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SUMMARY

Effective thermoelastic material properties are found for random fibrous composite systems. In particular, the
graphite fiber tow embedded in the polymer matrix is selected as a representative of the two-phase disordered
composite media. Two approaches to the evaluation of effective properties are described. The first one utilizes the
extended form of the Hashin-Shtrikman variational principle, which directly incorporates certain microstructure
describing functions to generate bounds on effective thermoelastic properties. The second approach relies on the
construction of a periodic unit cell which statistically resembles the real microstructure. Standard homogenization
procedure based on the stress control is then invoked to generate a system of governing equations for the estimation
of overall thermoelastic properties of the composite. Several numerical results are presented for the selected material
system.
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1. INTRODUCTION

The purpose of this paper is to introduce two
different approaches to the evaluation of thermoelastic
response of composite materials with a random
microstructure.

Typically, the evaluation of local fields in such a
medium is limited to the application of various
approximate techniques such as the self-consistent or
Mori-Tanaka methods [4].

However, when certain knowledge of the real
microstructure is available, the estimates of local fields
can be improved by treating random composites.
Consequently, the random character of a real
microstructure can be incorporated through various
statistical descriptors directly into variational principles
which readily provide bounds on overall elastic
properties of heterogeneous media. Usually, the two-
point [3] or even three-point [7] probability functions
are used to describe the microstructure morphology.
However, since three-point functions are quite difficult
to obtain for real microstructures, the description by
two-point probability functions is preferable.

Another treatment is available when considering
periodic microstructures. In such a case, the real
microstructure, see Figure 1, is replaced by a material
representative volume element given in terms of a
periodic unit cell which statistically resembles the
actual composite. The elements of this approach have
been outlined in our previous work [12] when
estimating overall mechanical properties of a graphite
fiber tow impregnated by a polymer matrix.

Section 2 briefly reviews the basic aspects
associated with the quantification of microstructure
morphology. Section 3 introduces the extended form
of the well-known Hashin-Shtrikman variational
principle and discusses its application for obtaining
bounds on the overall thermomechanical properties
of the material system under consideration. Section 4
describes the construction of a periodic unit cell and
the essence of the numerical method for the
evaluation of local and overall fields in the periodic
media. For the sake of completeness various
connections between the local and overall thermal
strains are revisited. Example problems are presented
in Section 5.
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Hereafter, we adopt notation introduced by Beran
[1] and denote an ensemble average of a function u(x)
as )( xu , while in a volume-averaged sense we write

)(xu .

Fig. 1  A real micrograph of a transverse plane section
of the fiber tow

2. DESCRIPTION OF A MICROSTRUCTURE
OF RANDOM COMPOSITES

To reflect a random character of heterogeneous
media it is convenient to introduce the concept of an
ensemble - the collection of a large number of systems
which are different in their microscopical details but
are identical in their macroscopic details. Then, the
effective or expected value of some quantity
corresponds to the process of its averaging through all
systems, forming the ensemble.

Thus, consider a sample space S with individual
members denoted as α. Define p(α) as the probability
density of α in S. Then an ensemble average of
function F(x,α) at a point x is provided by:

( ) ( ) ( )∫= S
dp,FF αααxx (1)

In the context of the quantification microstructure
morphology, an ensemble represents the collection of
material micrographs taken from different samples of
the material. To describe a random microstructure we
introduce a characteristic or indicator function
χr(x,α), which is equal to one when point x lies in
phase r in the sample α and equal to zero otherwise:

( ) ( )


 ∈

=
otherwise0

D1 r
r

α
αχ

x
x , (2)

The symbol Dr(α) denotes here the domain
occupied by r-th phase in the sample α. For a two-
phase fibrous composite, r=f, m, the characteristic
functions χf(x,α) and χm(x,α) are related by:

( ) ( ) 1fm =+ αχαχ ,, xx (3)

With the aid of function χr, the general n - point
probability function Sr1,...,rn

 is given by [1, 10]:

( ) ( ) ( )αχαχ ,...,,...,S nr1rn1r,...,r n1n1
xxxx = (4)

Thus, Sr1,...,rn
 gives the probability of finding n

points x1,...,xn randomly thrown into the medium
located in the phases r1,...,rn. We limit our attention to
functions of the order of one and two.

