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Abstract
Regenerative medicine is focused on the regeneration of various tissues and organs through the 
development of innovative therapeutic strategies and devices. Center of Excellence for Reproductive 
and Regenerative Medicine (CERRM) was established to provide necessary resources for conducting 
the state-of-the-art research in the field and to foster translation of developed therapeutic solutions 
to clinical practice. CERRM subunit for regenerative medicine has developed Osteogrow-C, a novel 
osteoinductive device for bone regeneration, which was successfully tested in various preclinical models 
including rabbit and sheep posterolateral spinal fusion (PLF) models as well as rabbit ulnar segmental 
defect model. Furthermore, CERRM has developed anti-BMP1.3 antibody-based therapy for various 
diseases that share fibrosis as a key pathological mechanism. This review paper provides the most im-
portant contemporary findings on the development of novel BMP-based devices for bone regeneration 
as well as the development of antifibrotic therapies.  

Keywords: Osteogrow, Osteogrow-C, rhBMP6, bone regeneration, posterolateral spinal fusion, 
regenerative medicine

Sažetak
Istraživanje novih platformi i potencijala u regenerativnoj medicini
Regenerativna medicina je usmjerena na regeneraciju različitih tkiva i organa kroz razvoj inovativnih 
terapijskih strategija i novih lijekova. Centar izvrsnosti za reproduktivnu i regenerativnu medicinu 
(CERRM) osnovan je kako bi pružio potrebne resurse za provođenje suvremenih pretkliničkih 
istraživanja i potaknuo translaciju razvijenih terapijskih rješenja u kliničku praksu. Podjedinica CER-
RM-a za regenerativnu medicinu je razvila Osteogrow-C, novi osteoinduktivni lijek za regeneraciju ko-
stiju, koji je uspješno testiran u različitim prekliničkim modelima uključujući modele posterolateralne 
spinalne fuzije kod kunića i ovaca te model segmentalnog defekta lakatne kosti kod kunića. Nadalje, 
CERRM je razvio terapiju temeljenu na anti-BMP1.3 protutijelima za liječenje različitih bolesti koje 
dijele fibrozu kao ključni patološki mehanizam. Ovaj rad daje pregled razvoja i kliničkih studija novih 
terapija za koštanu regeneraciju temeljenu na koštanim morfogenetskim proteinima te pregled razvoja 
inovativnih antifibroznih terapija.
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lagen, hyaluronic acid, fibrin, chitosan, gelatin) have been the 
most commonly used BMP carries in preclinical studies which 
ultimately led to the approval of currently only commercially 
available BMP-based osteoinductive device, Infuse, which uses 
collagen as a carrier in a form of absorbable collagen sponge in 
combination with recombinant human Bone morphogenetic 
protein (rhBMP2) (13, 31, 40-45). Infuse is currently approved 
for anterior lumbar interbody fusion (ALIF), acute tibial fracture 
treatment, and maxillofacial reconstructions (13). However, its 
off-label applications in various spinal fusion procedures have led 
to severe side effects, necessitating the development of safe, ef-
fective, and affordable autologous bone graft substitutes (ABGS) 
(46-49). Addressing this need involves ongoing research of novel 
BMP carriers, focusing on exploring combinations of natural 
or synthetic polymers with inorganic materials to optimize 
BMP delivery and consequently bone regeneration (13, 19, 29). 
Currently, one of the most promising BMP-based therapeutic 
solutions for bone regeneration is Osteogrow, an autologous 
bone graft substitute (ABGS) developed at the Laboratory for 
Mineralized Tissues at the University of Zagreb School of Medi-
cine (1, 2). Osteogrow consists of recombinant human Bone 
Morphogenetic Protein 6 (rhBMP6) delivered within autologous 
blood coagulum (ABC) as a carrier (1, 2). In comparison to 
other osteoinductive BMPs, rhBMP6 showed superior ability 
to promote osteoblast differentiation in vitro and induce bone 
regeneration in vivo when compared to BMP2 and BMP7 (50-
52). Additionally, ABC serves as an ideal physiological carrier, 
suppressing foreign body responses, facilitating tight rhBMP6 
binding with plasma proteins within the fibrin meshwork, and 
allowing sustained in vitro release of rhBMP6 (53-55).
Following successful preclinical studies, Osteogrow underwent 
Phase I/II trials in patients with distal radial fractures (DRF; 
EudraCT 2014-005101-21) and patients undergoing high tibial 
osteotomy (HTO; EudraCT 2015–001691‐21) (56, 57). For 
applications where compressive forces are present, Osteogrow 
requires supplementation with a compression-resistant matrix 
(CRM). Initially, Osteogrow-A was developed, consisting of 
rhBMP6/ABC with the addition of allograft particles as CRM 
(58). Osteogrow-A underwent successful evaluation in rabbit and 
sheep posterolateral spinal fusion (PLF) models (2) and a Phase 
II clinical trial (EudraCT number 2017-000860-14) as part 
of the Horizon2020 project OSTEOproSPINE (2018-2023; 
GA 779340). However, the use of allograft is associated with 
several disadvantages, including immunogenicity and regulatory 
issues in different markets (24, 59, 60). Hence, our focus shifted 
towards identifying an alternative to allograft, leading us to 
explore calcium phosphate (CaP) synthetic ceramics as a viable 
substitute (60, 61). CaP ceramics offer versatility in shape, size, 
and chemical composition, with tricalcium phosphate (TCP) 
and hydroxyapatite (HA) being the most utilized variants (38, 

