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SUMMARY

This paper presents a procedure of numerical modeling of two-dimensional engineering problems using functions
Fupn(x,y). They are finite, infinitely derivable functions which belong to a class of Rvachev’s basis functions Rbf. The
properties of these functions enable hierarchic approach to expansion of the numerical solution base either in the
entire domain or its segments.

The approximate solution of the problem is assumed in the form of a linear combination of basis functions
Fupn(x,y). Instead of traditional discretization into finite elements, here, the entire domain can be analyzed at once,
as one fragment. A system of equations is formed by the collocation method in which differential equation of the
problem is satisfied in collocation points of a closed domain while boundary conditions are satisfied exactly at the
domain boundary. In such a way, the required accuracy of the approximate solution is obtained simply by increasing
the number of basis functions. The values of the main solution function and all the values derived from the main
solution are calculated in the same points since numerical integration is avoided.

This method is tested on the torsion of prismatic bars, plane states and thin plate bending problems. The results
of the analyses are compared with the existing exact and relevant numerical solutions. It can be concluded that the
fragment collocation method using basis functions Fupn(x,y) gives excellent results for elaborated problems either
with regard to accuracy or continuity of all fields derived from approximate solutions.

Key words: approximate solution, Rvachev’s basis functions, collocation method, fragment.

1. INTRODUCTION

This paper presents a new approach to numerical
modeling in which the whole domain is considered at
once. Namely, in engineering practice, most of the prob-
lems are solved in domains the geometry of which can be
described by elementary functions. The idea consists of
the following: - the geometry of the domain shall be
described in the most adequate way independently of the
approximate solution base; - the entire domain shall be
considered at once as one or several fragments; - an ar-
bitrarily accurate numerical solution shall be obtained by
arbitrary increase in the number of basis functions on the
fragment; - simultaneously, in the same points the values
of the solution function are calculated, e.g. displacements,
and all the fields derived from them such as stresses,
bending moments, transversal forces, which are gener-
ally more interesting than the solution function itself; - all
fields derived from the solution function shall be ex-
pressed by continuous functions on the domain; - an in-
crease in accuracy of approximate solution is enabled by
hierarchic increase of the basis function number on the
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fragment or part of the fragment without intrusion into
the rest of the domain. In order to fulfil the set goals, a
good selection of basis functions shall be done.

Functions, which are implemented in the numerical
analyses in this paper, are the Fupn(x,y) basis functions.
They belong to a class of finite, infinitely derivable functions
[1] named after their authors Rvachev’s basis functions or,
in short, Rbf. The existing knowledge on functions of Rbf
class is systemized in Ref. [2], basis functions are
transformed into numerically applicable form, and the first
steps for their use in practice are realized. These basis
functions have good approximation properties as well as
a very important property of universality, which enables
hierarchic expansion of approximate solution base on the
fragment.

Because of infinite derivability of the functions
Fupn(x,y), the derivatives of all orders, required by
differential equation and boundary conditions, can be
used directly in the numerical procedure. Therefore, the
collocation method has been applied in the development
of numerical models. The collocation method enables
efficient, economical and simple procedure. At the same
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time, numerical integration is avoided. For purposes of
briefness, Fup Fragment Collocation Method will be
further referred to as FFCM.

2. FUNCTIONS Fupn(x,y)

Functions Fupn(x) belong to a class of Rvachev’s
basis functions Rbf, which are determined as finite
solutions of non-homogeneous differential-functional
equations [2]. They belong to a space containing algebraic
polynomials i.e. algebraic polynomials can be accurately
described by linear combinations of mutually displaced
basis functions Fupn(x). Index n denotes the greatest
degree of a polynomial which can be expressed accurately
in the form of a linear combination of basis functions
obtained by displacement of function Fupn(x) by a
characteristic interval 2−n. When n=0:

)x(up)x(Fup0 = (1)

where function up(x) is the basis function with the
support [-1,1] and characteristic interval ∆x=20=1 [2].
The function Fupn(x) values are calculated using a linear
combination of displaced up(x) functions:
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where coefficients Ck(n) are given in Ref. [2]. Function
Fupn(x) support is determined according to:

[ ]1n1n
n 22n22nxFupp −−−− ++−= )(;)()(sup (3)

The basis function for numerical analyses of two
dimensional problems is obtained as a Cartesian product
of functions (2) by each coordinate axis:

( ) ( ) ( )yFupxFupy,xFup nnn ⋅= (4)

In solving the given problem by the collocation
method i.e. solving the partial differential equation of
n-th order and satisfying kinematic and dynamic
boundary conditions, the values of all partial derivatives
of the function Fupn(x,y) shall be known, with n-th order
included. The calculation of all required derivatives of
function Fupn(x,y) can be written in an algorithm form
according to Eq. (4). Figure 1 gives an axonometric
presentation of the basis function Fup2(x,y) and its partial
derivatives.
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Fig. 1  Basis function F ≡ Fup2(x,y):  a) F ;  b) 
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3. FRAGMENT COLLOCATION METHOD

The fragment is the whole observed domain or its
significant portion, in a similar sense as a macro-element
in the Finite Element Method. However, unlike the
macro-element, the fragment does not need to be
discretised into smaller segments. Instead, the number
of basis functions is arbitrarily increased. In order to
obtain smooth solutions on the entire domain by the
fragment method with basis functions Fupn(x,y), the
collocation method in a point is applied here.

An approximate solution of differential equation:

)y,x(f)y,x(uL = (5)

with respective boundary conditions is sought by the
collocation method in the form of a linear combination:
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by solving linear system of equations of (n⋅m)×(n⋅m)
dimension:
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where L is the differential operator, ϕij are basis
functions, and (x1,y1), ... , (xn,ym) are collocation points.
Function uN(x,y) belongs to a N-dimensional subspace
XN which represents the set of all linear combinations
of basis functions {ϕi,j: 1≤i≤n, 1≤j≤m}. In order to
obtain the collocation matrix it is not necessary to
perform the numerical integration but only to calculate
Lϕij(xk,yj) images of the basis functions under the
operator L. Therefore, the collocation method is an
efficient alternative procedure for solving partial
differential equations.

It is known that the functionality of the collocation
method depends on the selection of basis functions ϕij
and collocation points (xi,yj). Prenter [3] proved the
stability of the numerical procedure with spline functions
when collocation is performed in the so-called natural
knots. He developed proofs for the existence and
uniformity of the solution and error estimates. Since
functions Fupn(x,y) can be regarded as splines of an infinite
degree, it can be shown that for them it is also optimal to
perform the collocation in natural knots of the basis
functions, i.e. vertices of the basis functions situated in a
closed domain such as for the base in x-direction formed
by functions Fup2(x) shown in Figure 2.

This selection of the collocation points provides the
simplest numerical procedure; the banded collocation
matrix is obtained, which is diagonally dominant and
thus well conditioned [4]. This selection also implies
equidistance of the collocation points in each coordinate
direction.

Taking into consideration the fact that functions

Fupn(t) are obtained as a linear combination of displaced

functions up(t), according to Eq. (2), the collocation

method error in solving 1D problems can be estimated

using the theorem developed by Rvachev [5] for the

estimation of an error of approximation of the given

function f(t)∈Cn[a,b], n∈N, using the functions
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In expression (8), ϕ(t)≡up(t), C is the constant, h is

the distance between adjacent collocation points, while
ω(f(n),h) is the measure of smoothness of the given
function f(t) and its first n derivatives in reference to h
value.

4. APPLICATIONS

In this paper FFCM has been applied in the analyses
of different 2D problems. The numerical model for the
analysis of a prismatic bar torsion has been developed.
The same problem has been used to illustrate the method
of hierarchic expansion of the dimension of basis
functions Fupn(x,y) vector space. Furthermore, the
numerical models for the analyses of the plane states
and thin plate bending have also been developed.

