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SUMMARY

A general procedure to develop a probabilistic analysis of composite materials is presented. The second order of
the Taylor series has been used in order to determine the statistics of the first ply failure for a symmetric equilibrate
composite. The Monte Carlo Method has been used to validate the accuracy of the procedure.
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1. INTRODUCTION

Failure of a structural element occurs when it cannot
perform its intended function. Material fracture is the
obvious type of failure but not the only one. Excessive
deflection and partially damaged materials may be
considered types of failure if the performance of the
structure is compromised [1, 2]. Damage and fracture of
composite materials may occur in a variety of failure
modes. Fiber breaking, matrix crazing, matrix cracking,
fiber debonding and delamination are some failure
modes examples. It is difficult to incorporate these many
modes of failure into design strategy [2, 3]. A simpler
way is to use empirical criteria, similar to the failure
criteria used in metal design, but customized for
composites. The most common criteria to predict failure
of a single ply are the maximum stress, the maximum
strain, the Tsai-Hill and Tsai-Wu criteria [4, 5]. A
classical approach, for the prediction of laminate failure,
consists in using one of the failure criteria to predict the
first ply failure (FPF) load, which is the load at which
the first layer failure occurs [1, 2, 3, 4, 6]. A number of
researchers have studied the failure probability of
composite laminates, and an extended review may be
found in Refs. [7, 8, 9]. Regarding the macro-mechanic
probabilistic failure criteria a comparative study is
presented in Ref. [10]. A micro-mechanic approach for
probabilistic failure criteria can be found in Ref. [11].

Kam and his associates investigated the FPF
probability considering the elastic properties of the
material, the fiber orientation and the lamina thickness
as random variables [12, 13, 14].

In this paper the probabilistic prediction of the FPF,
for the symmetric and equilibrate laminates, is developed
considering a simple plane stress problem as shown in

Figure 1. The lamina stiffness and strength properties
have been considered as random variables [15].

Fig. 1  In-plane load condition for a laminate in composite

2. THE PHYSICAL PROBLEM

This section describes the physical problem and the
probabilistic mathematical formulation of the first ply-
failure criteria. The aim of the probabilistic analysis
[16] is the calculus of the first and the second statistical
moment of the FPF load.

In order to calculate the lamina stress status, the
Tsai-Hill and Tsai-Wu criterion has been used.

Using the in-plane lamina longitudinal σ1,
transverse σt and shear stress τlt, the Tsai-Hill criterion
can be written as follows:
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σ l > 0 XTσ lR σ l < 0 XC

σ t > 0 YTσ tR σ t < 0 YC

τlt < 0τltR τlt > 0
T

where k is the lamina number, σlR
 is the strength in the

fiber direction, σtR
 is the strength in the transverse

direction and τltR
 is the in-plane shear strength. The

Tsai-Hill failure theory uses corresponding strength,
tensile or compressive, as shown in Table 1.

In Table 1 XT and YT are the longitudinal and
transversal tensile strength, XC and YC are the
longitudinal and transversal compressive strength, T is
the shear strength.

(5) with Eqs. (1) and (2) the FPF can be calculated. In
particular if h is the strength ratio (h =σultimate/σapplied)
and the applied load is equal to the unity (σapplied = 1)
the FPF can be calculated by the following relations:
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The laminate probabilistic analysis has been done
considering the material properties as random
variables. Let b the random variables vector:
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Based on the mean-centered second-order
perturbation technique, the global stiffness matrix, DG
and the global strain vector, εG is expanded in terms of
the random variables bi:
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where ∆bi=bi−bi,0 and bi,0 is the mean value of the
random variables bi.

Substituting the expansions (9) and (10) in the Eq.
(4) and equating equal order terms, three order of linear
system are determined:
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Using the solutions of the linear Eqs. (11), the strain
field is found in the Taylor series expansion form. In
order to use the Eq. (5) and the solution just obtained,
the stress status for each lamina is calculated in form
of Taylor series:

Table 1. Tsai-Hill strength
 choice

The Tsai-Wu criterion is based on a complete
quadratic expression:
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where the coefficients of the Tsai-Wu matrix and
vector are:
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The single lamina stresses, which are used in Eqs.
(1) and (2), can be estimated considering the
constitutive equation [15,17]:
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where Dmm is the membrane laminate stiffness matrix,
Dff is the flexural stiffness matrix, while the matrix Dmf
couples the membrane and flexural effects; εG is the
laminate strain and cG is the laminate curvature; N and
M are respectively the normal and flexural external
load referred to the global coordinate system.
Calculating εG and cG from Eq. (4), the single laminate
stress state can be evaluated as:
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where DL is the lamina stiffness matrix in the local
system, Tk, the transformation matrix, relates the local
stresses to the global ones and zk is the distance of the
lamina k from the neutral surface. Combining the Eq.