The analysis of random composites usually relies
on various statistical assumptions such as ergodic
hypothesis, spatial homogeneity or isotropy which
may simplify the computational effort to a great extent.
In particular, the ergodic hypothesis demands all states
available to an ensemble of the systems to be available
to every member of the system in the ensemble as well
[1]. Then, the spatial or volume average of function

( )αχ ,xr  given by:

( ) ( )∫ +=
∞→ V r

V
r d

V
1

yyxx αχαχ ,lim, (5)

is independent of α and identical to the ensemble
average:

( ) ( ) rrr c== xx χχ (6)
For periodic composites represented by a unit cell

Ω it assumes the form:

  ( ) ( )∫∫ +=+
∞→ Ω

αχ
Ω

αχ dy
1

dy
V
1

rV r
V

,,lim yxyx (7)

The above assumption is usually accepted as a
hypothesis subject to experimental verification. The
statistical homogeneity assumption means that the
value of the ensemble average is independent of the
position of the coordinate system origin. Then, for
example, the two-point matrix probability function
reads:

( ) ( )12mm21mm SS xxx =, (8)
where xij=xj−xi. When making the statistical isotropy
assumption, we assume that the ensemble average is
not only independent of the position of the coordinate
system origin but of the coordinate system’s rotation
as well. Then:

( ) ( )12mm21mm rSS =xx , (9)

where ijijr x= . For the microstructure in Figure 1,

the validation of ergodic hypothesis and the
assumption of statistical isotropy are outlined in Ref.
[12]. When accepting these assumptions, we may
exploit a number of other functions, which provide the
desired statistics of the composite sample. Here we
introduce the pair distribution function g2:

( )
dr

)r(dK
r2

1
rg2 π
= (10)

where K is the second order intensity function [8]. For
isotropic and ergodic medium the above descriptors are
uniquely related to the two-point matrix probability
function Smm[11], in the form:

( ) ( ) ( ) ( )12
222

12212mm rMRrV1rS ρρπρ ++−=

( ) ( ) ( ) ( )∫ ∫= 4324133412 ddrmrmrhrM rr

( ) ( ) 1rgrh 2 −=
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( )


 ≤

=
otherwise0

Rr1
rm (11)

A
N=ρ

where V2(r) is a union of two circles distant by r and R
is the fiber radius. For numerical evaluation of
individual functions we refer the reader to [12].

3. EFFECTIVE PROPERTIES BY HASHIN-
SHTRIKMAN VARIATIONAL PRINCIPLE

This section is devoted to the prediction of the
response of random composite materials using the
Hashin-Shtrikman variational principle. First, we focus
on the theoretical aspects associated with the H-S
variational formulation for anisotropic and non-
homogeneous bodies with displacements uu =
prescribed along the entire boundary S of the
composite. In addition, eigenstrains (stress free strains)
or eigenstresses are admitted in the present
formulation. This formulation then provides rigorous
upper and lower bounds on the effective thermoelastic
constants of statistically homogeneous ergodic
composites.

3.1 Body with prescribed surface
displacements and eigenstresses

Suppose that an affine displacement field
( ) Exxu =0  compatible with a uniform strain E is

prescribed along the boundary S of a homogeneous
comparison medium (Step I) characterized by the
stiffness matrix L0. The corresponding uniform strain
E and stress ΣΣΣΣΣ fields are related through the
constitutive law in the form:

SuuEL onin 00 == ,ΩΣ (12)

The local stress σ(x) at point x in Ω of a composite
is found by superimposing the solution of the local
problem displayed in Figure 2 Step II. The respective
governing equations are then given by:

( ) Ωτε in0 0L =+⋅∇ (13)

( ) Ωλετ in0 0LL =−−− (14)

Sonin0 0uuuu =′−=′ ,Ω (15)

Ωεε inE−=′ (16)

ΩΣσσ in−=′ (17)
The unknown polarization stress τ(x) is yet to be

found such that the local stress derived from the
original problem:

