
K. Nithiyananthan, V. Ramachandran: EJB based component model for distributed load flow monitoring of multi-area power systems

ENGINEERING MODELLING 15 (2002) 1-4, 63-67 63

SUMMARY

The main objective of this paper is to develop component model architecture for load flow monitoring of multi
- area power systems. A component which is based on a single-server serving multiple clients has been proposed
enabling all neighboring power systems to have simultaneous access to the remote load flow server for obtaining
continuous load flow solutions. An EJB (Enterprise Java Beans) based, distributed environment has been
implemented in such a way that each power system client can access the remote load flow EJB server through JNDI
(Java Naming and Directory Interface) naming service with its load flow data. The server computes the load flow
and it provides the continuous automated load flow solutions to all the registered power system clients. Load flow
EJB server inherently creates a new thread of control for every client request and hence a complete component
based on distributed environment can be achieved.

Key words: client-server model, distributed computing, EJB, load flow monitoring, tunneling.

1. INTRODUCTION

The Power System load flow solution by
conventional client-server architecture is complicated,
memory management is difficult, source code is bulky,
and exception-handling mechanism is not so easy. In the
conventional power system operation and control, it is
assumed that the information required for monitoring
and controlling of power systems is centrally available
and all computations are to be done sequentially at a
single location [1]. With respect to sequential
computation, the server has to be loaded every time for
each client’s request and the time taken to deliver the
load flow solution is also comparatively high [2, 3].

This paper outlines a new approach to develop a
solution for load flow analysis by the way of distributed
computing. An EJB based component model
overcomes the difficulties associated with sequential
computation and it is easy to implement. Enterprise
load flow component models are pluggable, reusable
and can simplify complexity in the areas of
synchronization, scalability, load flow monitoring

UDC 681.3:519.7
Original scientific paper

Received: 01.07.2002.

EJB based component model for
distributed load flow monitoring of

multi-area power systems
Kannan Nithiyananthan and V. Ramachandran

Center for Professional Development Education, Anna University, Chennai 600025, INDIA
e-mail: knithiyananthan@hotmail.com

integrity, networking and distributed object
frameworks. A load flow bean can be developed once
and it can be deployed on multiple platforms without
recompilation or source code modification.

EJB uses built in security facilities for
authentication, authorization and for secure
communication. Hence the distributed load flow
monitoring through the EJB load flow server is safe
and secure.

2. THE PROPOSED EJB ARCHITECTURE

In this proposed model, each power system client
can access the remote load flow EJB server through the
servlets based on data object serialization [3]. The load
flow Server in turn computes and disseminates load flow
solutions to all the power system clients simultaneously
for every specific period of time based on the client’s
requirement. The various entities of proposed EJB
model are a load flow EJB server, the load flow EJB
container that runs with in the server, home objects,

K. Nithiyananthan, V. Ramachandran: EJB based component model for distributed load flow monitoring of multi-area power systems

64 ENGINEERING MODELLING 15 (2002) 1-4, 63-67

Fig. 1 Component model for Load flow Monitoring

2.1 Load flow EJB Server

The load flow EJB server provides an organized
framework or execution environment in which EJB
container can run. It makes available system services
for multiprocessing, load balancing and device access
for EJB containers. The J2EE platform enables a multi
-tiered, distributed application model, the ability to
reuse components, a unified security model, and
flexible transaction control. Power system clients
simultaneously access the load flow EJB server
through JNDI naming service. Based on the client’s
requirement, the server communicates with the remote
client, fetches the present load flow data, computes
load flow solution and provides the result to that
specific client. The process is simultaneously done for
every registered client by generating a separate thread
of control. The purpose of loading the server with load
flow computational skill is that any further
modification to the computation methodology would
reflect appropriate results for all the remote clients.

2.2 Load flow EJB container

The load flow bean component lies inside the load
flow EJB container. The load flow EJB container
provides services such as load flow calculation
management, versioning, scalability, mobility,
persistence, and security to the components it contains.
Since the EJB container handles all of these functions,

development of load flow component is made easy and
EJB container contains the load flow Bean, Home and
Remote interfaces.

2.3 The load flow Bean component

The load flow Bean executes with in a load flow EJB
container, which in turn executes within an EJB Server.
A load flow EJB component is the type of EJB class,
which is most likely to be the load flow computation
logic. All the other classes in the EJB system support
either client access or provide services to EJB
component classes. In this proposed architecture, the
load flow bean is a stateless session bean. A stateless
load flow bean does not maintain a conversional state
for a particular power system client. When a power
system client invokes the method of a load flow bean,
the bean’s instance variable may remain in a particular
state, but only for the duration of the invocation. When
the operation of the method is over, the state is no longer
retained. Stateless session beans can support multiple
clients and it can offer better scalability for load flow
monitoring application for large power system clients.