1. Introduction
Regenerative medicine is among the most propulsive scientific 
fields focused on the regeneration of various tissues and organs 
employing different strategies and approaches. In order to posi-
tion Croatia as one of the leading EU countries in the field of re-
generative medicine, Center of Excellence for Reproductive and 
Regenerative Medicine (CERRM) was established as a collabora-
tion between leading academic institutions in Croatia including 
the University of Zagreb School of Medicine, University of Za-
greb Faculty of Veterinary Medicine, University Hospital Center 
Zagreb, University Hospital Dubrava, University of Rijeka 
School of Medicine, Ruđer Bošković Institute as well as private 
companies Genera Research, Fidelta, and Smart Medico. In the 
past period (2017-2023) CERRM has conducted a major project 
„Reproductive and Regenerative Medicine – Exploration of new 
platforms and potentials (KK.01.1.1.01.0008)” that has resulted 
in unprecedented success in the development of novel diagnostic 
and therapeutic solutions in the field. Specifically, the CERRM 
subunit for Regenerative Medicine has developed Osteogrow-C, 
a novel osteoinductive device for bone regeneration, which was 
tested in various preclinical models with current efforts for initia-
tion of clinical trials (1-8). Furthermore, CERRM has developed 
BMP1.3 antibody-based therapy for various diseases that share 
fibrosis as a key pathological mechanism (9-12). This review 
aims to provide an overview of the recent advancement in the de-
velopment of novel devices for bone regeneration and BMP1.3-
based anti-fibrotic therapy.