( ) ( ) ( ) ( ) Son,inë uuxxxLx =+= Ωεσ (18)

and the one provided by the two step auxiliary
procedure:

( ) ( ) ( )xxLx τεσ += 0 (19)

are equal. The eigenstress vector λ(x) in Eq. (18) may
represent several distinct physical phenomena such as
thermal effects, schrinkage, plasticity, etc. A
formulation equivalent to Eqs. (13) and (14) may be
obtained by performing a variation of the extended
functional:

  
( ) ( ) ( )(

) Ωλλτετ

λτλτΣ
Ω

τ

d2

2
1

U

1TTT

1
0

TT

−

−

+′++

+−−−−= ∫
LE

LLE
(20)

Setting:

( ) ( )[ ]{ } 0d2U TT1
0

T
2
1 =′−′+−−−−= ∫ −

Ω
τ Ωτεδεδτελτδτδ LL

(21)
we find that Eq. (14) is one of the stationarity
conditions of Uτ , while the second condition, Eq. (13),
follows after recasting the remaining terms in the
brackets. Finally, it can be proven that the stationary
value SUτ  of the potential Uτ equals the actual
potential energy stored in the anisotropic and
heterogeneous body:

( ) ( )∫ −−= Ωµεµετ d
2
1

U TS L (22)

where:
µ=-L-1λ (23)

is the vector of eigenstrains (stress-free strains). The
function Uτ attains its maximum (δ2Uτ<0) if (L-L0)
positive definite and its minimum if (L-L0) is negative
definite for all x∈Ω .

Fig. 2  Body with prescribed surface displacements including eigenstresses
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3.2 Response of random composites

Consider the H-S functional, Eq. (20), for a given
sample α. The fluctuation part of the local strain ε(x)
reads:

( ) ( ) ( )( ) ( )∫ ′−′′−=−=′
Ω

Ωαττεαεαε xxxxExx d),(),( *
0

(24)
where the specific form of *

0ε  can be found in Ref.
[9]. Value 〈τ〉  represents the mean or volume average
of τ(x). Subscript 0 is used to identify this operator
with the homogeneous reference medium. Equation
(24) then allows to rewrite Eq. (20) as:

( ) ( ) ( )( ) ( )( ) ( ) ( )( )(

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )) ( )xxxLx

xxxxxx

xxLxLxxU

Ω+

+′Ω−′′−++

+−−−−=

−

Ω

∗

Ω

−

∫
∫

d,,,

d,,,2

,,,,,
2
1

1T

0
TT

1
0

TT

αλααλ

ατατεατατ

αλατααλατΣατ

E

E

(25)

Details are given in Ref. [9]. If each phase r of a
randomly arranged composite is homogeneous with
moduli Lr, r=1,...,n then the material stiffness matrix
in the sample α can be expressed as [3]:

( ) ( )∑
−

=
n

1r
rr ,, αχα xLxL (26)

and the ensemble average of L is:

( ) ( )∑
=

=
n

1r
rrS xLxL (27)

Similarly, the trial field for τ and eigenstress λ at
any point x located in the sample α are provided by:

( ) ( ) ( ) ( ) ( ) ( )αχλαλαχτατ ,,,,, r

n

1r

n

1r
rrr xxxxxx ∑ ∑

= =

==

(28)

with the respective ensemble averages written as:

( ) ( ) ( ) ( ) ( ) ( )∑ ∑
= =

==
n

1r

n

1r
rrrr SS xxxxxx λλττ ,

(29)

To facilitate the solution of the present problem the
material is assumed to be ergodic and statistically
homogeneous. Therefore:

( ) ( ) ( ) ( )∑ ∑ ∑
= = =

===
n

1r

n

1r

n

1r
rrrrrr c,c,c xxxxLL λλττ

(30)

Substituting Eqs. (28) and (30) into Eq. (25) yields
the extended averaged form of the Hashin-Shtrikman
principle:

( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )[ ] ( ) ( )xxxxxxxx

xxxxLLxx

xxLx

Ω′Ω−′′−′−+

+Ω−−−−−

−Ω












+=

∑∑∫ ∫

∑∫

∫ ∑

Ω Ω

∗

Ω

−

Ω

d d cS
2
1

d c2c
2
1

d c
2
1

U

r s
rsrs0

T
r

r

T
rrrr

1
0r

T
rrr

r
rr

T
rr

T

ττετ

τλτλτ

λλΣτ

E

E

(31)

Then, assuming a piecewise uniform variation of
eigenstress vector λ  and polarization stress

( ) ( )( )rrrr ττλλτ == xx , , setting (recall ergodicity
assumption):

( ) ∑
=

==
n

1r
rrcττατ (32)

and then performing variation with respect to τr
provides the extended form of the stationarity
condition:

( ) ( ) n,,2,1r,ccc rr
1

0rr

n

1s
srsrr

1
0r K=−+=−− −

=

− ∑ λττ LLEALL

(33)

where the microstructure-dependent matrices Ars are
independent of x and are provided by:

( ) ( )[ ] ( )

( ) ( ) ( )

( ) ( ) ( )xxx

xxxxx

xxxxxA

∫
∫
∫

Ω

∗

Ω

∗

Ω

∗

Ω′=

′Ω′−′′−=

′Ω−′−′−=

d S

d S

d ccS

rs0

rs0

srrs0rs

ε

ε

ε

  
(34)

where rsS ′  denotes the fluctuating part of Srs under the
no-long range orders hypothesis. The preceding
formula can be further rewritten as:

( ) ( ) ( )

( ) ( ) ( )

( ) ( )[ ] 0

0

xx

xxx

xxxA

=
∗

=Ω
⋅∗

Ω
∗

′=





 Ω′=

Ω′=

∫

∫

ξ

ξ

ξ

ε

ε

ε

rs

ix
rs0

rs0rs

S

d eS

d S

0F

(35)

where the operator F represents Fourier's transform.
The property of F provides:

( )
( ) ( ) ( )

( )
( ) ( ) ( )ξξξε

π

ξξξξε
π ξ

′Ω′′′−=





 ′Ω′′′−=

∫

∫

Ω
∗

=Ω
∗

d S
2

1

d S
2

1

rs0d

rs0drs

~~

~~
0

A

(36)

Since ( ) ( )ξεξε ∗∗ =− 00
~~  we finally arrive at:

( )
( ) ( ) ( )ξξξε

π
′Ω′′′= ∫Ω

∗ d S
2

1
rs0drs

~~A (37)

Note that Fourier’s transform ∗
0ε~  can be obtained

for any homogeneous anisotropic reference media (see
Ref. [3]), which is not generally possible for function

∗
0ε  itself. Therefore, once we are able to compute the

values of rsS ′~
 we may evaluate integral (37) by an

appropriate numerical procedure. Finally, having
determined the value of Ars, the solution of system (33)
can be formally written in the form:

( )[ ]∑ −−+=
n

1s
s

1
0ssrsr c λτ LLT E (38)
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from which:

( )[ ]∑∑
= =

−−+=
n

1r

n

1s
s

1
0ssrsr cc λτ LLT E (39)

Once the matrices Trs are known, the overall
constitutive law yields:

λσ += EL̂ (40)
where:

∑∑
= =

+=
n

1r

n

1s
srsr0 cc TLL̂ (41)

( )∑∑
= =

−−=
n

1r

n

1s
s

1
0ssrsr cc λλ LLT (42)

4. EFFECTIVE PROPERTIES BY PERIODIC
UNIT CELL APPROACH

This section presents another approach to the
analysis of random composites, which relies on a
periodic unit cell. This concept is very convenient from
the point of view of numerical analysis, as it allows to
simulate wide range of inelastic behavior of
composites (see eg. [6] and references therein). The
crucial point now becomes to incorporate the random
character of a microstructure into this approach. Here,
we offer a simple procedure based on the
aforementioned microstructural statistics.

