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SUMMARY

This paper presents a procedure of numerical modeling of two-dimensional engineering problems using functions
Fup,(x.y). They are finite, infinitely derivable functions which belong to a class of Rvachev's basis functions Ry The
properties of these functions enable hierarchic approach to expansion of the numerical solution base either in the
entire domain or its segments.

The approximate solution of the problem is assumed in the form of a linear combination of basis functions
Fup,(x,y). Instead of traditional discretization into finite elements, here, the entire domain can be analyzed at once,
as one fragment. A system of equations is formed by the collocation method in which differential equation of the
problem is satisfied in collocation points of a closed domain while boundary conditions are satisfied exactly at the
domain boundary. In such a way, the required accuracy of the approximate solution is obtained simply by increasing
the number of basis functions. The values of the main solution function and all the values derived from the main
solution are calculated in the same points since numerical integration is avoided.

This method is tested on the torsion of prismatic bars, plane states and thin plate bending problems. The results
of the analyses are compared with the existing exact and relevant numerical solutions. It can be concluded that the
fragment collocation method using basis functions Fup,(x,y) gives excellent results for elaborated problems either

with regard to accuracy or continuity of all fields derived from approximate solutions.

Key words: approximate solution, Rvachev's basis functions, collocation method, fragment.

1. INTRODUCTION

This paper presents a new approach to numerical
modeling in which the whole domain is considered at
once. Namely, in engineering practice, most of the prob-
lems are solved in domains the geometry of which can be
described by elementary functions. The idea consists of
the following: - the geometry of the domain shall be
described in the most adequate way independently of the
approximate solution base; - the entire domain shall be
considered at once as one or several fragments; - an ar-
bitrarily accurate numerical solution shall be obtained by
arbitrary increase in the number of basis functions on the
fragment; - simultaneously, in the same points the values
ofthe solution functionare calculated, e.g. displacements,
and all the fields derived from them such as stresses,
bending moments, transversal forces, which are gener-
ally more interesting than the solution function itself; - all
fields derived from the solution function shall be ex-
pressed by continuous functions on the domain; - an in-
crease in accuracy of approximate solution is enabled by
hierarchic increase of the basis function number on the

fragment or part of the fragment without intrusion into
the rest of the domain. In order to fulfil the set goals, a
good selection of basis functions shall be done.

Functions, which are implemented in the numerical
analyses in this paper, are the Fup,(x,y) basis functions.
Theybelongtoaclass offinite, infinitely derivable functions
[1]named after their authors Rvachev’s basis functions or,
in short, R The existing knowledge on functions of Ry
class is systemized in Ref. [2], basis functions are
transformed into numerically applicable form, and the first
steps for their use in practice are realized. These basis
functions have good approximation properties as well as
a very important property of universality, which enables
hierarchic expansion of approximate solution base on the
fragment.

Because of infinite derivability of the functions
Fup,(x,y), the derivatives of all orders, required by
differential equation and boundary conditions, can be
used directly in the numerical procedure. Therefore, the
collocationmethod has been applied in the development
of numerical models. The collocation method enables
efficient, economical and simple procedure. Atthe same
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time, numerical integration is avoided. For purposes of
briefness, Fup Fragment Collocation Method will be
further referred to as FFCM.

2. FUNCTIONS Fup,(x,y)

Functions Fup,(x) belong to a class of Rvachev’s
basis functions R,; which are determined as finite
solutions of non-homogeneous differential-functional
equations [2]. They belong to aspace containing algebraic
polynomialsi.e. algebraic polynomials can be accurately
described by linear combinations of mutually displaced
basis functions Fup,(x). Index n denotes the greatest
degree ofapolynomial which can be expressed accurately
in the form of a linear combination of basis functions
obtained by displacement of function Fup,(x) by a
characteristic interval 27*. When n=0:

Fupy(x)=up(x) (1
where function up(x) is the basis function with the
support /-1,1] and characteristic interval Ax=20=1[2].

The function Fup,,(x) values are calculated using a linear
combination of displaced up(x) functions:
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where coefficients Cy(n) are given in Ref. [2]. Function
Fup,(x) support is determined according to:

supp Fup,(x)= [_ (n+2)27n71 - (n+2)27n71] 3)

The basis function for numerical analyses of two
dimensional problems is obtained as a Cartesian product
of functions (2) by each coordinate axis:

Fup,(x,y)= Fup,(x)- Fup,(y) (4)

In solving the given problem by the collocation
method i.e. solving the partial differential equation of
n-th order and satisfying kinematic and dynamic
boundary conditions, the values ofall partial derivatives
ofthe function Fup,,(x,y) shall be known, with n-th order
included. The calculation of all required derivatives of
function Fup, (x,y) can be written in an algorithm form
according to Eq. (4). Figure 1 gives an axonometric
presentation of the basis function Fup,(x,y) and its partial
derivatives.
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3. FRAGMENT COLLOCATION METHOD

The fragment is the whole observed domain or its
significant portion, in asimilar sense as amacro-element
in the Finite Element Method. However, unlike the
macro-element, the fragment does not need to be
discretised into smaller segments. Instead, the number
of basis functions is arbitrarily increased. In order to
obtain smooth solutions on the entire domain by the
fragment method with basis functions Fup,(x,y), the
collocation method in a point is applied here.