2. Development of novel BMP-based 
therapeutic strategies for bone regeneration
Bone morphogenetic proteins (BMPs) are growth factors and 
members of the TGFβ superfamily which are possessing po-
tent osteoinductive properties (13-19). Due to their ability to 
induce bone formation, osteoinductive BMPs have been widely 
investigated as a key component of novel therapeutic solutions 
for bone regeneration and as a substitution for autologous bone 
graft (ABG) which is currently the gold standard for promoting 
spinal fusion as well as treatment of segmental defects and bone 
fracture nonunions (20-28). Effective BMP application requires 
carrier which is biocompatible, easily manufactured with desired 
biomechanical properties, enabling vascular and cellular inva-
sion, and in the end, provide good retention of an osteoinductive 
molecule of interest (29-34). BMP carriers are divided into syn-
thetic polymers, natural polymers, and inorganic materials (35, 
36). Synthetic polymers (e.g., polylactic acid-PLA, polyglycolic 
acid-PGA, polyethylene glycol-PEG, poly-E-caprolactone-PCL, 
polypropylene fumarate-PPF) and inorganic materials (e.g., 
calcium phosphate ceramics, bioglass, calcium sulfate cement) 
have been evaluated as a BMP carrier in numerous preclinical 
trials, however they have not been introduced to clinical practice 
(35, 37-39). On the other hand, natural polymers (e.g., col-
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62-75). Their key distinction lies in resorbability post-implanta-
tion, with TCP being highly resorbable while HA remains stable 
(76). Additionally, biphasic calcium phosphate (BCP) combines 
TCP and HA in varying ratios to achieve optimal resorbability 
(66, 76). Our efforts culminated in the development of novel 
Osteogrow formulation with addition of synthetic ceramics as a 
CRM - Osteogrow-C. Extensive animal studies were conducted 
to optimize implant properties and determine safety and efficacy 
in relevant preclinical models (3-7, 77, 78). Osteogrow-C was 
evaluated in several animal models ranging from initial to ad-
vanced models (3-7, 30, 53, 77-81). Rodent models (rats, mice) 
serve as the initial evaluation stage, facilitating rapid assessment 
of novel therapies potency and elucidating osteogenesis mecha-
nisms (30, 80, 82-84). Promising therapies identified in rodent 
models progress to clinically relevant intermediate (rabbit) and 
larger animal models (sheep, dogs, non-human primates - ad-
vanced stage). In rat subcutaneous model, Osteogrow-C induced 
bone formation, with studies indicating that smaller particle sizes 
of rhBMP6 resulted in a higher bone volume (3). Moreover, the 
chemical composition of particles showed no significant impact 
on bone induction at the rat ectopic site (3).
In the subsequent phase of preclinical trials (Figure 1), opti-
mal formulations of Osteogrow-C were selected for evaluation 
in pertinent models of posterolateral spinal fusion (PLF) and 
segmental defects (4, 5, 7). Specifically, chosen Osteogrow-C 
formulations underwent assessment in a rabbit PLF model with 
follow-up periods of 7, 14, and 27 weeks (5). Early observa-
tions indicated that Osteogrow-C facilitated rapid spinal fusion 
between adjacent transverse processes (5). Moreover, extended 
follow-up revealed significant differences in resorption between 
TCP ceramics and biphasic ceramics containing high HA 
proportion. Nonetheless, these differences in residual ceramic 
amounts did not affect the biomechanical properties of the 
newly formed bone for spinal fusion. Building upon the success 
of rabbit PLF studies, the safety and efficacy of Osteogrow-C 
were further validated in sheep PLF models (7). In these stud-
ies, Osteogrow-C with 74-420 µm and 1000-1700 µm ceramic 
particles induced radiographic solid fusion 9 weeks following 
implantation. Moreover, spinal fusion and osseointegration with 
native bone were confirmed at the end of the follow-up period 
(14, 27 and 40 weeks following surgery) by microCT and histo-
logical analyses as well as biomechanical testing (7). Additionally, 
Osteogrow-C underwent evaluation in a rabbit ulnar segmental 
defect model, showcasing superiority over both Osteogrow and 
Infuse. Finally, the safety and efficacy of Osteogrow-C in treating 
large segmental defects were demonstrated in a case involving a 
dog with a significant gunshot defect of the humerus, success-
fully restored through the application of Osteogrow-C implants 
containing TCP ceramics (8).