2.4 Load flow EJB Home and Remote
interface

Load flow EJB component which is the Home
Interface, defines the methods for creating, initializing
and destroying the instances of the server. The home
interface is a contract between a load flow EJB
component class and its container, which defines
construction, destruction, and looks up the EJB
instances. A load flow EJB home interface extends the
interface javax.ejb.EJBHome, which defines base-
level functionality for a home interface and all methods
in this interface must be RMI-compatible. The Remote
Interface lists the load flow method available in the
bean. This EJB object is the client’s view of the
enterprise bean and implements the remote interface.
While the load flow bean defines the remote interface,
the container generates the implementation code for
the corresponding EJB object. Each time the power
system client invokes the EJB object’s method, the EJB
container handles the request before delegating it to
the load flow bean.

2.5 Power System Clients

Power system clients locate the specific load flow
EJB container that contains the load flow bean through
the Java Naming and Directory Interface (JNDI)
service. They make use of the EJB container to invoke
the load flow bean and get a reference to an EJBObject
instance. When the client invokes a method, the

remote EJBObjects, and load flow bean that runs within
EJB containers, power system clients and JNDI
Services. The relationship between the above entities of
the proposed EJB model is shown in Figure 1.

J2EE Server

EJB Container
Remote

Load flow H ome

Load flow Bean Servlet
Power
S ystem

 Client

Power
System
Client

Power
System
Client

JNDI

K. Nithiyananthan, V. Ramachandran: EJB based component model for distributed load flow monitoring of multi-area power systems

ENGINEERING MODELLING 15 (2002) 1-4, 63-67 65

EJBObject instance receives the request and delegates
it to the corresponding bean instance and also provides
necessary wrapping functionality. In this proposed
method, load flow monitoring by each client is
achieved through an applet to servlet to EJB
communication for every specific period of time. The
applet to servlet communication is enabled via HTTP
tunneling. The power system client applet opens a
URL connection to the servlet, passing it the name and
the port number of the remote host that can upload the
load flow data to the EJB load flow server. The proxy
servlet transforms objects into a stream of bytes (Byte
Array Output Stream) which is sent as a load flow
response, and reconstituted at the power system client
at regular time intervals.

2.6 Java Naming and Directory Interface
Service

Java Naming and Directory Interface (JNDI) adds
value to load flow bean deployment by providing
standard interface for power system clients. Naming
service in JNDI is the entity that associates names with
objects and it provides a facility to find an object based
on its name. Directory service in JNDI is the naming
service that has been extended and enhanced to provide
directory object operations for manipulating attributes.
JNDI is a unified system to access all sorts of directory
service information such as security credentials,
machine configurations and network address of the
power system clients. JNDI is extensible and it insulates
the application from protocols and from implementation
details. The greatest use of JNDI service is to locate load
flow beans’ home objects. To acquire the reference of
the load flow home object, the environment properties
files or system files provide the details of the JNDI
service provider to be used in the load flow bean
deployment. The client then uses the environment
properties employed in creating the initial context
factory to look up the load flow object stored in the
directory.

3. EJB DATA FLOW MODEL

EJB data flow model is formed according to the
Ref. [4]. Power system clients use the Java Naming
and Directory Interface to lookup load flow objects
over a network. A remote power system client accesses
the load flow bean through its remote and home
interfaces. When the power system client performs a
JNDI lookup for a home object, EJB container might
use JNDI to return a RMI remote stub. The Remote
stub is a proxy for the load flow home object, which is
located elsewhere in the network and once the power
system client has a stub, it can invoke a load flow
method on the home object through the remote stub

Fig. 2 Invoking a load flow method on
the remote EJB Server

4. LOAD FLOW BEAN LIFE CYCLE

The following steps describe the life cycle of a load
flow bean instance as shown in Figure 3 [4]:
- A stateless load flow bean instance’s life starts

when the container invokes newInstance() on the
load flow bean class to create a new instance and
the container calls setSession-Context() followed
by ejbCreate() on the instance. The container can
perform the instance creation at any time and there
is no relationship to a client’s invocation of the
create() method.

- The session bean instance is now ready to delegate
a load flow method call from any power system
client.

- When the load flow bean is no longer needed,
container invokes the ejb Remove(). This ends the
life of the stateless load flow bean instance.

object. The EJB object that implements the remote and
home interfaces is accessible from a client (the servlet
acts as an EJB client) through the standard RMI APIs.
The servlet communicates with the remote EJB
container thus requesting that the load flow method
and then it communicates with the load flow bean as
shown in Figure 2. The load flow EJB container
executes the load flow bean and sends the load flow
solution back to each power system client via the
servlet at specific intervals.