4.1 Torsion of prismatic bars

For an isotropic material, the torsion problem is
reduced to solving the Poisson’s equation:

ϑΦΦ
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with boundary condition:

0=
Γ

Φ (10)

where Φ(x,y) is the stress function, G is the shear
modulus, while ϑ is the angle of twist per unit length of
a bar. Since the torsion problem is described by a partial
differential equation of 2nd order, functions Fup2(x,y)
belonging to a class of Rbf functions are selected as basis
functions (Figure 1). The approximate solution base is
formed on the unit virtual domain defined in the system
(ξ,η) according to a scheme shown in Figure 3.

(7)

Fig. 2  Collocation points of the base formed by
 functions Fup2(x)
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Assuming that the cross-section of a bar can be
contained within one rectangular fragment of a × b
dimensions, the differential equation of the problem (9)
and boundary condition (10) can be written as:
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The collocation is performed in (Nξ+1)×(Nη+1)
equidistant points, see Figure 3, while the basis functions
with the vertex outside the domain are retained so that
the basis functions set can be complete. Thus, the
governing equation (11) is satisfied in all collocation
points of the domain except in the corners; the boundary
condition (12) is satisfied in all collocation points of the
domain sides while three more conditional equations
are satisfied in the corners according to Figure 4. The
boundary conditions are therefore exactly satisfied on
the domain boundary and not only discretely in
collocation points.
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− for equations given in Figure 4 in corners →
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In the aforementioned equations Nξ and Nη denote
a number of partitions of a unit domain in directions ξ
and η, respectively; i and j are counters of basis functions
in ξ i.e. η directions, while Fij(ξ,η) is the basis function
Fup2(ξ,η) with the vertex in point (i,j). Depending on
the number of partitions Nξ and Nη, the function
Fup2(ξ,η) support is condensed to (4∆ξ×4∆η);
∆ξ=1/Nξ, ∆η=1/Nη. Partial derivatives values of the
basis functions in Eqs. (13) to (15) are determined
according to the following expression:
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Therefore, the solution of the torsion problem on a
rectangular domain or domains which can be contained
within one rectangular fragment, such as shown in Figure
5, is reduced to solving the system of Eqs. (13)-(14)-(15)
of (Nξ+3)×(Nη+3) equations. The matrix of the system is
not symmetrical because the system consists of
(Nξ+1)×(Nη+1) conditional equations in the domain while
the remaining equations are boundary conditions at the
domain boundary. Since the function Fup2(ξ,η) is a finite
function with the support consisting of 4×4 characteristic
intervals, the value of the solution function in the collocation
point (i,j) can be expressed by a linear combination of only
9 basis functions (see Fig. 3) in the following form:
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while the values of all other basis functions in point (i,j)
are equal to zero. In such a way, the banded matrix of the
system is obtained.
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Fig. 3  Distribution of basis functions on the unit virtual domain
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boundary conditions in corners

Applying the FFCM method to Eqs. (11) and (12)
and those in Figure 4, the following collocation equations
are obtained:

(16)

(13)



V. Kozuli}, B. Gotovac: Numerical analyses of 2D problems using Fupn(x,y) basis functions

ENGINEERING MODELLING 13 (2000) 1-2, 7-18 11

By solving the system of Eqs. (13)-(14)-(15), the
coefficients of a linear combination of the basis functions
Cij are obtained, which can be used to calculate the
stress function values Φ from Eq. (17) in any point of the
cross-section. The shear stress components τxz=∂Φ/∂y;
τyz=−∂Φ/∂x, are calculated with the same accuracy as
the main solution using the following expressions:
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The torsional rigidity of the bar for ϑ=1 is the double
volume under the surface of the stress function Φ:

∫∫= dydx2Ct Φ (19)

When the collocation method is applied, the integral
(19) can be written in the form of a sum:
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where baJdet ⋅=  is the determinant of the Jacobian
matrix, while each integral I(i,j), see Figure 6, is
numerically determined in the form:
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The values of function Fup2(ξ,η) integral in Eq. (21)
are determined by the Cartesian product of functions
Fup2(ξ) and Fup2(η) integrals given in Refs. [2], [4].