(2)

(11)
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where Nlam is the number of ply in the laminate and
the terms of the expansion are given by:
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Using the Eq. (12) the statistics of the stress for
each lamina can be calculated. In particular the mean
vector and the covariance matrix of the stress can be
calculated using the next relations:
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In order to determine the statistics of the FPF, the
strength ratio given by the Tsai-Hill and the Tsai-Wu
criteria have been expanded via Taylor series, using
the second order approximation:
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where k
0α  denote the vector of the random variables

mean values of the k-th ply used for the FPF calculus.
In particular the random vector α contain the stress
and strength corresponding to each lamina:
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The mean vector and the covariance matrix of the
strength ratio h are defined as:
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Fig. 2 Load condition for the FPF calculus in the first example
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In this paper the FPF identification is based on the
mean value of the lamina strength ratio.

3. NUMERICAL INVESTIGATIONS

As an example of the developed procedure, the
numerical calculation has been performed on a
symmetric and equilibrate laminate because it is the
most common in industrial applications.

To perform the FPF probabilistic calculus a symbolic
code has been realized by Mathematica package. The
code has been organized in two steps: the probabilistic
lamina analysis and the FPF probabilistic calculus. The
results obtained by this code have been compared with
the corresponding Monte Carlo simulations.

The laminate is symmetric-equilibrate, [0°, 90°,
45°, -45°], and the laminate thickness percentage are
(l1, l2, l3, l4) = (0.4, 0.2, 0.2, 0.2). The material lamina
is Graphite Epoxy and the property values used for the
calculus are summarized in Tables 2 and 4. In the first
example the in-plane and positive unit pressure is
active in the x direction (see Figure 2) and the analysis
is based on three different coefficients of variation for
the material property values.

In Figures 3 and 4 some graphical results and
comparisons between the direct solutions and MCM
simulations are presented. The Tables 3a and 3b
summarize the critical load of each lamina in terms of
mean values and coefficient of variation (CV), starting
from the first case to the second case. It is interesting
to observe increasing of the coefficient of variation. In
particular for the critical load of the ply 2, the CV
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increases from 16% to 30% using the Tsai-Hill failure
criterion and, and it increases from the 14% to 28%
using the Tsai-Wu failure criterion.

In the second example the FPF load is analyzed in
a different load condition, Figure 5. A classical
cylindrical load condition is considered: the unit load
is active in the x direction and the half unit load is
active in the y direction.

The Figures 6 and 7 show the behavior of the
probabilistic distribution of the FPF in the second load

Table 3a. First example: the strength ratio of the second lamina
is the first ply failure load (Tsai-Hill failure criterion)
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Fig. 3 FPF load corresponding to the second lamina strength ratio using the Tsai-Hill criteria, Case 1
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Table 3b. First example: the strength ratio of the second lamina
is the first ply failure load. (Tsai-Wu failure criterion)

Fig. 4 FPF load corresponding to the second lamina strength ratio using the Tsai-Wu criteria, Case 1

Tsai-Wu
Case 1 Case 2 Case 3

Expected
Values

Coeff. of
variation

Expected
Values

Coeff. of
variation

Expected
Values

Coeff. of
variation

Direct
Solution 639.638 0.099 639.478 0.198 640.367 0.199

ply 1
Montec 639.213 0.100 643.171 0.198 637.947 0.196
Direct

Solution 385.724 0.144 383.375 0.210 389.119 0.275
ply 2

Montec 385.441 0.143 384.508 0.210 390.624 0.282
Direct

Solution 551.050 0.136 542.240 0.198 545.967 0.265
ply 3

Montec 552.072 0.141 544.458 0.198 548.550 0.276
Direct

Solution 551.050 0.136 542.240 0.198 545.967 0.265
ply 4

Montec 552.072 0.141 544.458 0.198 548.550 0.276

Tsai-Hill
Case 1 Case 2 Case 3

Expected
Values

Coeff. of
variation

Expected
Values

Coeff. of
variation

Expected
Values

Coeff. of
variation

Direct
Solution 636.284 0.100 636.249 0.200 637.378 0.201

ply 1
Montec 636.780 0.101 640.765 0.200 635.700 0.198
Direct

Solution 425.014 0.156 423.096 0.226 431.475 0.297
ply 2

Montec 426.476 0.158 426.394 0.228 435.192 0.310
Direct

Solution 560.139 0.123 545.859 0.172 574.305 0.232
ply 3

Montec 559.142 0.125 546.413 0.168 548.596 0.243
Direct

Solution 560.139 0.123 545.859 0.072 574.305 0.232
ply 4

Montec 559.142 0.125 546.413 0.168 548.596 0.243

Table 2. Material property values used in the three cases of the
first example. Three different coefficients of variation
have been used to analyze the capability of the Taylor
series method.

