control, assumes that the motor is operating in steady state, which may not be 

the case in practice. In addition, the method is based on a set of nonlinear differential equations 

that are difficult to solve. 

Traditional modelling methods for synchronous motors have some limitations, such as: (i) they 

often require a significant amount of prior knowledge about the system and can be difficult to 

implement in practice; (ii) they are based on the assumption that the motor is operating in 

steady state, which may not be the case in practice; (iii) they are based on a set of nonlinear 

differential equations that are difficult to solve; (iv) they may not be able to accurately model 

the behaviour of the motor under different operating conditions; (v) they may not be able to 

handle the complexity and variability of real-world systems. 

Considering these limitations, new methods are needed to improve the accuracy and efficiency 

of synchronous motor modelling. Machine learning algorithms have the potential to overcome 

these limitations and provide more accurate and efficient models than traditional methods. 

LITERATURE REVIEW 

Mathematical equations are frequently used in conventional modelling techniques for 

synchronous motors to represent the motor’s physical properties. However, these models may 

have several disadvantages, such as: 

• limited accuracy – predictions from traditional models could be inaccurate because the 

complex dynamics of a synchronous motor is not completely represented by the 

mathematical equations used in these models. 

• having trouble getting model parameters – the physical characteristics of the motor should 

typically be measured precisely, which can be expensive or difficult to do. 

• lack of adaptability – traditional models are less useful in real-world applications because 

they cannot adjust to changes in the motor’s operating circumstances or physical 

characteristics. 

On the other hand, synchronous motors can be more accurately and adaptably modelled using 

machine learning methods like neural networks, decision trees, and random forests. Without 

relying on a priori mathematical equations, these algorithms are able to learn from data and 

generate predictions. Furthermore, machine learning models can easily represent complicated 

systems and manage nonlinear interactions. 

Synchronous motors have been modelled in several ways using machine learning algorithms. 

One method is to model the link between the input variables (such as voltage and current) and 

the output variables of the motor using supervised learning methods, such as neural networks 
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and support vector machines (e.g. torque and speed). These models can be used to forecast the 

motor’s behaviour under various operating situations after being trained on a dataset of 

measurements taken from the motor. 

By utilizing techniques like linear regression, decision trees, support vector machines, and 

ensembles of trees, the authors in [1] assesses the effectiveness of various machine learning 

algorithms to develop a torque control method to counteract the effects of changes in 

temperature parameters of various parts in the synchronous motor. 

Robotic arms with permanent magnet synchronized motors (PMSM) are frequently employed 

in light load applications as industrial, medical, and home service. Because they are likely to 

be used close to people, these robotic applications need to be able to understand their working 

conditions for safety concerns. Rotor torque, which is often measured by a torque transducer, 

is one of the key variables to be looked at while analysing the circumstances. However, the use 

of such a device comes at an additional cost and requires a large mechanical setup and data 

collection electronics. The study by [2] provides a machine learning-based solution to predict 

the rotor torque. In this work, a variety of statistically based machine learning techniques have 

been used, including regression using neural networks, linear regression, and stepwise 

regression. The outcomes demonstrated the potential for successfully implementing the 

suggested senseless torque estimation for robot applications. 

The broad adoption of PMSM as the preferred motor for electric vehicles and a variety of other 

applications requires strict temperature monitoring to prevent increased temperatures. 

Temperatures below a certain threshold can cause serious operational problems with PMSM, 

which can increase maintenance expenses. In [3] authors compare the performance of three 

different machine learning algorithms (support vector regression, random forest regression and 

polynomial regression) in the estimation of parameters in a permanent magnet synchronous motor. 

For some time, monitoring the magnet temperature in PMSMs for automotive applications has 

been a complicated issue because signal injection or sensor-based approaches are still not 

practical in a practical setting. The major motor damage from overheating is a serious worry 

for the machine’s control scheme and design. Lack of accurate temperature predictions results 

in reduced device usage and greater material costs. The accuracy of the estimation of multiple 

machine learning models for the purpose of forecasting latent high-dynamic magnet 

temperature profiles is empirically examined in [4, 5]. 