Fig. 5  Different cross-section shapes within rectangular fragment

Fig. 6   Scheme for Eq. (21)

4.1.1 Numerical example: analyses using the basis
functions Fup2(ξ,η)

The torsion of a bar with a square cross-section,
made of isotropic material, shown in Figure 7, is analyzed
by FFCM using the basis functions Fup2(ξ,η). The
numerical results are obtained with a different density
of collocation points within the domain and shown
graphically in Figure 8 complete with the exact solution.
An equal number of partitions in each coordinate
direction is selected i.e. Nξ = Nη = N.
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Convergence diagrams given in Figure 8 show that
the stress function value Φ which represents the main
solution of the problem, the torsional rigidity which
represents the integral value in the cross-section and the
maximum shear stress in the point at the boundary have
an equally good convergence towards the exact solution.
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4.1.2 Hierarchic expansion of an approximate
solution base

Instead of an increase in the number of basis functions

at the same level, the dimension of a vector space can be

expanded hierarchically [2], [4].
When Nξ×Nη partitions on one fragment are selected

i.e. (Nξ+3)×(Nη+3) the basis functions are mutually
displaced by ∆ξ in one and ∆η in the other coordinate
direction, as shown in Figure 3, then the selected base is
at the “zero level” of approximation. The hierarchic

expansion of the vector space dimension is obtained by
adding displaced and compressed basis functions. At the
first level, functions Fup2(ξ,η) are added, displaced by
∆ξ/2; ∆η/2 in reference to the functions of the zero level
and compressed to a length of the support (2∆ξ)×(2∆η).
At the second level, the added basis functions are displaced

by ∆ξ/4; ∆η/4 in reference to the “zero level” with the
length of the support (∆ξ×∆η), which is 1/4 of the length
of the basis functions support at the zero level. At higher
levels of approximation, the base is built by analogy.
Figure 9 shows the distribution of collocation points, in
which the vertices of the basis functions are at the zero,

first and second levels of approximation. The compression
of the functions to 1/2 of the support from the preceding
level is the consequence of the basic properties of the
basis functions [2].
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The procedure of hierarchic expansion of an

approximate solution base is appropriate for computer

programming. It can be applied to the entire given domain

or only to a part of the domain e.g. at concentrated load

locations, for singularities such as concave breaks in the

edge where the stress concentration occurs, or in the

plastification zones in elasto-plastic analyses [4].

Example

The effect of hierarchic increase in a number of basis
functions will be illustrated on the example of torsion of
a bar with a square cross-section analyzed in Section
4.1.1. Figure 10 shows the convergence diagrams of the
numerical solution for torsional rigidity value when the
number of basis functions increases at the zero level
only, and when the approximate solution base is
expanded with basis functions of the first and second
level. It can be observed that much better numerical
solution is obtained with the same total number of basis
functions,  if a hierarchic approach is applied than when
all basis functions belong to a zero level.