4.1 Formulation of periodic unit cell

In our previous work [12] we suggested that both
the two-point probability function and the second-
order intensity function can be exploited to generate
the desired periodic unit cell (PUC). Such a PUC
should posses similar statistical properties as the
original material. We argue that if the PUC has a
statistically similar spatial distribution of fibers as the
real microstructure it will also possess similar
thermomechanical properties. The PUC is constructed
here by matching the second-order intensity functions
of the real microstructure and the unit cell:

( ) ( ) ( )∑
=










 −=
mN

1i

2

2
i

ii
21

N

r

rKrK
HHxF

π
,, (43)

where ( )irK  represents the second order intensity
function of the original microstructure, K(ri)
corresponds to the PUC and Nm is the number of
matching points. Vector x={x1, y1,...., xN, yN} stands
for the configuration of particle centers of the periodic
unit cell; xi and yi correspond to x and y coordinates of
the i-th particle. The augmented simulated annealing
method can be used to minimize the objective function
Eq. (43). Details of the algorithm can be found in [5].
Two representatives of the periodic unit cell
constructed for the graphite/epoxy material system are
displayed in Figure 3.

Fig. 3  Periodic unit cells: (a) 5-fibres PUC;
(b) 10-fibres PUC

4.2 Thermomechanical problem

We now recall the thermomechanical analysis of a
representative volume element (RVE) having a well
defined geometry and boundary conditions. In
particular we consider a periodic representative
volume defined in terms of a statistically equivalent
unit cell (UC) derived in the preceding part.

Suppose that the UC is subjected to boundary
displacements u and uniform change of temperature
∆θ resulting in a uniform strain E throughout the UC.
The local constitutive equation is then written in the
form:

( ) ( ) ( )( ) ( )[ ]xxuxLx 0εεσ −= (44)

where  ε0(x) = m(x)∆θ represents the initial thermal
strain or eigenstrain; vector m(x) lists the coefficients
of thermal expansion for the material point x. In view
of the periodic boundary conditions imposed on the
unit cell the strain and displacement fields in the UC
admit the following decomposition:

( ) ( )xuxxu ∗+⋅= E (45)

( ) ( )xx ∗+= εε E (46)

The periodicity of u* implies that the average of ε*

in the unit cell vanishes. Hence:

( ) ( ) ( ) ( )∫Ω
∗∗∗ =

Ω
=+= 0xxxxx d 

1 εεεε ,E
(47)

Next, assume a virtual displacement δu=δE⋅x+δu*,
with δu* being periodic. Then:

σΣΣδσεδ == , TT E (48)

Eq. (48), also known as the Hill’s lemma, implies
that the average microscopic internal work is precisely
the macroscopic virtual work.

Note that the present formulation is not applicable
with the strain control conditions when admitting
thermal loading. Clearly, the overall strain E in such a
case is not known and cannot be prescribed. It is, thus,
convenient to impose surface tractions compatible with
the macroscopic uniform state of stress ΣΣΣΣΣ. Such a
loading condition leaves us with unknown overall
strain E and periodic displacement field u* to be
determined. Substituting the microscopic constitutive
equation (44) into Hill’s lemma Eq. (48) gives:
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( )( )  T
0

TT Σδεεεδσεδ Ε=−= ∗∗ uL (49)

and consequently with the help of Eq. (46) we find:

( ) ( )  Σδεεεδεδεεδ T
0

TT
0

T EEEE =−++−+ ∗∗∗∗ LLL

(50)
Since δE and δe* are independent, the preceding

equation can be split into two equalities:

[ ]
( )0

TT

0
TT

εεεδεδ

εεδΣδ

−+=

−+=

∗∗∗

∗

LEL0

LELEE
(51)

In the finite element approach the matrix B, relating
strains and displacements in the form ε*=Bu* and
consequently, δe*=Bδu*, is to be applied to Eq. (51)
to get the linear associated system:

















Ω
Ω
1

Ω
Ω

+
=

























Ω
Ω

Ω
Ω
1

Ω
Ω

Ω
Ω

∫
∫

∫∫
∫∫

Ω

Ω
∗

ΩΩ

ΩΩ

d

d
1

d
1

d

d
1

d
1

T

0

TT LBB

L

uLBBLB

LBL εΣE

(52)
When excluding the thermal effects the above

equation can be used to derive the coefficients of the
effective compliance matrix M as volume averages of
the local fields from the solution of four successive
elasticity problems. To that end, the periodic unit cell
is loaded, in turn, by each of the components of ΣΣΣΣΣ,
while the other remaining components vanish. The
volume strain averages, normalized with respect to Σ,Σ,Σ,Σ,Σ,
then furnish individual columns of M. However, when
the UC is loaded by uniform temperature change equal
to unity, the components of the overall average strain
comply with the effective coefficients of thermal
expansion m.

