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SUMMARY

A general procedure to develop a probabilistic analysis of composite materials is presented. The second order of
the Taylor series has been used in order to determine the statistics of the first ply failure for a symmetric equilibrate
composite. The Monte Carlo Method has been used to validate the accuracy of the procedure.
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1. INTRODUCTION

Failure of a structural element occurs when it cannot
perform its intended function. Material fracture is the
obvious type of failure but not the only one. Excessive
deflection and partially damaged materials may be
considered types of failure if the performance of the
structure is compromised [1, 2]. Damage and fracture of
composite materials may occur in a variety of failure
modes. Fiber breaking, matrix crazing, matrix cracking,
fiber debonding and delamination are some failure
modes examples. It is difficult to incorporate these many
modes of failure into design strategy [2, 3]. A simpler
way is to use empirical criteria, similar to the failure
criteria used in metal design, but customized for
composites. The most common criteria to predict failure
of a single ply are the maximum stress, the maximum
strain, the Tsai-Hill and Tsai-Wu criteria [4, 5]. A
classical approach, for the prediction of laminate failure,
consists in using one of the failure criteria to predict the
first ply failure (FPF) load, which is the load at which
the first layer failure occurs [1, 2, 3, 4, 6]. A number of
researchers have studied the failure probability of
composite laminates, and an extended review may be
found in Refs. [7, 8, 9]. Regarding the macro-mechanic
probabilistic failure criteria a comparative study is
presented in Ref. [10]. A micro-mechanic approach for
probabilistic failure criteria can be found in Ref. [11].

Kam and his associates investigated the FPF
probability considering the elastic properties of the
material, the fiber orientation and the lamina thickness
as random variables [12, 13, 14].

In this paper the probabilistic prediction of the FPF,
for the symmetric and equilibrate laminates, is developed
considering a simple plane stress problem as shown in

Figure 1. The lamina stiffness and strength properties
have been considered as random variables [15].
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Fig. 1 In-plane load condition for a laminate in composite

2. THEPHYSICAL PROBLEM

This section describes the physical problem and the
probabilistic mathematical formulation of the first ply-
failure criteria. The aim of the probabilistic analysis
[16] is the calculus of the first and the second statistical
moment of the FPF load.

In order to calculate the lamina stress status, the
Tsai-Hill and Tsai-Wu criterion has been used.

Using the in-plane lamina longitudinal sq,
transverse s and shear stress t;, the Tsai-Hill criterion
can be written as follows:
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where k is the lamina number, Sl is the strength in the
fiber direction, s, is the strength in the transverse
direction and L, 15 the in-plane shear strength. The
Tsai-Hill failure theory uses corresponding strength,
tensile or compressive, as shown in Table 1.

In Table 1 Xt and Y1 are the longitudinal and
transversal tensile strength, Xc and Y are the
longitudinal and transversal compressive strength, T is
the shear strength.

s s,>0 Xt Table 1. Tsai-Hill strength
'R s,<0 Xc choice
s s> 0 Yt
R 5,<0 Ye
t|t< 0
L te> 0 T

The Tsai-Wu criterion is based on a complete
quadratic expression:
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where the coefficients of the Tsai-Wu matrix and
Vector are:
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The single lamina stresses, which are used in Egs.
(1) and (2), can be estimated considering the
constitutive equation [15,17]:
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where Dy, is the membrane laminate stiffness matrix,
Dy is the flexural stiffness matrix, while the matrix Dy,
couples the membrane and flexural effects; eg is the
laminate strain and cg is the laminate curvature; N and
M are respectively the normal and flexural external
load referred to the global coordinate system.
Calculating eg and cg from Eq. (4), the single laminate
stress state can be evaluated as:

sk =D (T¥es +2T¥cg) (k=1...Ng) (5)

where D, is the lamina stiffness matrix in the local
system, TK, the transformation matrix, relates the local
stresses to the global ones and z is the distance of the
lamina k from the neutral surface. Combining the Eq.
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(5) with Egs. (1) and (2) the FPF can be calculated. In
particular if his the strength ratio (h =S imate/S applied)
and the applied load is equal to the unity (S gpplieq = 1)
the FPF can be calculated by the following relations:

hz{[st]MTHst}-lzo (k=1,..Ng) (6)

h2{|_5 IEJ My S Iﬁ}+h{b/Tw I's t} 1=0
(k=1,..Ng)