An approximate solution of differential equation:

Lu(x,y)=f(x,y) (5)
with respective boundary conditions is sought by the
collocation method in the form of a linear combination:

n m
un ()= > @ pii(%y) (6)
i=1 j=I
by solving linear system of equations of (n-m)x (n-m)
dimension:

n m
L”N(xkfyl)zz Z a;; Lo j(xp.y1) = f(x. 1),

i=1 j=I
(7
I1<k<n, I<I<m
where L is the differential operator, @, are basis
functions, and (x,,y,), ..., (x,,»,,) are collocation points.
Function uy(x,y) belongs to a N-dimensional subspace
Xy, which represents the set of all linear combinations
of basis functions {(pl-,j.' 1<i<n, 1<5j<m}. In order to
obtain the collocation matrix it is not necessary to
perform the numerical integration but only to calculate
L(pl.j(xk,yj) images of the basis functions under the
operator L. Therefore, the collocation method is an
efficient alternative procedure for solving partial
differential equations.

It is known that the functionality of the collocation
method depends on the selection of basis functions ¢;;
and collocation points (x;y;). Prenter [3] proved the
stability of the numerical procedure with spline functions
when collocation is performed in the so-called natural
knots. He developed proofs for the existence and
uniformity of the solution and error estimates. Since
functions Fup,,(x,y) canberegarded as splines ofan infinite
degree, it can be shown that for them it is also optimal to
perform the collocation in natural knots of the basis
functions, i.e. vertices of the basis functions situated in a
closed domain such as for the base in x-direction formed
by functions Fup,(x) shown in Figure 2.

vertices of basis functions

\ \ \ \ \ \ \
-1 0 1 2 3 4 5

natural knots - collocation points

Fig. 2 Collocation points of the base formed by
Sfunctions Fup(x)

This selection of the collocation points provides the
simplest numerical procedure; the banded collocation
matrix is obtained, which is diagonally dominant and
thus well conditioned [4]. This selection also implies
equidistance of the collocation points in each coordinate
direction.

Taking into consideration the fact that functions
Fup,(t) are obtained as a linear combination of displaced
functions up(t), according to Eq. (2), the collocation
method error in solving 1D problems can be estimated
using the theorem developed by Rvachev [5] for the
estimation of an error of approximation of the given

function f(t)e C"[a,b], ne N, using the functions
p(t)eCy, supp ¢ = [-1,1], for each >0 for which

exists c?, in the form:

fW‘ZC? (0(2—2[”) Cla.5] < Ch”co(f(”),h)
J
3

In expression (8), ¢(¢) =up(t), C is the constant, 4 is
the distance between adjacent collocation points, while
o(f™,h) is the measure of smoothness of the given
function f{?) and its first n derivatives in reference to 4
value.

4. APPLICATIONS

In this paper FFCM has been applied in the analyses
of different 2D problems. The numerical model for the
analysis of a prismatic bar torsion has been developed.
The same problem has been used to illustrate the method
of hierarchic expansion of the dimension of basis
functions Fup,(x,y) vector space. Furthermore, the
numerical models for the analyses of the plane states
and thin plate bending have also been developed.

4.1 Torsion of prismatic bars

For an isotropic material, the torsion problem is
reduced to solving the Poisson’s equation:

’d(x,y) ’D(x,y)
P + 2 -
with boundary condition:

@|.=0 (10)

where @(x,y) is the stress function, G is the shear
modulus, while #}is the angle of twist per unit length of
abar. Since the torsion problem is described by a partial
differential equation of 20d order, functions Fup,(x,y)
belonging to a class of R functions are selected as basis
functions (Figure 1). The approximate solution base is
formed on the unit virtual domain defined in the system
(&) according to a scheme shown in Figure 3.

-2G 9 )
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Fig. 3 Distribution of basis functions on the unit virtual domain

Assuming that the cross-section of a bar can be
contained within one rectangular fragment of a xb
dimensions, the differential equation of the problem (9)
and boundary condition (10) can be written as:

1 dolg.y) 1 Pl

7 7 t.7 7 =264

> o&2 bl o (11)
0<é<1,0<n<l

D(En)=0 for E=0E=1n=0n=1 (12)

The collocation is performed in (Ngt+1)X(Nyp+1)
equidistant points, see Figure 3, while the basis functions
with the vertex outside the domain are retained so that
the basis functions set can be complete. Thus, the
governing equation (11) is satisfied in all collocation
points of the domain except in the corners; the boundary
condition (12) is satisfied in all collocation points of the
domain sides while three more conditional equations
are satisfied in the corners according to Figure 4. The
boundary conditions are therefore exactly satisfied on
the domain boundary and not only discretely in
collocation points.
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Fig. 4 Designations of domain sides and
boundary conditions in corners