THE SYNCHRONOUS MOTOR 

Typically, an electric motor is a device that transforms electrical energy into mechanical 

energy. An alternating current (AC) motor is an electric motor that, as a basic construction 

element, contains a stator with a coil supplied with alternating current to convert the electric 

current into mechanical power. AC motors are divided into asynchronous and synchronous 

motors. In both types, there are alternating currents in the stator conductors that create a rotating 

magnetic field [6]. 

The magnetic stator circuit, as well as the stator windings of asynchronous and synchronous 

machines, are identical in everything. In both cases, the three-phase AC system of the stator 

creates a rotating field whose speed is determined by the circular frequency of the supply. 

Synchronous and asynchronous machines differ in the construction of the rotor. The rotor 

winding of asynchronous machine is usually a cage consisting of aluminium rods placed in the 

grooves of the rotor. The synchronous motor (SM) has an excitation winding, whose direct 

current creates rotor flux. Instead of excitation winding, the rotor of synchronous machine may 

have permanent magnets built into the magnetic circuit of the rotor [7]. 
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The rotor of synchronous motor is an electromagnet or a permanent magnet. The position of 

the rotor flux is therefore uniquely determined by the position of the rotor. The rotor rotates 

synchronously with the rotating magnetic field and creates a moment proportional to the vector 

product of the stator and rotor fluxes. Synchronous rotation of the rotor and the field is the 

reason for the name synchronous machine [7]. 

A synchronous motor contains an inductor, like the inductor of a direct-current (DC) motor, 

where the inductor winding is supplied with a DC current. The inductor of this motor is like 

the inductor (stator) of a three-phase asynchronous motor and is powered by a system of three-

phase symmetrical voltages of constant frequency. Its rotation speed is equal to the 

synchronous speed, which corresponds to the frequency of the power supply and is independent 

of the load moment. The main problem of this type of machine is commissioning, because its 

starting moment, with the usual construction, is small. In order to increase that moment, a cage 

is usually placed on the side of the inductor along with the excitation winding. This cage 

enables asynchronous mode of operation when the motor starts up to synchronous speed. 

Another way to overcome the initial problem of a synchronous motor is to connect it to a DC 

motor, which in this case has the task of bringing the synchronous motor to synchronous speed [7]. 

A synchronous motor has a constant rotation speed that does not depend on the mechanical 

moment, but only on the frequency of the power supply and the number of pole pairs. Due to 

this feature, the area of application of the synchronous motor is oriented to those drives where 

no change in speed is required. Particularly interesting is the case where the engine is idle 

(without electromechanical conversion), when reactive energy is produced (power 

compensator). Such drives are often used because of their significant advantage over other 

motors, contained in the fact that they can produce reactive energy and thereby im-prove the 

power factor (cos φ) of the entire plant. With a permanent load, when a constant rotation speed 

is required, the task of choosing an electric motor is quite simple. In this case, it is best to opt 

for a synchronous motor. This motor, for these driving conditions, proves to be economical [8]. 

Unlike an asynchronous motor (runs only at a lagging power factor), a synchronous motor has 

the significant characteristic, such as ability to operate at any power factor leading, lagging or 

unity over a broad range, which can be easily tuned with the aid of altering its excitation 

current. There are three main operating states [9]: 

1) Over excitation. The characteristic of this condition is that the field excitation (Ef) is such 

that Ef > V. The armature (stator) current leads the supply voltage (V) and the SM supplies 

lagging reactive power to the system. SM behaves like a condenser and improves the power 

factor of the system (reactive power compensator). So, motor power factor is leading. 

2) Normal excitation. If Ef = V, then the SM is said to be normally excited. In this scenario, 

the reactive power (Q) of the motor is null, indicating that the motor is not consuming or 

supplying reactive power. Consequently, the motor operates at a power factor of one. At 

unity power factor (cos φ ≈ 1) for a specific load, the resultant voltage (Er), and 

consequently, the armature current are minimized. 