4.3 Macroscopic constitutive law by averaging

In this section we examine the connections between
the thermal and mechanical properties of composite
materials. In particular, we rederive the macroscopic
constitutive law of composites subjected to
thermomechanical loading by means of standard
averaging. We start with the local constitutive law
written as:

( ) ( ) ( ) ( )xmxxMx θσε ∆+= (53)
Next, recall the strain volume average in the form:

( ) ( ) ( ) ( )[ ]

( ) ( ) 0 ,E

d 
1

=+=

Ω∆+
Ω

=

∗∗

Ω∫
xx

xmxxMx

εε

θσε
(54)

which directly provides the macroscopic constitutive
law:

( ) ( ) ( )[ ]∫Ω
∆+=Ω+

Ω
mMxmxxM θθ∆σ ΣΣΣΣd 

1

(55)

Introducing the mechanical and thermal stress
influence functions B(x) and b(x), respectively, such
that:

( ) ( ) ( ) θΣσ ∆+= xbxBx (56)
we find:

( ) ( ) ( ) ( ) ( ) ( )( )∫∫ ΩΩ
Ω∆++Ω= θΣσ d d xmxbxMxBxMx

(57)
When assuming piecewise uniform variation of

phase thermal and elastic properties, Eq. (57) readily
provides the macroscopic compliance matrix M and
the macroscopic thermal strain vector m as:

( )∑∑ +==
r

 rrrrrrr cc mbMmBMM , (58)

When admitting only thermal effects, ΣΣΣΣΣ=0, we get:

( ) ( )∑ ∑∫ ===
r r

rr
r cd 0bxbx

Ω
Ω

Ω
Ωσ (59)

It is also useful to recall the familiar Levin formula
given by:

∑=
r

 r
T
rrc mBm (60)

When setting ∆θ=0 the system (52) can be used to
extract the phase concentration factor tensor Br.The
phase thermal stress concentration factor br follows
again from Eq. (52) when setting Σ=0, ∆θ=1, as phase
volume average of the local stress found in the phase
r. Thus, both Eqs. (52) and (58) can be exploited to
obtain the effective compliances and coefficients of
thermal expansion listed in vector m.

5. RESULTS

This section summarizes numerical results derived
from both approaches for the graphite-epoxy
composite system displayed in Figure 1. The material
properties are stored in Table 1. The analysis was
carried out under the generalized plane strain
conditions.

phase EA 
[GPa] 

ET 
[GPa] 

GT 
[GPa] 

υA 
 

αA 
[K-1] 

αT 
[K-1] 

fiber 
matrix 

386 
5.5 

7.6 
5.5 

2.6 
1.96 

0.41 
0.40 

-1.2 × 10-6 
2.4 × 10-5 

7 × 10-6 
2.4 × 10-5 

 

Table 1. Material properties of T30/Epoxy system

Tables 2 and 3 list effective elastic stiffnesses and
coefficients of thermal expansion found from the
Hashin-Shtrikman variational principle. The Fourier's
transform of rsS ′  was first obtained by applying the
discrete Fourier's transform (DFT) to digitized image
of Figure 1. The integral formula (37) was then
evaluated to get the desired microstructure-dependent
matrices Ars. When incorporating these matrices into
Eqs. (41) and (42) we get the overall effective stiffness
matrix L̂  and the overall thermal stresses mL̂−=λ .
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6. CONCLUSIONS

Effective thermoelastic properties were found for
a fibrous graphite-epoxy composite system with fibers
randomly distributed within a transverse plane section
of the composite aggregate. Two reliable and efficient
approaches were introduced in the present work.
Although different in their theoretical formulation both
approaches are closely connected to the same statistical
descriptors generally used to quantify random
microstructures.