Applying the FFCM method to Egs. (11) and (12)
andthose in Figure 4, the following collocation equations
are obtained:
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— for equation (11) within the domain —

R JGZUGU) 1 Fylen))
I BT LU
=1 j=— n (13)
— for equation (12) on the sides —
N:+1 N,+I
z ZCU-E].(.»:,;;):O (14)
i=—1 j=I

— for equations given in Figure 4 in corners —

Nz W PR
2 2
i=—1 j= g
N:+1 N,+1 ] (5 77)
> Y Lo (15)
b on
i=—1 j=-1
NZ” NZ” o'Fy(&m) _
= ]771 a b2 ] 8528772

In the aforementioned equations Ng and N,, denote
a number of partitions of a unit domain in directions &
and 1, respectively;iandj are counters of basis functions
in &i.e. n directions, while F; il & 1) is the basis function
Fup (& n) with the vertex in pomt (i,j). Depending on
the number of partitions Ng and Ny, the function
Fup,(&n) support is condensed to (4AEx4AN);
AG=1/Ng, An=I/N,,. Partial derivatives values of the
basis functions in Eqgs. (13) to (15) are determined
according to the following expression:

a(m+n)];;j(§’77) :( i Jm ( ] Jn |
o&E™on" 44& 4An (16)

Therefore, the solution of the torsion problem on a
rectangular domain or domains which can be contained
within one rectangular fragment, such as shown in Figure
5, is reduced to solving the system of Eqs. (13)-(14)-(15)
of (N, et3 ) X(Nyy+3) equations. The matrix of the system is
not symmetrical because the system consists of
(N, et )X(Nyt 1) conditional equations inthe domain while
the remaining equations are boundary conditions at the
domain boundary. Since the function Fup,(& 1) is a finite
function with the support consisting of 4x4 characteristic
intervals, the value ofthe solution function in the collocation
point (i,j) can be expressed by a linear combination of only
9 basis functions (see Fig. 3) in the following form:

i+1 J+I
Q(giyﬂj): > ZCkI'sz(fiﬂj) (17)
k=iel I=j-1

while the values of all other basis functions in point (7,j)
are equal to zero. In such a way, the banded matrix of the
system is obtained.
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Fig. 5 Different cross-section shapes within rectangular fragment

By solving the system of Eqs. (13)-(14)-(15), the
coefficients ofalinear combination of the basis functions
Cl-j are obtained, which can be used to calculate the
stress function values @ from Eq. (17) in any point of the
cross-section. The shear stress components 7,.=J®/dy;
7,,=—0®/dx, are calculated with the same accuracy as
the main solution using the following expressions:

N +1 N,7+I
1 577)
)= Y bCU
i=—1 j=-1
N+l N, +1 (18)
i i I 577)
i=—1 ]_—I

The torsional rigidity of the bar for =/ is the double
volume under the surface of the stress function @:

Ct=2'”@dxdy (19)

When the collocation method is applied, the integral
(19) can be written in the form of a sum:

N,=1 N,—1 &+AE 1,447

c,=2% Z [@(&n)-det-d&-an

=0 j=0 &

Ty (20)

where det J = +/a- b is the determinant of the Jacobian
matrix, while each integral /; ;), see Figure 6, is
numerically determined in the form:

i+2  j+2 E+AE n;+A7
lij) = Z Z Chu I Fy(&,n) detJ dédn
k=i—1 I=j-1 £ ",

@n

The values of function Fup,(& n) integral in Eq. (21)
are determined by the Cartesian product of functions
Fup,(&) and Fup,(n) integrals given in Refs. [2], [4].

na
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Fig. 6 Scheme for Eq. (21)

4.1.1 Numerical example: analyses using the basis
functions Fup,(&n)

The torsion of a bar with a square cross-section,
made of isotropic material, shown in Figure 7,1s analyzed
by FFCM using the basis functions Fup,(& n). The
numerical results are obtained with a different density
of collocation points within the domain and shown
graphically in Figure 8 complete with the exact solution.
An equal number of partitions in each coordinate
direction is selected i.e. Ng = Ny = N.

Shear modulus: G=1.0

Angle of twist: 3$=1.0

Tmax

p-x3

Fig. 7 Square cross-section

Convergence diagrams given in Figure 8 show that
the stress function value @ which represents the main
solution of the problem, the torsional rigidity which
represents the integral value in the cross-section and the
maximum shear stress in the point at the boundary have
an equally good convergence towards the exact solution.

a b
) [oN} ) ' Tinax
1440 15.2 7.0 -
1430 |
15.0 6.9 |
1420 |
14.8 - 6.8
1410 \\ ™ N
- \ : { EXACT SOLUTION: 14.73427 ;
EXACT SOLUTION: 1405.77015 N 1 N EXACT SOLUTION: 6753145 |\,
1400 £ ‘ e 146 - 67 o
0410 20 30 50 100 0410 20 30 100 0410 20 30 50 100

Fig. 8 Convergence of a numerical solution: a) Torsional rigidity; b) Stress function in the middle; ¢) Maximum shear stress
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4.1.2 Hierarchic expansion of an approximate
solution base

Instead of an increase in the number of basis functions
atthe same level, the dimension of a vector space can be
expanded hierarchically [2], [4].