Fig. 9  Hierarchic expansion of a vector space of
functions Fup2(ξ,η)

The numerical tests [4] for different densities of
collocation points showed that it is sufficient to satisfy
the boundary conditions with the basis functions of the
zero level while the basis functions of higher levels
correct the solution. It means that, for the torsion problem,
only the collocation form of the differential equation of
the problem will be changed in the system of Eqs. (13)-
(14)-(15). For the second level of approximation e.g., in
the collocation point within the domain, the following
equation will be written instead of Eq. (13):
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Fig. 10  Diagrams of convergence of torsional rigidity value
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4.1.3 Example: analyses using basis functions
Fup4(ξ,η)

The essence of the Fup Fragment Collocation
Method is that the density of the basis functions increases
on one fragment until an arbitrarily exact solution is
obtained. Greater accuracy of a numerical solution can
be obtained by an increase in the number of the same
basis functions in the given domain, as illustrated in
Section 4.1.1. The procedure of hierarchic expansion of
the approximate solution base is also possible, as
described in Section 4.1.2. FFCM also provides the
possibility to select degree n of the basis functions
Fupn(ξ,η) in solving the given problem. Thus, for solving
the torsion problem (9)-(10), the basis functions
Fup2(ξ,η) are selected. However, the basis functions of
higher degree can be selected e.g. functions Fup4(ξ,η)
[2], [4], the linear combination of which can be used to
describe exactly the polynomial of the 4-th degree on a
characteristic interval 2−4. As an illustration, the same
square cross-section as in Section 4.1.1 is analyzed here
using the functions Fup4(ξ,η). The comparison of
solutions is given in Table 1.

where Q(0,0), Q(0,1), Q(1,0) and Q(1,1) are position

vectors at the four corners while Q(ξ,0), Q(ξ,1), Q(0,η)
and Q(1,η) are four boundary curves, see Figure 11.
Changing the parameters ξ and η in equal steps on the
interval [0,1], using Eq. (24), the equidistant collocation
points are obtained within the given domain.

Table 1. Torsion of a bar with a square cross-section

Fup2(ξ,η) Fup4(ξ,η)

Number of
coll. points

(N+1)×(N+1)

Stress
function

Φmax

Torsional
rigidity

Ct

Number of
coll. points

(N+1)×(N+1)

Stress
function

Φmax

Torsional
rigidity

Ct

N=4 15.1826 1442.16 N=4 14.7449 1406.88

N=8 14.8532 1417.49 N=8 14.7351 1405.90

N=20 14.7536 1407.79 N=16 14.7343 1405.78

N=100 14.7350 1405.85 N=32 14.7343 1405.77
Exact

solution
14.7343 1405.77

Exact
solution

14.7343 1405.77

4.1.4 Analyses of curvilinear domains using
FFCM

FFCM can be applied successfully to curvilinear
domains, too. The surface of the given domain will be
described so that the mapping matrix and all required
partial derivatives of elements of the inverse mapping
matrix can be found in each point of the domain. It is
important that the surface can be easily and accurately
divided into mutually equal partitions in each coordinate
direction in order to fulfill the requirement of
equidistance of collocation points on the fragment.

The parametric form is extremely adequate for the
description of surfaces and, using the Coons formulation,
[6] and [4], can be written in the following form:
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Fig. 11  A Coons surface patch

Thus, for curvilinear domains, the partial differential
equation of the torsion problem (9) has the following
collocation form:
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Partial derivatives of elements of the inverse mapping
matrix in Eq. (26) are determined by derivation of
parametric equations of a surface (24), while partial
derivatives of basis functions are determined according
to Eq. (16).
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Example

The torsion of a bar with a cross-section in the form
of an eccentric ring, shown in Figure 12, is analyzed by
the FFCM. An analytic solution exists for this shape of
a cross-section [7].

The entire cross-section is considered as one
fragment. The real domain is mapped into a virtual unit
domain using the expression (24) where the sides of the
fragment (1) and (2) (see Figure 13) are described using
the parametric equations of a circle [4]; sides (3) and (4)
overlap in a real domain.

Fig. 12  Cross-section geometry - eccentric ring
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Fig. 13  Mapping of the given fragment from real into
virtual unit domain
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1Γ

Φ
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Φ
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exactt

exacttt
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Nξ =10 , Nη =20 41.387 5.32  % 28345.72 2.57  %

Nξ =20 , Nη =40 40.279 2.50  % 27976.24 1.24  %

Nξ =50 , Nη =100 39.649 0.90  % 27768.75 0.48  %

Nξ =100 , Nη =200 39.445 0.38  % 27701.30 0.24  %

Exact solution 39.297 ⎯ 27634.63 ⎯

The results of numerical analyses are presented
graphically in Figure 14.