The laminate probabilistic analysis has been done
considering the material properties as random
variables. Let b the random variables vector:

(7)
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Based on the mean-centered second-order
perturbation technique, the global stiffness matrix, Dg
and the global strain vector, eg is expanded in terms of
the random variables b;:

u

u
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a

Dg = Dg (b ) + éN.—(bo)Dbi +
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(10)

where Db;=b;- bj ¢ and b; o is the mean value of the
random variables b;.

Substituting the expansions (9) and (10) in the Eq.
(4) and equating equal order terms, three order of linear
system are determined:

Dg (bp)es () =s 6
Do ()18 () = - 16 (o) (o)
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Using the solutions of the linear Egs. (11), the strain
field is found in the Taylor series expansion form. In
order to use the Eq. (5) and the solution just obtained,
the stress status for each lamina is calculated in form
of Taylor series:
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(12)

(k=1,..;Njam )

where Ny, is the number of ply in the laminate and
the terms of the expansion are given by:

s £ (bp) =Dy (1) e ()
L )=, o 12 )

b fIb; (13)
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Using the Eq. (12) the statistics of the stress for
each lamina can be calculated. In particular the mean
vector and the covariance matrix of the stress can be
calculated using the next relations:

! c',“ 'nzst
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In order to determine the statistics of the FPF, the
strength ratio given by the Tsai-Hill and the Tsai-Wu
criteria have been expanded via Taylor series, using
the second order approximation:

“=h“ )+.a111112k@ Joal +
+% i%l%@g)mikm? (16)
(k=1,...Nyam)

where a(')‘ denote the vector of the random variables

mean values of the k-th ply used for the FPF calculus.
In particular the random vector a contain the stress
and strength corresponding to each lamina:
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The mean vector and the covariance matrix of the
strength ratio h are defined as:

E[h"]:hk(ag)Jr

%élﬁ(ﬁ)mv[aik,aﬂ (18)

(k=1,...Njam)
Cov[hm,h”]:

- & Lol Lokeovkial] o)

i,j=1 Y& flaj
(mn=1,..,Njam)

In this paper the FPF identification is based on the
mean value of the lamina strength ratio.

3. NUMERICAL INVESTIGATIONS

As an example of the developed procedure, the
numerical calculation has been performed on a
symmetric and equilibrate laminate because it is the
most common in industrial applications.

To perform the FPF probabilistic calculus a symbolic
code has been realized by Mathematica package. The
code has been organized in two steps: the probabilistic
lamina analysis and the FPF probabilistic calculus. The
results obtained by this code have been compared with
the corresponding Monte Carlo simulations.

The laminate is symmetric-equilibrate, [0°, 90°,
45°, -45°], and the laminate thickness percentage are
(I4, 15, 13,14) = (0.4, 0.2, 0.2, 0.2). The material lamina
is Graphite Epoxy and the property values used for the
calculus are summarized in Tables 2 and 4. In the first
example the in-plane and positive unit pressure is
active in the x direction (see Figure 2) and the analysis
is based on three different coefficients of variation for
the material property values.

In Figures 3 and 4 some graphical results and
comparisons between the direct solutions and MCM
simulations are presented. The Tables 3a and 3b
summarize the critical load of each lamina in terms of
mean values and coefficient of variation (CV), starting
from the first case to the second case. It is interesting
to observe increasing of the coefficient of variation. In
particular for the critical load of the ply 2, the CV

. @@

Fig. 2 Load condition for the FPF calculus in the first example
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increases from 16% to 30% using the Tsai-Hill failure
criterion and, and it increases from the 14% to 28%
using the Tsai-Wu failure criterion.