When NgxN, partitions on one fragment are selected
ie. (N, et3 )X(Nyt3) the basis functions are mutually
displaced by A& in one and An in the other coordinate
direction, as shown in Figure 3, then the selected base is
at the “zero level” of approximation. The hierarchic
expansion of the vector space dimension is obtained by
adding displaced and compressed basis functions. At the
first level, functions Fup,(& n) are added, displaced by
A&/2; An/2 in reference to the functions of the zero level
and compressed to a length of the support (2A&)x(2An).
Atthesecondlevel, the added basis functions are displaced
by AE/4; An/4 in reference to the “zero level” with the
length of the support (AéxAn), which is 1/4 of the length
of'the basis functions support at the zero level. At higher
levels of approximation, the base is built by analogy.
Figure 9 shows the distribution of collocation points, in
which the vertices of the basis functions are at the zero,
firstand second levels of approximation. The compression
of the functions to //2 of the support from the preceding
level is the consequence of the basic properties of the
basis functions [2].

ZERO LEVEL THE FIRST LEVEL THE SECOND LEVEL

SRR SREN
janesesus)

IH*(} %H'

. o RERER R
o T

=

AE A2 A
+— +——
@ - collocation points of 0 - collocation points of
zero level the first level

X - collocation points of
the second level

Fig. 9 Hierarchic expansion of a vector space of
Sfunctions Fup,(&n)

The numerical tests [4] for different densities of
collocation points showed that it is sufficient to satisfy
the boundary conditions with the basis functions of the
zero level while the basis functions of higher levels
correctthe solution. It means that, for the torsion problem,
only the collocation form of the differential equation of
the problem will be changed in the system of Egs. (13)-
(14)-(15). For the second level of approximatione.g., in
the collocation point within the domain, the following
equation will be written instead of Eq. (13):

N.+1 N, +1

3N [ ,,577) 162Ey(§,77)j+

2
i=1 j=-1I b 877

I ”I 2 2 ..
3 D,J,[ ;0 F,,,(§ n, 10 F,,,,(M)J .

i=1 j=1 a o b2 on’

=-2G$

2 2
+Z Z%[ 10, En) 1 Ry ()

i=1 j,=1 o0&’ b’ oy’
(22)
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where coefficients Cj; belong to the basis functions of
the zero level, D; ; to the basis functions of the first
level while E;, belong to the basis functions of the
second level. The unknown coefficients of the linear
combination are determined by solving the system of
equations, which can be written in the matrix form using

the blocks:

ZERO ~ IST  OND
LEVEL ~ LEVEL LEVEL

o A4 4Bl Ac) [c; | (R4
LEVEL — | |
S S P g e
AT | BA| BB BC |\Dy; (=\RB{ (23)
SN T S I 0 R
ML | cA1CBCC RC

b2

The procedure of hierarchic expansion of an
approximate solution base is appropriate for computer
programming. It can be applied to the entire given domain
or only to a part of the domain e.g. at concentrated load
locations, for singularities such as concave breaks in the
edge where the stress concentration occurs, or in the
plastification zones in elasto-plastic analyses [4].

Example

The effect of hierarchic increase in anumber of basis
functions will be illustrated on the example of torsion of
a bar with a square cross-section analyzed in Section
4.1.1. Figure 10 shows the convergence diagrams of the
numerical solution for torsional rigidity value when the
number of basis functions increases at the zero level
only, and when the approximate solution base is
expanded with basis functions of the first and second
level. It can be observed that much better numerical
solution is obtained with the same total number of basis
functions, ifa hierarchic approach is applied than when
all basis functions belong to a zero level.

— ——- BASIS FUNCTIONS OF ZERO LEVEL

BASIS FUNCTIONS OF THE ZERO,
FIRST AND SECOND LEVELS

————

EXACT SOLUTION: 1405.77015

1400 T T T T -
0 250 500 750 1000
number of basis functions

Fig. 10 Diagrams of convergence of torsional rigidity value
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4.1.3 Example: analyses using basis functions

Fup4(§, n)

The essence of the Fup Fragment Collocation
Method is thatthe density of the basis functions increases
on one fragment until an arbitrarily exact solution is
obtained. Greater accuracy of a numerical solution can
be obtained by an increase in the number of the same
basis functions in the given domain, as illustrated in
Section4.1.1. The procedure of hierarchic expansion of
the approximate solution base is also possible, as
described in Section 4.1.2. FFCM also provides the
possibility to select degree n of the basis functions
Fup,(&n) insolving the given problem. Thus, for solving
the torsion problem (9)-(10), the basis functions
Fup (& n) are selected. However, the basis functions of
higher degree can be selected e.g. functions Fup 4(&, 1)
[2], [4], the linear combination of which can be used to
describe exactly the polynomial of the 4-th degree on a
characteristic interval 2—4. As an illustration, the same
square cross-section as in Section4.1.1 is analyzed here
using the functions Fup,(&n). The comparison of
solutions is given in Table 1.