4.2 Plane problems

The system of partial differential equations of the
equilibrium:
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using the behaviour law written in a matrix form:
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can be transformed into an analogue system of
differential equations expressed through displacements
u and v:

Fig. 14   a) Stress function surface Φ(x,y);  b) Isolines of stress function Φ(x,y)
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The convergence of the torsional rigidity value Ct
and the stress function value Φ on the inner boundary
Γ1, with an increase in the number of collocation points,
is given in Table 2.

Table 2. Comparison of the results for an eccentric ring
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In expressions (27), (28) and (29), E is Young’s
modulus, ν is Poisson’s coefficient, t is thickness of the
model while Fx and Fy are the components of volumetric
forces.

Figure 15 shows the plane stress model with boundary
conditions on the supported, free and loaded part of the
boundary.

variation of shear stresses τxy. The presented support is
assumed because the theoretically required assumptions
on complete clamping can not be fulfilled completely in
reality.

Fig. 15  Plane stress model
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By the collocation method, the system of equations
is solved directly. The basis functions Fup2(ξ,η) will be
used, similarly as for the torsion problem. Unlike the
torsion, there are two degrees of freedom, which means
that for each basis function two coefficients of a linear
combination must be found. Therefore, an approximate
solution of the problem (29) is sought in the form of
linear combinations:
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where Fij(ξ,η) is the basis function Fup2(ξ,η) with the
vertex in the collocation point (i,j). The unknown
coefficients Cij and Dij are determined by solving the
system consisting of 2×[(Nξ+3)×(Nη+3)] collocation
equations.

Example

FFCM is applied to analyses of a cantilever wall
beam with the concentrated load P as shown in Figure
16. In accordance with the known analytic solution [8],
it is assumed that force P is distributed at the end cross-
section x=l, according to the same parabolic law for the

Fig. 16  Cantilever loaded with a force P
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In the numerical model, using the FFCM, the entire
cantilever is considered as one fragment. All the given
kinematic and dynamic boundary conditions are set on
the sides of the domain and its corners according to
Figure 17.

Fig. 17  Conditional equations in collocation points at the
domain boundary

In order to evaluate the numerical solution obtained
by the FFCM, the selected example has been analyzed
using the Finite Element Method. Isoparametric 8-node
finite elements have been used with the discretization of
16x16 finite elements. The comparison of the obtained
numerical solutions with the analytical ones is given in
Table 3.

Table 3. Cantilever wall beam - comparison of results

Displacements in the point

  x = l , y = −b
METHOD

u v

N = 4 -0.600 -1.88812

N = 8 -0.600 -1.87828

N = 16 -0.600 -1.87582

FFCM

Number of
collocation points:

(N+1)×(N+1) N = 32 -0.600 -1.87520

FEM 16x16 F.E. -0.599 -1.87254

Exact solution -0.600 -1.87500
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Smooth functions of all fields derived from the main
solution i.e. displacements are obtained using the basis
functions Fup2(ξ,η). The results of the numerical analyses
obtained by FFCM are shown graphically in Figures 18,
19 and 20: displacement vectors in the collocation points
of a cantilever, isolines of stresses σxx and trajectories of
compressive and tensile stresses.

Fig. 18  Displacement vectors

Fig. 19  Isolines of stresses σxx

Fig. 20  Stress trajectories
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4.3 Bending of thin plates

Bending of thin, homogeneous and isotropic plates
is described by the following differential equation:

D

)y,x(p
w4 =∇ (31)

and the respective boundary conditions, where D is
flexural rigidity, p is normal pressure while w is deflec-
tion of the plate.