Figure 1. (1) Evaluation of Osteogrow – C in sheep PLF model. (A) Surgical 
procedure performed at Clinics for Surgery, Orthopedics and Ophthalmology at the 
Faculty of Veterinary Medicine. (B) Macerated specimen showing fused lumbar spinal 
segments 27 weeks after implantation. (C, D) MicroCT 3D reconstruction and (E,F) 
histology sections of newly formed bone between transverse procceses and integrated 
ceramic particles. (2) Evaluation of Osteogrow – C in rabbit PLF model. (A) Macer-
ated specimen showing fused lumbar spinal segments 8 weeks after implantation. 
(B,C) MicroCT sections and (D, E) histology sections through newly induced ectopic 
bone fused with transverse processes achieved by application of different ABGS formu-
lation with synthetic ceramics.
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3. Development of novel antifibrotic therapy 
based on anti-BMP1.3 antibodies
Fibrosis is a key pathogenetic mechanism in many crucial diseas-
es including chronic kidney disease, liver cirrhosis, and ischemic 
heart disease (85, 86). It is defined as the excessive accumulation 
of fibrous connective tissue in diverse organs and tissues. (86). 
Unfortunately, therapeutic interventions for fibrotic ailments 
remain scarce, often accompanied by grim prognoses (86, 87). 
Bone morphogenetic protein 1 (BMP1) was originally isolated 
from bone alongside other BMPs due to its heparin affinity 
but it diverges from the conventional BMP protein family and 
belongs to the astacin/BMP1/tolloid (TLD)-like family of zinc 
metalloproteinases (88-90). Recent advancements have unveiled 
multiple splice variants of BMP1 stemming from the same gene, 
denoted by sequential suffixes ranging from BMP1.1 to BMP1.7 
(91-93). Both BMP1.1 and its isoform BMP1.3 play pivotal 
roles in converting various extracellular matrix (ECM) precursors 
into functional proteins. These include pro-collagens C I–III, 
small leucine-rich proteoglycans (such as decorin and biglycan), 
laminin, collagen VII, and perlecan within the basal membrane 
(94). Additionally, BMP1 isoforms facilitate the maturation of 
BMP antagonist chordin and pro-lysyl oxidases, crucial media-
tors of collagen crosslinking (95, 96). This process is indispen-
sable for the proper assembly of insoluble collagen within the 
ECM and subsequent scar formation. Previously, employing 
liquid chromatography-mass spectrometry we have identified 
the presence of BMP6, GDF15, and the BMP1.3 isoform of the 
Bmp1 gene in plasma samples collected from both healthy indi-
viduals and patients afflicted with chronic kidney disease (12). 
Subsequently, we isolated the endogenous BMP1-3 protein and 
provided evidence of its circulation as an active enzyme (12). 
Due to its role in ECM assembly, BMP1.3 emerged as a 
potential target for the prevention of fibrosis. To test the role 
of BMP1.3 in fibrosis we have conducted studies employing a 
rat model of chronic kidney disease (12). Administration of a 
BMP1.3 neutralizing antibody reduced renal fibrosis (CKD), 
preserved organ function and subsequently increased survival 
of rats with CKD. On the other hand, the administration of re-
combinant BMP1.3 increased renal fibrosis and reduced survival. 
Antifibrotic effects of BMP1.3 neutralizing antibody have been 
subsequently evaluated in rats with carbon tetrachloride (CCl4)-
induced liver fibrosis (10). Results of this study revealed that 
administration of monoclonal BMP1.3 antibodies significantly 
decreased fibrosis and therefore might be a therapeutic solu-
tion for decreasing the progress of liver cirrhosis (10). Recently, 
we investigated BMP1.3 antibodies as the first antibody-based 
treatment for ischemic heart disease (9). Acute myocardial infarc-
tion is an extremely common disease with a high mortality rate 
for which there is currently no sufficiently effective therapeutic 
solution (97, 98). Our studies on rodents revealed that BMP1.3 
inhibition reduces collagen deposition, decreases scar formation, 

and supports cardiomyocyte survival after myocardial infarc-
tion (9). Mechanistically, we have demonstrated that BMP1.3 
monoclonal antibody inhibits the Transforming Growth Factor 
β (TGFβ) pathway. Furthermore, CERRM has explored anti-
BMP1.3 antibodies as a therapy for merosin-deficient congenital 
muscular dystrophy type 1A (MDC1A) mice which is the second 
most prevalent congenital muscular dystrophy (CMD). Dys-
trophy is caused by a mutation in the lama2 gene encoding the 
laminin-a2 protein that contributes to merosin, an important 
protein present in the skeletal muscle basement membrane (99-
102). To evaluate the potential therapeutic effects of antifibrotic 
therapy we evaluated anti-BMP1.3 antibodies in a mouse model 
of congenital muscular dystrophy with mutation in the laminin 
gene (103). The application of BMP1.3 antibodies had a stun-
ning effect on mice with CMD and significantly increased their 
survival, mobility, body mass, and decreased fibrotic muscle area 
(Figure 2) (103). Promising results on the mouse CMD model 
indicate that BMP1.3 inhibition might be an effective therapy 
for patients suffering from this rare but extremely severe dis-
ease. In conclusion, antifibrotic therapy based on anti-BMP1.3 
antibodies represents a potential therapeutic solution for a wide 
range of diseases in which fibrosis is a key pathogenetic mecha-
nism, including but not limited to chronic kidney disease, liver 
cirrhosis, acute myocardial infarction, and congenital muscular 
dystrophy.
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Figure 2. (1) Shematic representation of mechanism of action of BMP1.3 anitibody. The anti-BMP1.3 monoclonal antibody inhibits the enzymatic activity of BMP1.3, produc-
ing multiple therapeutic benefits following a myocardial infarction. Anti-BMP1.3 antibody decreases collagen maturation and it leads to the inhibition of the TGFβ pathway, 
which consequently reduces myofibroblast activation, lowers Lox expression and collagen cross-linking, and enhances the expression of cardioprotective BMPs (9). (2) Effects of anti-
BMP1.3 antibodies as a therapy for merosin-deficient congenital muscular dystrophy type 1A (MDC1A) on DyW mice (103). (A) Probability of survival of DyW -/- mice treated 
with anti-BMP1.3 antibodies. (B) Increase of endpoint mass of treated DyW -/- mice treated with anti-BMP1.3 antibodies. (C) Histology sections of muscles stained by Sirius red 
of DyW +/-, and untreaded and treated DyW -/- mice with anti-BMP1.3 antibody.
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4. Conclusions
The development of regenerative medicine and novel therapeutic 
devices provides hope to improve the life quality of millions of 
patients worldwide. The establishment of the Croatian Center for 
Reproductive and Regenerative Medicine (CERRM) provided 
necessary resources for conducting the state-of-the-art research 
in the field of regenerative medicine and translation of developed 
therapeutic solutions to clinical practice. CERRM members have 
conducted extensive preclinical studies to develop Osteogrow-C, a 
novel osteoinductive device for bone regeneration as well as novel 
anti-BMP1.3 based antifibrotic therapy (3-7, 9, 10, 12, 77, 78, 