Table 1. Torsion of a bar with a square cross-section

Fup,(&n) Fup(&mn)

Number of | Stress Torsional || Number of | ~ Stress Torsional
coll. points | function rigidity coll. points | function rigidity

N DxNFD)| Do G N+ DN+ )| Prax G
N=4 15.1826 | 1442.16 N=4 14.7449 | 1406.88
N=8 14.8532 | 1417.49 N=8 14.7351 | 1405.90
N=20 14.7536 | 1407.79 N=16 14.7343 | 1405.78

N=100 | 14.7350 | 1405.85 N=32 14.7343 | 1405.77

Exact Exact
sontion | 147343 | 140577 || " | 14.7343 | 1405.77

4.1.4 Analyses of curvilinear domains using
FFCM

FFCM can be applied successfully to curvilinear
domains, too. The surface of the given domain will be
described so that the mapping matrix and all required
partial derivatives of elements of the inverse mapping
matrix can be found in each point of the domain. It is
important that the surface can be easily and accurately
divided into mutually equal partitions in each coordinate
direction in order to fulfill the requirement of
equidistance of collocation points on the fragment.

The parametric form is extremely adequate for the
description of surfaces and, using the Coons formulation,
[6] and [4], can be written in the following form:

0(0,1)
o(l,n)

0(0,0) Q(OJ)} {1 - 77}
n

e =[(1-¢) 5]{ }+[Q(§,0) Q(;zz)]rn”}

(24)

where Q(0,0), Q(0,1), Q(1,0) and Q(1,1) are position
vectors at the four corners while Q(€,0), (&, 1), Q(0,1)
and Q(1,n) are four boundary curves, see Figure 11.
Changing the parameters & and 17 in equal steps on the
interval /0, 1],using Eq. (24), the equidistant collocation
points are obtained within the given domain.

Fig. 11 A Coons surface patch

Thus, for curvilinear domains, the partial differential
equation of the torsion problem (9) has the following
collocation form:

Ne+1 N,+1 52F~ 52F~
> CU{FXX ”(f’")+FXE ”(5’77)+
=1 j=—1I o5 0gon
°F, (&, oF (&, OFy (&,
+ FEE ”(f")+FX ”(§U)+FE G =-2G39
on 2 on
(25)

where:

m:(gff{gfy ,. FEEz(ggt[g;f

FXE=2.| 2601, 9500
Ox Ox 0Oy Oy

ezld), olE) e 15) o 15)

ox o0& ox On oy o0& oy 07

oiot) orler) oed5) o0 5)
ppo9¢ \ox) on \ox) 06 \%) on \%

ox o0& ox On oy 0¢& dy 0On
(26)

Partial derivatives of elements of the inverse mapping
matrix in Eq. (26) are determined by derivation of
parametric equations of a surface (24), while partial
derivatives of basis functions are determined according
to Eq. (16).
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Example

The torsion of a bar with a cross-section in the form
of an eccentric ring, shown in Figure 12, is analyzed by
the FFCM. An analytic solution exists for this shape of
a cross-section [7].

The entire cross-section is considered as one
fragment. The real domain is mapped into a virtual unit
domain using the expression (24) where the sides of the
fragment (1) and (2) (see Figure 13) are described using
the parametric equations of a circle [4]; sides (3) and (4)
overlap in a real domain.

y A

rp =12
n=4
e=6
=2 X3=—4

Xy

Cop =8 Xi=6

G=10
$=10

Fig. 12 Cross-section geometry - eccentric ring

YA
@ I

@

% @ @

Fig. 13 Mapping of the given fragment from real into
virtual unit domain

The convergence of the torsional rigidity value C;
and the stress function value @ on the inner boundary
I';, with an increase in the number of collocation points,
is given in Table 2.
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Table 2. Comparison of the results for an eccentric ring

Num.ber of . -, C - -
collocation points 19} ‘ r ) C
(N{"])X(N,ﬁ']) ! exact ! Ctexact

Ne=10,N,=20 41.387 | 532 % | 28345.72 | 2.57 %

Ne=20, N,=40 40.279 | 2.50 % | 27976.24 | 1.24 %

N:=50,N,=100 || 39.649 | 090 % | 27768.75 | 0.48 %

N:~=100, N,=200 || 39.445 | 0.38 % | 27701.30 | 0.24 %

Exact solution 39.297 _ 27634.63 —
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The results of numerical analyses are presented
graphically in Figure 14.
4.2 Plane problems

The system of partial differential equations of the
equilibrium:

6a_xx 4 ari + Fx =0
Ox oy
5 5 (27)
T o
A F,=0
ox oy
using the behaviour law written in a matrix form:
[ ) ou
o 1 v 0 —
XX ax
Et ov
o =——1|v I 0 |-y — 28
wl =12 o (28)
] -
Ty 0 0 LZv| |2,
L 2 | |oy ox

can be transformed into an analogue system of
differential equations expressed through displacements
uand v:

W
N
N
=
xR

N
D
S

N\
N
R

N
Nk
N
\

N
\

Fig. 14 a) Stress function surface ®@(x,y); b) Isolines of stress function @(x,y)
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o%u L 1oy o’u  1+v v .\ 1-v?