Since plate behaviour is described by a partial
differential equation of the fourth order, in numerical
modeling using the FFCM, it is most adequate to select
Fup4(ξ,η) as basis functions. The basis function
Fup4(ξ,η) has 6 characteristic intervals for each
coordinate direction, Ref. [4], so that the schematic
presentation of the approximate solution base, formed
on the unit virtual domain, looks as shown in Figure 21.
Two series of vertex points are outside the domain,
exactly as required in order to satisfy exactly all the
given boundary conditions in collocation points on the
sides and in the corners of the domain.

Therefore, an approximate solution of the problem
is sought using (Nξ+1)×(Nη+1) collocation points i.e.
(Nξ+5)×(Nη+5) basis functions. When the FFCM is
applied to a rectangular plate of a×b size, the collocation
form of the differential equation (31) is:
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In Eq. (32) Fij(ξ,η) is the basis function Fup4(ξ,η)
with the vertex in point (i,j), while partial derivatives of
basis functions are determined according to the following
expression:
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Fig. 21  Schematic presentation of approximate solution base
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The numerical solution of the given problem by the
FFCM is reduced to the search of Cij unknown
coefficients of a linear combination by solving the system
of Eqs. (32) complete with respective boundary
conditions. For a plate simply supported on all four
edges, the boundary conditions are:
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For a plate clamped on all four edges, they are:
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Conditional equations at the corner of the plate are
obtained by the Cartesian product of operators in bound-
ary conditions on plate edges intersecting in that corner.

The numerical model has been tested on the example
of a homogeneous isotropic thin square plate with a side
length a and different boundary and loading conditions.
The plate has been considered as one fragment. The
obtained numerical results are compared in Table 4,
with analytical solutions found in Ref. [9]. The presented
method shows excellent correspodence with the exact
results. As it can be seen in Table 4, the deviation of
numerical values from the analytic ones is of the same
order also for the deflection in the center of plate, which
represents a main solution as well for bending moments

which are derived values.
Figure 22 shows bending moment Mxx and transverse

force Qx on a clamped uniformly loaded square plate. It
can be observed that the boundary curves of the bending
moment Mxx and the transverse force Qx diagrams are
extremely smooth which is the consequence of high
smoothness of the applied basis functions, which also
means that the boundary conditions are exactly satisfied.

Figure 23 shows distributions of the bending moment
and transverse force on a clamped square plate loaded
by a concentrated force in the middle. It can be concluded
that the numerical solution obtained by FFCM accurately
describes the real behaviour of the plate even in case of
a concentrated load.

Fig. 22  Clamped plate under uniformly distributed load: a) Bending moment Mxx; b) Transverse force Qx

Fig. 23  Clamped square plate
subjected to concentrated

force in its middle:
a) Bending moment Mxx;
b) Transverse force Qx

X

Z

Y

a)
Mxx X

Z

Y

b)Qx

Table 4. Deflections and bending moments of the square plate with different boundary and loading conditions, ν = 0.3

Mxx

a)

X Y

Z

Qx

b)

Simply Supported Plate Clamped Plate

uniform load  p central concentrated load P uniform load  p central concentrated load PNumber of
collocation

points
(N+1)×(N+1)