Table 3a. First example: the strength ratio of the second lamina
is the first ply failure load (Tsai-Hill failure criterion)
Tsai-Hill

Case 1

Case 2

Case 3

In the second example the FPF load is analyzed in
a different load condition, Figure 5. A classical
cylindrical load condition is considered: the unit load
is active in the x direction and the half unit load is
active in the y direction.

The Figures 6 and 7 show the behavior of the
probabilistic distribution of the FPF in the second load

Table 2. Material property values used in the three cases of the
first example. Three different coefficients of variation
have been used to analyze the capability of the Taylor
series method.

Expected
Values

Coeff. of
variation

Expected
Values

Coeff. of
variation

Expected
Values

Coeff. of
variation

ply 1

Direct
Solution

636.284

0.100

636.249

0.200

637.378

0.201

Montec

636.780

0.101

640.765

0.200

635.700

0.198

ply 2

Direct
Solution

425.014

0.156

423.096

0.226

431.475

0.297

Montec

426.476

0.158

426.394

0.228

435.192

0.310

ply 3

Direct
Solution

560.139

0.123

545.859

0.172

574.305

0.232

Montec

559.142

0.125

546.413

0.168

548.596

0.243

Direct
Solution

560.139

0.123

545.859

0.072

574.305

0.232

ply 4

Montec

559.142

0.125

546.413

0.168

548.596

0.243

Table 3b. First example: the strength ratio of the second lamina

Casel Case 2 Case 3 is the first ply failure load. (Tsai-Wu failure criterion)
LogNormal LogNormal LogNormal TsalWo
Dlstrlbutec_i _ Dlstrlbutec_i _ Dlstrlbutec_i _ Case 1 Case 2 Case 3
Random | Expected |Coefficient| Expected | Coefficient| Expected |Coefficient Exmected | Cooft of | Exnected | Coeft of | Exnected | Coeff. of
Variables| Values |ofvariation| Values |ofvariation| Values |of variation Xpecte Oetl- Of | Expecte Oetl- OF | Expecte oetl. 0
Values | variation | Values [ variation | Values | variation
E, |134000] 01 1134000 01 ]134000] 02 Direct 1639 638 0.099 [639.478| 0.198 |640.367| 0.199
E 7000 | 0.1 7000 | 0.1 7000 | 0.2 iyl Sﬁ'”ti"” 639.213 01100 643.171 01198 637.947 0.196
v, | 025 | 01 [025 | 01 | 025 | 02 S t— ' ' ' ' '
Gn 4200 01 4200 01 4200 02 ply 2 Solution 385.724| 0.144 [383.375| 0.210 (389.119| 0.275
XI 1270 0.1 1270 0.2 1270 0.2 Montec [385.441| 0.143 [384.508| 0.210 |[390.624| 0.282
Direct
X, 1130 | 0.1 1130 | 02 1130 | 0.2 oly 3/Solition 551.050| 0.136 |542.240| 0.198 |545.967| 0.265
Y, 42 0.1 42 0.2 42 02 Montec [552.072| 0.141 [544.458| 0.198 |548.550| 0.276
Y, 141 0.1 141 0.2 141 0.2 oly 4 Direct 1551.050| 0.136 (542.240| 0.198 [545.967| 0.265
T 63 0.1 63 0.2 63 0.2 Montec [552.072| 0.141 |[544.458| 0.198 [548.550| 0.276
Ply2 Critical Load, Log Normal Distribution, Case 1 (Tsai-Hill criterion)!
PDF g
0.006 0.006 . 0.006 .
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Fig. 3 FPF load corresponding to the second lamina strength ratio using the Tsai-Hill criteria, Case 1
!PIyZ Critical Load, Log Normal Distribution, Case 1 (Tsai-Wu criterion)!
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Fig. 4 FPF load corresponding to the second lamina strength ratio using the Tsai-Wu criteria, Case 1
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case. The first case (Table 4) and the second case
(Table 2) results comparison show that the coefficient
of variation is similar in spite to different load
condition. It is also interesting to notice that in both
examples the error between the CDF obtained via
Direct solution and the MCM simulation is restricted
on the second decimal digit.