+ F. =0
ox? 2 o’ 2 oxoy Et
2 ) 2 2
6;+1 v@; I1+v 0°u IvaZO
oy 2 ox 2 OxOy Et
(29)

In expressions (27), (28) and (29), £ is Young’s
modulus, v is Poisson’s coefficient, ¢ is thickness of the
model while F,and F, are the components of volumetric
forces.

Figure 15 shows the plane stress model with boundary
conditions on the supported, free and loaded part of the
boundary.

yv 4
c° ‘1‘ =0
BOUNDARY 1) u;v\rl =0 2) . 2
CONDITIONS : G ‘r =p(s), sely
3

Fig. 15 Plane stress model

By the collocation method, the system of equations
is solved directly. The basis functions Fup,(& 1) will be
used, similarly as for the torsion problem. Unlike the
torsion, there are two degrees of freedom, which means
that for each basis function two coefficients of a linear
combination must be found. Therefore, an approximate
solution of the problem (29) is sought in the form of
linear combinations:

N§+I N,7+I

ﬁ(x,y)ZZ ZCzj'sz(fﬂ)
i=—1 j=—I (30)
N:+1 N,+1

V(xy)= Y, D Dy-Fy(én)

i=——1 j=—1I

where F;(§n) is the basis function Fup,(& 1) with the
vertex in the collocation point (i,j). The unknown
coefficients C;; and D;; are determined by solving the
system consisting of 2X/(Ngt+3)X(Ny+3)] collocation
equations.

Example

FFCM is applied to analyses of a cantilever wall
beam with the concentrated load P as shown in Figure
16. In accordance with the known analytic solution [§],
it is assumed that force P is distributed at the end cross-
sectionx=/, according to the same parabolic law for the

variation of shear stresses 7,,.. The presented support is
assumed because the theoretically required assumptions
on complete clamping can not be fulfilled completely in
reality.

p
Txy 4th®

Oxx
440, I
25 %
b
b=25(m)
X t=0.4(m)
b P
a0, I e

(v* -b%)

y Ty =3

E =1210" (kN/m?)
v=03
-180

180
P =240 kN

" 4
¥ +

Fig. 16 Cantilever loaded with a force P

In the numerical model, using the FFCM, the entire
cantilever is considered as one fragment. All the given
kinematic and dynamic boundary conditions are set on
the sides of the domain and its corners according to
Figure 17.

u=0 ; ox=+1440
oy=0 ; Ty=0 Ox =03 0y =0
66W:0~@:0~ acwzo;ﬂzo;
Ox Toox ! ox ox
0 _g76; O _ 144 P _0; 2 57560y
5% oy oy 5%
A2
egs. (29) ; Ty =0 CA Tﬁxy o
y oy=0; oxoy
u=0;v=0 Ty =0
ox=0 ; ‘
Ty = -180
y=b
x=0 egs. (29);
egs. (29) ; P———> ox=0;
=576y L] & x=l | |uy=28.8 (y>- 6.25)
Ty = 28.8 (y’- 6.25) y=‘—b
egs. (29) ; o =0; 0y =0
U=0 ; ox=-1440 as- (29 ; > 4
_ X _ oy=0; By . _g
fiyy—o vATw—O Ty =0 X Toox
Oy _g- T _g-
x0T O B _o, %y _576.y
oy oy
%:576;ﬁ:—144 “0- % g
EY oy Ty =05 S

Fig. 17 Conditional equations in collocation points at the
domain boundary

In order to evaluate the numerical solution obtained
by the FFCM, the selected example has been analyzed
using the Finite Element Method. Isoparametric 8-node
finite elements have been used with the discretization of
16x16 finite elements. The comparison of the obtained
numerical solutions with the analytical ones is given in
Table 3.

Table 3. Cantilever wall beam - comparison of results

Displacements in the point

METHOD x=Ly=-b

u v
FFCM N=4 -0.600 -1.88812
Number of N=38 -0.600 -1.87828
collocation points: N=16 -0.600 -1.87582
(N+1)x(N+1) N=32 -0.600 -1.87520
FEM 16x16 F.E. -0.599 -1.87254
Exact solution -0.600 -1.87500
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Smooth functions of all fields derived from the main
solution i.e. displacements are obtained using the basis
functions Fup (& 1n). Theresults of the numerical analyses
obtained by FFCM are shown graphically in Figures 18,
19 and 20: displacement vectors in the collocation points
of a cantilever, isolines of stresses oy, and trajectories of
compressive and tensile stresses.