Fig. 3 Life cycle of EJB load flow Bean

 EJB Container/Server

Receive
Home
Object
Reference

Home Object

 EJB Object

Load
flow
Bean

Power System
Client

 (Applet)

JNDI

Create a new
EJB object Home Interface

Return
EJB Object
Reference

Invoke
Load flow
Method

Servlet

Return
Home Object
Reference

Create EJB
object

Delegate request to bean

Remote
Interface

D o es n o t

E x ist

L o a d flo w
m eth o d
R ea d y

N ew In sta n ce ()
S e tS e ssionC on te x t ()
e jbC rea te ()

E JB R e m ove ()

K. Nithiyananthan, V. Ramachandran: EJB based component model for distributed load flow monitoring of multi-area power systems

66 ENGINEERING MODELLING 15 (2002) 1-4, 63-67

5. DEPLOYING PROCEDURE TO BUILD
THE PROPOSED LOAD FLOW
MONITORING APPLICATION

In order to deploy the EJB component into the load
flow server, the following steps are to be followed:

1. Start the J2EE deploytool window and select the
new application.

2. Choose the corresponding enterprise archive
file and type the application display name.

3. Start the New Enterprise wizard to package the
load flow bean and type the JAR display name.

4. Add the loadflowint.class, loadflowHome.class
and loadflow EJB.class to JAR dialog box.

5. In the General dialog box, choose the bean type
as stateless session bean and choose appropriate
interfaces in the Enterprise Bean class and enter
the name of the Enterprise bean.

6. Open the deploy wizard and give the full path
of client’s jar file name which contains the stub
classes and it will enable remote access to the
load flow bean.

7. Enter the JNDI name and WAR context root and
deploy the load flow bean.

6. RESULT

A complete component model for load flow
monitoring by EJB based n-tier architecture has been
implemented in Windows NT based HP workstations
connected in an Ethernet LAN. The results are shown
in a client applet as given in Figure 4.

EJB container runs the load flow bean automatically
and the load flow solution is calculated and the result
is sent back to the respective power system client.
Using this approach, different power system clients can
monitor continuous updated load flow solutions at
regular time intervals.

7. CONCLUSION

An effective distributed component model has been
developed to monitor the load flow of multi area power
systems. This model attempts to overcome the
overheads associated with sequential power system
load flow computation. Although client-server
architecture for load flow solution is well established,
this paper emphasizes a unique methodology based on
Enterprise Java Beans to serve a large number of
clients in a distributed power system environment,
across various platforms based on communication
between virtual machines. A practical implementation
of this approach suggested in this paper was assessed
based on 6, 9, 10 and 13 bus sample systems.
Accordingly the proposed model can be implemented
for a large power system network spread over a large
geographical area.

8. REFERENCES

[1] G. Bandyopandhyay, I. Senguptha and T.N. Saha,
Use of client-server model in power system load
flow computation, IE(I) Journal-Electrical, Vol.
79, pp. 199-203, 1999 .

[2] B. Qiu and H.B. Gooi, Web-based SCADA
display systems (WSDS) for access via Internet,
IEEE Transactions on Power Systems, Vol. 15,
No. 2, 2000.

[3] G.P. Azevedo, B. Feijo and M. Costa, Control
centers evolve with agent technology, IEEE
Transactions on Computer Applications in
Power, pp. 48-53, 2000.

[4] E. Roman, Mastering Enterprise Java Beans and
the Java 2 Platform, Enterprise Edition, Wiley
Computer Publishing, John Wiley & Sons, 2000.

[5] Enterprise Java BeansTM Specifications, version
1.0, http://java.sun.com/products/ejb/docs10.html.

[6] Enterprise Java Beans - Part 2, http://
members.tripod.com/gsraj/ejb/chapter/ejb-
2.html.

Fig. 4 Power System Load flow monitoring Applet

The above applet shows the load flow solution for
a specific 10-bus power system client. When each
power system client applet is loaded, it invokes the
servlet via http tunneling and in turn accesses the load
flow bean by its JNDI name, Web Context root. The

K. Nithiyananthan, V. Ramachandran: EJB based component model for distributed load flow monitoring of multi-area power systems

ENGINEERING MODELLING 15 (2002) 1-4, 63-67 67

EJB ZASNOVANI KOMPONENTNI MODEL ZA MONITORING DISTRIBUIRANOG TOKA
PUNJENJA VIŠEPOVRŠINSKIH ENERGETSKIH SUSTAVA

SAŽETAK

Osnovni cilj ovog rada je razviti arhitekturu komponentnog modela za monitoring toka punjenja vi�epovr�inskih
energetskih sustava. Predla�e se komponenta bazirana na jednom serveru koji opslu�uje vi�e klijenata
omogućavajući svim susjednim energetskim sustavima simultani pristup udaljenom serveru toka punjenja za
dobivanje stalnih rje�enja toka punjenja. Zasnovana na EJB-u (Enterprise Java Beans), distribuirana okolina
napravljena je na način da svaki klijent energetskog sustava mo�e pristupiti udaljenom EJB serveru toka punjenja
preko JNDI (Java Naming and Directory Interface) imeničkog servisa s podacima o toku punjenja. Server
izračunava tok punjenja i daje stalna automatizirana rje�enja toka punjenja svim registriranim klijentima
energetskih sustava. EJB server toka punjenja omogućava kontrolu zahtjeva svakog klijenta, stoga se mo�e postići
potpuna komponenta zasnovana na distribuiranoj okolini.

Ključne riječi: klijent-server model, distribuirano proračunavanje, EJB, monitoring toka punjenja, prijenos
podataka.