3) Under excitation. In the case of under-excitation, SM is described as having a field 

excitation where Ef < V. In this scenario, the armature current lags behind the supply voltage 

(V) and draws lagging reactive power (cos φ < 1), leading to a lagging power factor for the 

motor. 

PARAMETRIC MODELLING OF SYNCHRONOUS MOTOR 

Modelling of SM by parameters under various operational situations is a challenging problem. 

Most correlations between parameters are complex. Different methods have been proposed for 

modelling and/or predicting the excitation current: artificial intelligence (AI) based nonlinear 

techniques, such as PID controller [10], pulse width modulation [11, 12], fuzzy logic [13, 14], 
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Kalman filter-based methods [15, 16], artificial neural networks and adaptive artificial neural 

networks [17, 18, 19], particle swarm optimization [20], k-nearest neighbour (k-NN) estimator 

and genetic algorithms [21, 22]. 

AI-based solutions have proven to be efficient, however in real environment implementations, 

these models encountered serious problems. The results of the simulations and experimental 

applications had significant differences. Compared to real-time contexts, the response time in 

simulation environments was quicker. The functionality of the microprocessor or digital signal 

processor and the motor drivers’ switching frequency also played a role in this. These factors 

limit the response times of real-time applications [23]. AI-based models also have a negative 

impact on the response times of real-time applications and simulation environments. 

Five parameters used in this paper to describe the operational behaviour and model the SM are: 

(i) load current, (ii) power factor, (iii) power factor error, (iv) variation in excitation current, 

and (v) excitation current. Among the parameters specified, the excitation current is designated 

as the target (output), while the remaining parameters are considered inputs. To investigate the 

impact of input parameters on the variable output, the following steps [24] was conducted: 

1) The test SM is driven by an auxiliary (pony) motor (inductive load). Besides, a serial 

rheostat is also utilized to manually create a variable DC supply in the field circuit. 

2) An AC voltage is utilized to the stator windings till the rotor speed is close to the 

synchronous speed. 

3) A DC voltage is connected to the winding and thus begins the synchronous operation of the 

motor. 

4) After the synchronous speed, the field current is adjusted to a minimum by changing the 

value of the rheostat. 

 

Figure 1. Parameter measurement scheme [24]. 

After realizing these steps, the motor draws minimum current from the network, the efficiency 

is maximum, and the power factor is at unity. To determine this value, the field current is 

adjusted by the rheostat. In such a way, the load and voltage remain constant. These 

measurements are repeated several times with different loads. The input and output parameters 

are measured and recorded by the test equipment [14, 22], thus forming a data set (in CSV 

format, with 557 instances). 



P. Čisar, S. Maravić Čisar and A. Pásztor 

 

334 

The main goal of this article was to identify the appropriate algorithms in the domain of 

machine learning that require the least time to build and evaluate the model and that result in 

the most accurate predictions of the excitation current of SM. In this sense, an appropriate 

dataset [25] was used for the analysis and the Weka (Waikato Environment for Knowledge 

Analysis) software package to model and test the parameters of SM. Weka is appropriate for 

this use since it has a variety of visualization tools and algorithms for data analysis and 

predictive modelling that are simple to apply with the dataset in question. 

MODELLING EXCITATION CURRENT OF SYNCHRONOUS MOTOR 
BY ML ALGORITHMS 

The development of control functions requires a deep understanding of the traditional models 

of systems and processes, which are frequently based on physical and mathematical tools. To 

compensate for changes in work, a trained machine learning model built on an effective 

algorithm can automatically adapt the parameters of motor power drivers. In general, the most 

typical types of issues with machine learning implementations are the following:  

Classification: the process that seeks to forecast discrete values (for example, efficiency 

{maximum, not maximum}, {true, false}, motor speed {synchronous, not synchronous}). 

Regression: the process whose aim is to forecast continuous values. 

Forecasting: creating forecasts based on historical and current data (used to analyse trends). 

The two basic groups of machine learning algorithms are typically supervised and unsupervised 

algorithms. Based on a set of examples, supervised learning algorithms generate predictions. 