RN AR R R R R ER]
I N T T T T O O O N A e S T e R T T T
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o T T T T T T T T T T T T T T T T T T A
MR I I I I I AR N N
AR R RN
[ A A A N
B R O O o A A
B N R I o A A A A A
A AAAAAAA A A A A AN
NS AAAAAAAAA A
AAAALAAAAAAAAAAANAAAAA A A AV
VAL LAASAAAASAAAAAAAAAAAA AN
f A AL LA AAAAAAAAAAAAAA AN A AN NN NS
7 re LA ATy Ay A Ay A A A A A A A A B A A B A BT )
Fig. 18 Displacement vectors

Oxx 1 1440.0 15 0.0 29 -1440.0

Fig. 19 Isolines of stresses O,

Fig. 20 Stress trajectories

4.3 Bending of thin plates

Bending of thin, homogeneous and isotropic plates
is described by the following differential equation:

D
and the respective boundary conditions, where D is
flexural rigidity, p is normal pressure while w is deflec-
tion of the plate.

Since plate behaviour is described by a partial
differential equation of the fourth order, in numerical
modeling using the FFCM, it is most adequate to select
Fup,(&n) as basis functions. The basis function
Fup,(&mn) has 6 characteristic intervals for each
coordinate direction, Ref. [4], so that the schematic
presentation of the approximate solution base, formed
on the unit virtual domain, looks as shown in Figure 21.
Two series of vertex points are outside the domain,
exactly as required in order to satisfy exactly all the
given boundary conditions in collocation points on the
sides and in the corners of the domain.

viw
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Therefore, an approximate solution of the problem
is sought using (Ng+1)X(Ny+ 1) collocation points i.e.
(N§+5)X(Nn+5) basis functions. When the FFCM is
applied to arectangular plate of axb size, the collocation
form of the differential equation (31) is:

Niz N,IZJrZC“ ia4E'j(§’77)+ 2 84Ej(§r77)+
ij a4 a[;:4 aZ_bZ 8528772

=2 j=2

4
L1 ERE)]_p o)

b_4 8774 D

In Eq. (32) Fj(&n) is the basis function Fup4(&n)
with the vertex in point (i,j), while partial derivatives of
basis functions are determined according to the following
expression:

I em) (1 Y"1 Y
acmon  \164&) \ 1647

Fup | L L T
1646° 1671647 16

(33)

* — collocation
Ny, points

o — vertex points
outside the
area

(-2j12) (-1+2) (i.}+2) (#L.i+2) (}2,j+2)

(-2i1) (-1+1) (J+1) (LD R+ D

(-2 (L) @) L) (F2))

2[ (-2j1) (-14j-1) (if1) (i+1j-1) ((+2,j-1)

1| (-2j2) (-4j-2) (if2) (i+1,j-2) ((+2,j-2)

2 1] o] 1] 2 . NJL N2 g
1
Ag IAn

-2

Fig. 21 Schematic presentation of approximate solution base

The numerical solution of the given problem by the
FFCM is reduced to the search of C;; unknown
coefficients ofalinear combination by solving the system
of Egs. (32) complete with respective boundary
conditions. For a plate simply supported on all four
edges, the boundary conditions are:

w(g,0)=w(c.1)=w(0,n)=w(l,7)=0

O’ w &’ w o%w &’ w
——(0n)=——7(Ln)=—F(s0)=—=(5.1)=0
0e? T 5 MV T g : on’

(34)
For a plate clamped on all four edges, they are:

w(g,0)=w(g.1)=w(0,n)=w(ln)=0

O )= O ) W e O
a_g(o’ﬂ)_ag(]’n)_an(é’o) an(éyl) 0

(35)
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Conditional equations at the corner of the plate are
obtained by the Cartesian product of operators in bound-
ary conditions on plate edges intersecting in that corner.

The numerical model has been tested on the example
ofahomogeneous isotropic thin square plate with a side
length a and different boundary and loading conditions.
The plate has been considered as one fragment. The
obtained numerical results are compared in Table 4,
with analytical solutions found in Ref. [9]. The presented
method shows excellent correspodence with the exact
results. As it can be seen in Table 4, the deviation of
numerical values from the analytic ones is of the same
order also for the deflection in the center of plate, which
represents a main solution as well for bending moments

which are derived values.

Figure 22 shows bending moment M, and transverse
force O, on a clamped uniformly loaded square plate. It
can be observed that the boundary curves of the bending
moment M, and the transverse force O, diagrams are
extremely smooth which is the consequence of high
smoothness of the applied basis functions, which also
means that the boundary conditions are exactly satisfied.

Figure 23 shows distributions of the bending moment
and transverse force on a clamped square plate loaded
by aconcentrated force inthe middle. It can be concluded
thatthe numerical solution obtained by FFCM accurately
describes the real behaviour of the plate even in case of
a concentrated load.