81). Moreover, several Osteogrow formulations (Osteogrow, Oste-
ogrow-A) have also been evaluated in Phase I/II clinical trials (56, 
57). All phases of Osteogrow development have been conducted 
or coordinated by the University of Zagreb School of Medicine 
which is a unique example worldwide that an academic institu-
tion has carried out the development of a drug from discovery and 
preclinical research to advanced stages of clinical trials. The afore-
mentioned studies have resulted in more than 30 papers published 
in prestigious scientific papers including Nature Communications, 
Nature Microbiology, and Nature Scientific Reports (Figure 3). 

Figure 3. (A) Cover page of Bone journal representing figure from article „Autologous bone graft substitute containing rhBMP6 within autologous blood coagulum and synthetic 
ceramics of different particle size determines the quantity and structural pattern of bone formed in a rat sucutaneous assay“ (3). (B) Cover page of Journal of Tissue Engineering 
and Regenerative Medicine representing figure from article „Autologous blood coagulum is a physiological carrier for BMP6 to induce new bone formation and promote posterolat-
eral lumbar spine fusion in rabbits“ (2).
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Furthermore, CERRM scientists have presented their work at 
numerous international conferences (Figure 4) including the Tis-
sue Engineering and Regenerative Medicine Society (TERMIS) 
Conference and the European Calcified Tissue Society (ECTS) 
Congress. Moreover, CERRM has significantly contributed to 
the internationalization of research through numerous estab-
lished co-operations with leading scientists in the field and by 
the organization of the 13th International Conference on Bone 
Morphogenetic Proteins in Dubrovnik (October 2022) (18). The 

13th International BMP Congress gathered world-leading ex-
perts in the BMP field who delivered keynote lectures and young 
scientists who had the opportunity to present and discuss their 
work. Finally, an integral part of CERRM’s mission and vision is 
the education of young scientists in the field of regenerative med-
icine. Therefore, CERRM has provided optimal conditions for 
the development and education of young scientists and as part of 
the project, eight students have completed or will soon complete 
their doctoral dissertations (104, 105). 

Figure 4. (A) 13th International BMP Conference held in Dubrovnik and (B) Symposium on Regenerative Medicine held in Opatija organized by CERRM team. (C) Partici-
pants of 13th International BMP Conference held in Dubrovnik.  (D,E,F) CERRM scientists presenting their research at numerous international conferences including the Tissue 
Engineering and Regenerative Medicine Society (TERMIS) Conference and the European Calcified Tissue Society (ECTS) Congress.
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To summarize, the establishment and implementation of CERRM’s 
activities have had a transformative impact on the development of 
regenerative medicine in Croatia, resulting in significant scientific 
discoveries, the development of new therapeutic devices, the educa-
tion of young scientists, and the establishing of new collaboration 
with different institutions and experts in the field. The established 
network of CERRM scientists and institutions will continue their 
endeavor to develop and bring to clinical practice cutting-edge 
therapies for bone regeneration and treatment of fibrosis.
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