In the case of supervised learning, there is a desired output variable and an input variable made 

up of labelled training data. Unsupervised learning uses entirely unlabelled data, which is fed 

to the model. It is crucial to identify the fundamental patterns within the data, such as clustering 

structures, low-dimensional manifolds, or sparse trees and graphs. 

 

Figure 2. Classification of the most common machine learning algorithms [26]. 

In addition to the previously mentioned two groups, there are also algorithms for semi-

supervised learning and reinforcement learning. The practical issue with supervised learning is 

that it can be expensive and time-consuming to label data. Unlabelled samples with a modest 
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amount of labelled data are used to increase learning accuracy when labels are scarce. Semi-

supervised refers to the fact that the machine in this instance is not fully supervised. 

Most solutions employ reinforcement learning for sequential decision-making. Contrary to 

supervised and unsupervised learning, this type of learning does not require any prior data. 

Instead, the learning agent interacts with the environment and discovers the best course of 

action depending on the environment’s response. 

The classification process consists of following steps: 

• loading and filtering the dataset – prior to training a model, input and output variables are 

rescaled using techniques like normalization and standardization. The practice of arranging 

data in accordance with several normal forms to decrease redundancy and enhance data 

integrity is known as normalization (unsupervised attribute filters), 

• training and test sets from the original data, 

• classifier evaluation. 

After running the classification test on the SM data set, Weka software generates the 

appropriate summary (given in Figure 3). The aggregate result of all performed tests is shown 

in the following tables. During testing, the test data option was used to form the model, while 

the parameter being tested is set to the excitation current (If). The training set option was 

employed, with the training and testing data split set to 66% (the default value). 

 

Figure 3. Summary of classification test results generated by Weka software. 

The classification results are shown in Table 1 (the best algorithms are marked). The accuracy 

of the prediction is expressed through the relative absolute error, the difference between the 

actual and predicted values. 
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Table 1. Characteristics of categorized learning algorithms examined on the SM dataset. 

Classifiers – learning algorithms 
Time to build 

model, s 

Time to test 

model, s 

Prediction 

error, % 

Functions    

Gaussian processes 0.5 0.38 10.1867 

Linear regression 0.01 0.19 0 

Multilayer perceptron (NN) 0.31 0.19 1.1558 

Simple linear regression 0 0.19 0 

SVR (Support Vector Machine for 

regression) 
0.05 0.25 0.1622 

    

Lazy classifiers    

k-nearest neighbours (k-NN) 0 0.23 9.6684 

k-star (k*) 0 0.44 9.6684 

Locally weighted learning (LWL) 0 0.75 47.6729 

    

Metalearning algorithms    

    

Additive regression 0.01 0.19 21.1939 

Bagging 0.06 0.23 1.6368 

Cross-validation parameter selection 0 0.19 100 

Multi-scheme selection using error on 

training data 
0 0.2 100 

Random committee 0.1 0.27 2.3601 

Randomizable filtered classifier 0 0.22 13.4059 

Random subspace 0.04 0.2 9.453 

Regression by discretization 0.03 0.56 12.6173 

Stacking 0 0.2 100 

Vote 0 0.2 100 

Weighted instances handler wrapper 0 0.19 100 

    

Miscellaneous classifiers    

Input mapped classifier 0 0.32 100 

    

Rules    

Decision table 0.05 0.27 12.6173 

M5 0.23 0.27 0 

ZeroR 0 0.25 100 

    

Time Series    

Holt-Winters triple exponential 

smoothing 
0 0.22 125.9974 

    

Trees    

Decision stump 0 0.22 55.3224 

M5 reduced (pruned) model 0.05 0.23 0 

Random forest 0.14 0.28 1.6352 

Random tree 0.01 0.22 3.7205 

REPTree 0.01 0.22 3.4971 
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As is known, regression is a machine learning technique that uses continuous numerical values 

to predict the result. Regression analysis is frequently applied in many fields to determine the 

relationship between a single dependent variable (the target variable) and several independent 

variables. Considering the results presented in Table 1, the regression algorithms (linear 

regression and support vector regression) showed excellent applicability to the parametric data 

on the synchronous motors. Abbreviated time to form a model with these algorithms is a 

significant advantage in terms of updating the decision models i.e., speed of adaptation to new 

operational situations. 