Table 4. Deflections and bending moments of the square plate with different boundary and loading conditions, v = 0.3

Simply Supported Plate Clamped Plate
Number "’f ' uniform load p central concentrated load P uniform load p central concentrated load P
CO”OC.“”O” Center Moment at Center Moment at plate Center Moment at | Moment at Center Moment at | Moment at
poinis deflection | plate center | deflection center M, deflection | plate center |side center m,| deflection | plate center |side center m,
NF+1)x (N+1) W M, w, w, M, w, M,
N=4 0.004284 0.05037 0.01127 0.19287 0.001312 0.02438 —0.04757 0.004833 0.1359 -0.1038
N=2§8 0.004115 0.04848 0.01145 0.25896 0.001285 0.02335 -0.05012 0.005379 0.2049 —0.1181
N=16 0.004075 0.04803 0.01155 0.32954 0.001271 0.02303 —0.05099 0.005542 0.2758 —0.1234
N=32 0.004066 0.04792 0.01158 0.40098 0.001267 0.02294 —0.05124 0.005591 0.3473 -0.1251
N=40 0.004064 0.04791 0.01160 0.42410 0.001266 0.02293 -0.05128 0.005598 0.3703 —0.1254
Analytic 0.004062 0.04790 0.01160 0 0.001260 0.02310 —0.05130 0.005600 23 —0.1257
2 2
Multiplier | pa’/D pa’ Pd’/D P pa’ /D pa pa Pa*/D P P
P
ML
a o LY
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Fig. 22 Clamped plate under uniformly distributed load: a) Bending moment M., b) Transverse force Q,
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Fig. 23 Clamped square plate
subjected to concentrated
force in its middle:
a) Bending moment M,
b) Transverse force Q,
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5. CONCLUSION

The numerical procedure of the fragment collocation
method with basis functions Fup,,(x,y) is applied to the
analyses of the torsion of prismatic bars, the plane stress
and thin plate bending problems. The analyzed examples
show that the numerical solution obtained by the FFCM
converges monotonically towards an exact solution. The
accuracy of the solution depends on the number of the
collocation points i.e. on the number of basis functions
inthe domain and on the degree n of used basis functions
Fup,(x,y). Because of the universality of the vector space
formed by these functions, itis possibleto hierarchically
expand the number of basis functions in the domain
which significantly accelerates the convergence of a
numerical procedure in a simple way. By solving the
given problem using the described method, the
coefficients of a linear combination of basis functions
Cj; are calculated for a selected number of collocation
points. Once, when coefficients Cj; are obtained, the
solution function values can be calculated with the same
degree of accuracy as well as all values derived from the
solution function in any point of the domain. Using the
parametric formulation for the description of a given
domain geometry the FFCM is adapted to analyses of
curvilinear domains.
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NUMERICKA ANALIZA 2D PROBLEMA KORISTENJEM Fup, (x,y) BAZNIH FUNKCIJA

SAZETAK

Uovomeradu prikazan je postupak numerickog modeliranja dvodimenzionalnih inZenjerskih problema koristenjem
Sfunkcija Fup,(x,y). To su finitne, beskonacno derivabilne funkcije koje pripadaju klasi Rvacevljevih baznih funkcija
Ry Svojstva ovih funkcija omogucavaju hijerarhijski pristup povecavanju baze numerickog rjesenja, bilo na cijelom
podrucju, bilo na pojedinim njegovim dijelovima.

Priblizno rjeSenje problema pretpostavlja se u obliku linearne kombinacije baznih funkcija Fup,(x,y). Umjesto
tradicionalne diskretizacije na konacne elemente, ovdje se cijelo podrucje moze analizirati odjednom, kao jedan
fragment. Metodom kolokacije formira se sustav jednadzbi u kojemu se u kolokacijskim tockama na zatvorenom
podrucjuzadovoljava diferencijalnajednadzba problema, a na granicipodrucja rubni se uvjeti zadovoljavaju egzaktno.
Na ovaj se nacin jednostavno postize zadana tocnost pribliznog rjesenja povec¢avanjem broja baznih funkcija. Pri
tome se vrijednosti osnovne funkcije rjesenja i sve velicine izvedene iz osnovnog rjeSenja izracunavaju u istim tockama
bududi da je izbjegnuta numericka integracija.

Metoda je testirana na problemima torzije prizmaticnih Stapova, ravninskih stanja i savijanja tankih ploca.
Rezultati analize usporedeni su s postojecim egzaktnim i relevantnim numerickim rjeSenjima. Moze se zakljuciti da
kolokacijska metoda fragmenata, uz primjenu baznih funkcija Fup,(x,y), za obradene probleme daje izvrsne rezultate,
kako u pogledu tocnosti, tako i u pogledu neprekinutosti svih polja izvedenih iz pribliznih rjesenja.

Kljucéne rijeci: priblizno rjesenje, Rvacevljeve bazne funkcije, metoda kolokacije, fragment.
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