Case 1
LogNormal
Distributed

Case 2
LogNormal
Distributed

Case 3
LogNormal
Distributed

Random
Variables

Expected
Values

Coefficient
of variation

Expected
Values

Coefficient
of variation

Expected
Values

Coefficient
of variation

El 134000 0.1 134000 0.1 134000 0.2
Et 7000 0.1 7000 0.1 7000 0.2
vlt 0.25 0.1 0.25 0.1 0.25 0.2
Glt 4200 0.1 4200 0.1 4200 0.2
Xl 1270 0.1 1270 0.2 1270 0.2
X2 1130 0.1 1130 0.2 1130 0.2
Y1 42 0.1 42 0.2 42 0.2
Y2 141 0.1 141 0.2 141 0.2
T 63 0.1 63 0.2 63 0.2
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Fig. 5 Load condition for the FPF calculus in the second example
Table 4. Material property values used in the three cases of the

second example. Three different coefficients of
variation have been used to analyze the capability of
the Taylor series method.

case. The first case (Table 4) and the second case
(Table 2) results comparison show that the coefficient
of variation is similar in spite to different load
condition. It is also interesting to notice that in both
examples the error between the CDF obtained via
Direct solution and the MCM simulation is restricted
on the second decimal digit.
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Fig. 6 FPF load corresponding to the second lamina strength ratio using the Tsai-Hill criteria, Case 2
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Fig. 7 FPF load corresponding to the second lamina strength ratio using the Tsai-Wu criteria, Case 2

4. CONCLUSIONS

A procedure for probabilistic analysis of a
composite laminates with one failure mode has been
studied on the basis of the second order Taylor series
method. The procedure developed considers the
lamina material properties and the lamina strength as
random variables and the lognormal distribution has
been used to describe their behavior. Two load cases
have been studied and in both the MCM simulations to
validate the accuracy of the direct solution results. In
particular it has been shown that the difference
between the FPF cumulative distribution function
(CDF), log normally distributed, obtained by Taylor
method and the one obtained by the MCM is restricted
on second decimal digit.

Case 1
LogNormal Distributed

Case 2
LogNormal Distributed

Random
Variables

Expected
Values

Coefficient
of variation

Expected
Values

Coefficient
of variation

El 134000 0.1 134000 0.2
Et 7000 0.1 7000 0.2
vlt 0.25 0.1 0.25 0.2
Glt 4200 0.1 4200 0.2
Xl 1270 0.2 1270 0.4
X2 1130 0.2 1130 0.4
Y1 42 0.2 42 0.4
Y2 141 0.2 141 0.4
T 63 0.2 63 0.4
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PROBABILISTI^KA ANALIZA SLOMA PRVE RAZINE SLOJA LAMINATA U
KOMPOZITNOM MATERIJALU

SA@ETAK

Ovaj rad govori o op}oj metodi pomo}u koje se mo`e napraviti probabilisti~ka analiza kompozitnih materijala.
Drugi red Taylor-ovog niza koristi se za odre|ivanje statistike sloma prve razine sloja simetri~ki uravnote`enog
kompozita. Monte Carlo-vom metodom potvr|uje se to~nost opisane metode.

Klju~ne rije~i: slom prve razine kompozita, probabilisti~ka analiza, Taylor-ov niz.
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Table 5. Second example results
Tsai-Hill Tsai-Wu

Case 1
(3000 Simulations)

Case 2
(10000 Simulations)

Case 1
(3000 Simulations)

Case 2
(10000 Simulations)

Expected
Values

Coefficient
of variation

Expected
Values

Coefficient
of variation

Expected
Values

Coefficient
of variation

Expected
Values

Coefficient
of variation

Direct
Solution 449.700 0.170 419.976 0.361 527.116 0.225 510.501 0.461

ply 1
Montec 448.425 0.164 419.960 0.333 530.361 0.222 518.429 0.462
Direct

Solution 396.249 0.219 392.659 0.431 460.302 0.258 475.112 0.484
ply 2

Montec 395.130 0.214 387.410 0.408 462.225 0.264 474.141 0.542
Direct

Solution 421.347 0.194 398.956 0.402 493.999 0.238 485.078 0.476
ply 3

Montec 419.752 0.184 397.294 0.354 496.291 0.235 485.812 0.474
Direct

Solution 421.347 0.194 398.956 0.402 493.999 0.238 485.078 0.476
ply 4

Montec 419.752 0.184 397.294 0.354 496.291 0.235 485.812 0.474