Center
deflection

wmax

Moment at
plate center

Mx

Center
deflection

wmax

Moment at plate
center   Mx

Center
deflection

wmax

Moment at
plate center

Mx

Moment at
side center mx

Center
deflection

wmax

Moment at
plate center

Mx

Moment at
side center mx

N = 4 0.004284 0.05037 0.01127 0.19287 0.001312 0.02438 −0.04757 0.004833 0.1359 −0.1038

N = 8 0.004115 0.04848 0.01145 0.25896 0.001285 0.02335 −0.05012 0.005379 0.2049 −0.1181

N = 16 0.004075 0.04803 0.01155 0.32954 0.001271 0.02303 −0.05099 0.005542 0.2758 −0.1234

N = 32 0.004066 0.04792 0.01158 0.40098 0.001267 0.02294 −0.05124 0.005591 0.3473 −0.1251

N = 40 0.004064 0.04791 0.01160 0.42410 0.001266 0.02293 −0.05128 0.005598 0.3703 −0.1254

Analytic 0.004062 0.04790 0.01160 ∞ 0.001260 0.02310 −0.05130 0.005600 ∞ −0.1257

Multiplier Dpa4 2pa DPa2
P Dpa4 2pa 2pa DPa2

P P
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5. CONCLUSION

The numerical procedure of the fragment collocation
method with basis functions Fupn(x,y) is applied to the
analyses of the torsion of prismatic bars, the plane stress
and thin plate bending problems. The analyzed examples
show that the numerical solution obtained by the FFCM
converges monotonically towards an exact solution. The
accuracy of the solution depends on the number of the
collocation points i.e. on the number of basis functions
in the domain and on the degree n of used basis functions
Fupn(x,y). Because of the universality of the vector space
formed by these functions, it is possible to hierarchically
expand the number of basis functions in the domain
which significantly accelerates the convergence of a
numerical procedure in a simple way. By solving the
given problem using the described method, the
coefficients of a linear combination of basis functions
Cij are calculated for a selected number of collocation
points. Once, when coefficients Cij are obtained, the
solution function values can be calculated with the same
degree of accuracy as well as all values derived from the
solution function in any point of the domain. Using the
parametric formulation for the description of a given
domain geometry the FFCM is adapted to analyses of
curvilinear domains.
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NUMERI^KA ANALIZA 2D PROBLEMA KORIŠTENJEM Fupn(x,y) BAZNIH FUNKCIJA

SA@ETAK

U ovome radu prikazan je postupak numeri~kog modeliranja dvodimenzionalnih in`enjerskih problema korištenjem
funkcija Fupn(x,y). To su finitne, beskona~no derivabilne funkcije koje pripadaju klasi Rva~evljevih baznih funkcija
Rbf. Svojstva ovih funkcija omogu}avaju hijerarhijski pristup pove}avanju baze numeri~kog rješenja, bilo na cijelom
podru~ju, bilo na pojedinim njegovim dijelovima.

Pribli`no rješenje problema pretpostavlja se u obliku linearne kombinacije baznih funkcija Fupn(x,y). Umjesto
tradicionalne diskretizacije na kona~ne elemente, ovdje se cijelo podru~je mo`e analizirati odjednom, kao jedan
fragment. Metodom kolokacije formira se sustav jednad`bi u kojemu se u kolokacijskim to~kama na zatvorenom
podru~ju zadovoljava diferencijalna jednad`ba problema, a na granici podru~ja rubni se uvjeti zadovoljavaju egzaktno.
Na ovaj se na~in jednostavno posti`e zadana to~nost pribli`nog rješenja pove}avanjem broja baznih funkcija. Pri
tome se vrijednosti osnovne funkcije rješenja i sve veli~ine izvedene iz osnovnog rješenja izra~unavaju u istim to~kama
budu}i da je izbjegnuta numeri~ka integracija.

Metoda je testirana na problemima torzije prizmati~nih štapova, ravninskih stanja i savijanja tankih plo~a.
Rezultati analize uspore|eni su s postoje}im egzaktnim i relevantnim numeri~kim rješenjima. Mo`e se zaklju~iti da
kolokacijska metoda fragmenata, uz primjenu baznih funkcija Fupn(x,y), za obra|ene probleme daje izvrsne rezultate,
kako u pogledu to~nosti, tako i u pogledu neprekinutosti svih polja izvedenih iz pribli`nih rješenja.

Klju~ne rije~i: pribli`no rje{enje, Rva~evljeve bazne funkcije, metoda kolokacije, fragment.