Table 4. Material property values used in the three cases of the
second example. Three different coefficients of
variation have been used to analyze the capability of
the Taylor series method.

i

Fig. 5 Load condition for the FPF calculus in the second example

4. CONCLUSIONS

Fig. 6 FPF load corresponding to the second lamina strength ratio using the Tsai-Hill criteria, Case 2

!Plyz Critical Load, Log Normal Distribution, Exa2 Case 1 (Tsai-Wu criterion) i

PDFi \
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Fig. 7 FPF load corresponding to the second lamina strength ratio using the Tsai-Wu criteria, Case 2
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Loal CalseD_lt uted | Loan Calsg_zt_b e A procedure for probabilistic analysis of a
0gTTorma’ DISTIbITed | -ogormar Distribure composite laminates with one failure mode has been
Random | Expected | Coefficient| Expected | Coefficient studied on the basis of the second order Taylor series
Variables | Values |of variation| Values |of variation method. The procedure developed considers the
E 134000 0.1 134000 0.2 lamina material properties and the lamina strength as
E, 7000 0.1 7000 0.2 random variables and the lognormal distribution has
Vi 0.25 0.1 0.25 0.2 been used to d_escribe _their behavior. TV\_/o Ioad_ cases
Gy 4200 01 4200 0.2 have been studied and in both the MCM simulations to
X, 1270 02 1270 04 valm!ate the_accuracy of the direct solution r_esults. In
X 1130 02 1130 04 particular it has been shown that the difference
2 - : between the FPF cumulative distribution function
Yy 42 0.2 42 0.4 (CDF), log normally distributed, obtained by Taylor
Y2 141 0.2 141 0.4 method and the one obtained by the MCM is restricted
T 63 0.2 63 04 on second decimal digit.
|PIy2 Critical Load, Log Normal Distribution, Exa2 Case 1 (Tsai-Hill criterion)
~
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Table 5. Second example results

Tsai-Hill Tsai-Wu
Case 1 Case 2 Case 1 Case 2
(3000 Simulations) (10000 Simulations) (3000 Simulations) (10000 Simulations)
Expected | Coefficient| Expected |Coefficient| Expected | Coefficient| Expected |Coefficient
Values |of variation| Values |of variation| Values |of variation| Values |of variation
oy 1 S'SI'inf}n 449700 | 0170 | 419.976 | 0361 | 527.116 | 0225 | 510501 | 0.461
Montec | 448.425 0.164 419.960 0.333 530.361 0.222 518.429 0.462
oy 2 Slglll:tei((:)tn 396249 | 0219 | 392.659 | 0431 | 460302 | 0258 | 475.112 | 0.484
Montec | 395.130 0.214 387.410 0.408 462.225 0.264 474.141 0.542
oy 3 Slcj)lllgfi(c:)tn 421347 | 0194 | 398.956 | 0402 | 493.999 | 0238 | 485078 | 0.476
Montec | 419.752 0.184 397.294 0.354 496.291 0.235 485.812 0.474
oy 4 S'SI'in%tn 421347 | 0194 | 398.956 | 0402 | 493.999 | 0238 | 485078 | 0.476
Montec | 419.752 0.184 397.294 0.354 496.291 0.235 485.812 0.474
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PROBABILISTI"KAANALIZA SLOMA PRVE RAZINE SLOJA LAMINATAU
KOMPOZITNOM MATERIJALU

SA@ETAK

Ovaj rad govori o op}oj metodi pomo}u koje se mo™e napraviti probabilisti~ka analiza kompozitnih materijala.
Drugi red Taylor-ovog niza koristi se za odre]ivanje statistike sloma prve razine sloja simetri~ki uravnote enog
kompozita. Monte Carlo-vom metodom potvr | uje se to~nost opisane metode.

Klju~ne rije~i: slom prve razine kompozita, probabilisti~ka analiza, Taylor-ov niz.
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