The known advantages of M5 model trees are that they generate more accurate predictions than 

regression trees, are easy to use and train, are robust when dealing with missing data, can 

manage large number of attributes and high dimensions. Both M5 algorithms confirmed the 

specified characteristics with their results from the Table 1. 

In addition to the previous testing, the authors were interested in how the percentage split 

(training set/testing set) of data affects the results. In this sense, the algorithms that showed the 

best results in the previous analysis were evaluated and the following situation was obtained, 

Table 2. 

Table 2. Examination of the influence of percentage split on prediction accuracy. 

Classifiers – learning 

algorithms 
Time to build model, s 

Time to test 

model, s 

Prediction error, 

% 

Linear Regression    

40 % 0.13 0.45 0 

50 % 0.02 0.38 0 

60 % 0.02 0.23 0 

70 % 0.02 0.19 0 

80 % 0 0.14 0 

SVR    

40 % 0.06 0.42 0.2708 

50 % 0.03 0.33 0.1495 

60 % 0.04 0.27 0.1524 

70 % 0.03 0.22 0.1672 

80 % 0.04 0.16 0.2177 

M5    

40 % 0.09 0.38 0 

50 % 0.06 0.33 0 

60 % 0.05 0.23 0 

70 % 0.03 0.2 0 

80 % 0.03 0.13 0 

M5 pruned    

40 % 0.02 0.36 0 

50 % 0.01 0.28 0 

60 % 0.03 0.23 0 

70 % 0.02 0.19 0 

80 % 0.02 0.11 0 

Based on the obtained results, it can be concluded that the percentage split does not 

significantly affect the accuracy of the prediction. 

Clustering can be understood as dividing of data points into a group (or cluster) of similar 

objects. Objects within each cluster are alike but differ from those in other clusters. In order to 
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examine the clustering capabilities of the used SM data, several clusters enabled by Weka were 

analysed. The tests yielded the following results shown in Table 3 and the best results are marked. 

These results show that the category of hierarchical clustering (Cobweb and hierarchical 

clusterer) is the most suitable approach to enhance classification accuracy of the SM data set. 

Table 3. Clustering test results. 

Clusterer Accuracy, % 
Time to build model (full 

training data), s 

Canopy 53 0 

Cobweb 100 0.06 

Expectation-maximization 

(EM) 
10 39.18 

Farthest first 71 0.01 

Filtered clusterer 53 0 

Hierarchical clusterer 85 0.34 

Density based (DBSCAN) 54 0 

Simple k-means 53 0 

CONCLUSION 

This article proposes the use of machine learning algorithms for modelling synchronous 

motors. Synchronous motors are widely used in industrial and commercial applications, and 

accurate modelling of their behaviour is crucial for efficient operation and control. However, 

traditional modelling methods, such as the synchronous reference frame method, have 

limitations in terms of complexity and accuracy. 

The goal of this paper was to, using a suitable data set, examine the possibility of applying 

machine learning algorithms to model a synchronous motor and predict its excitation current. 

The following criteria were used to evaluate the suitability of the algorithms: the time to build 

and evaluate the model, as well as the accuracy of the prediction. Based on the test results, the 

most suitable algorithms for synchronous motor simulation were determined. It has been shown 

that regression and M5 algorithms have the best suitability for describing the behaviour of 

synchronous motors. It was demonstrated that varying the percentage split between training 

and test data does not notably impact the prediction accuracy of the employed algorithms. We 

also investigated the possibility of clustering synchronous motor data and found the best 

clustering algorithms for this use. 

The application of machine learning algorithms for modelling synchronous motors shows 

significant promise. These models can accurately predict excitation currents, thereby 

optimizing motor performance and operational efficiency. Future research could focus on 

refining these models further and evaluating them in industrial settings to validate their 

effectiveness and reliability. The insights gained from this study provide a solid foundation for 

developing advanced control strategies for synchronous motors using machine learning 

techniques. 
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