The first approach discussed in Section 2 is closely
related to well known effective medium theories. Here,
the most widely used variational principle of Hashin
and Shtrikman was reviewed and extended. A very

In addition, the effective moduli together with
thermal expansion coefficients derived for selected
periodic unit cells are stored in Tables 4 and 5. Clearly,
the finite element solutions fall within individual
bounds. Moreover, slight anisotropy possessed by the
present microstructure can be captured by this
approach. Finally, Table 6 shows that the values of
effective coefficients of thermal expansion obtained
using relations (52), (58) and (60) are identical.

When compared to a unit cell approach, the method
based on the Hashin-Shtrikman variational principle
is much faster and thus preferable when evaluating the
macroscopic elastic response of real composites. The
same might not be true when inelastic deformations
are decisive. But this has yet to be confirmed.

Bitmap  L11   L22   L33  

resolution LB FEM UB LB FEM UB LB FEM UB 

122 × 84 10.733 10.762 10.770 10.713 10.725 10.746 2.211 2.215 2.218 

244 × 179 10.740 10.762 10.777 10.720 10.725 10.752 2.209 2.215 2.216 

488 × 358 10.730 10.762 10.763 10.721 10.725 10.754 2.209 2.215 2.216 

976 × 716 10.730 10.762 10.763 10.721 10.725 10.764 2.209 2.215 2.216 

 

Bitmap   αx × 105   αy × 105   αz × 105  cf 

resolution LB FEM UB LB FEM UB LB FEM UB   

122 × 84 2.248 2.269 2.278 2.230 2.248 2.253 -7.488 -7.463 -7.504 0.438 

244 × 179 2.256 2.269 2.285 2.236 2.248 2.259 -7.455 -7.463 -7.471 0.436 

488 × 358 2.256 2.269 2.287 2.237 2.248 2.260 -7.455 -7.463 -7.471 0.436 

976 × 716 2.256 2.269 2.287 2.237 2.248 2.260 -7.455 -7.463 -7.471 0.436 

 

Unit cell L11 L22 L33 L44 cf 

Original 10.76 10.73 2.215 177.2 0.44 

2 fibres PUC 10.78 10.75 2.202 177.2 0.44 

5 fibres PUC 10.76 10.73 2.215 177.2 0.44 

10 fibres PUC 10.76 10.73 2.215 177.2 0.44 

Hexagonal array 10.74 10.74 2.213 177.3 0.44 
 

Table 2. HS principle approach: Effective elastic stiffnesses [GPa]

Unit cell αx × 105 αy × 105 αz × 105 

Original 2.290 2.268 -7.319 

2 fibres PUC 2.293 2.267 -7.318 

5 fibres PUC 2.285 2.267 -7.319 

10 fibres PUC 2.289 2.267 -7.319 

Hexagonal array 2.285 2.285 -7.279 
 

Relation αx × 105 αy × 105 αz × 105 

Equation 52 2.285 2.267 -7.319 

Equation 58 2.285 2.267 -7.319 

Equation 60 2.285 2.267 -7.319 
 

Table 3. HS principle approach: Effective coefficients of thermal expansion [K-1]

Table 4. PUC approach: Effective elastic stiffness [GPa]

Table 5. PUC approach: Effective coefficients of thermal expansion [K-1]

Table 6: Comparison of relations (52), (58) and (60) for 5-fiber PUC [K-1]
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efficient numerical procedure based on the DFT which
directly exploits digitized images of real
microstructures was implemented. Fourier's transform
approach, applied when solving the resulting integral
equations, is rather advantageous as it allows an
arbitrary choice of the reference medium so that the
frequently encountered anisotropy of individual phases
creates no obstacles in the solution procedure.

The second approach is based on the construction
of various periodic unit cell models combined with the
finite element method. The complexity of real
microstructures was reflected here in more
complicated unit cells having a larger number of
particles. The required number of particles and their
arrangement was determined so that the macroscopic
response of a unit cell should be identical to the
behavior of a real composite. A simple and intuitive
approach based on microstructural statistics was
proposed to derive such periodic unit cells. The
applicability of the present approach was confirmed
by evaluating effective thermoelastic properties of the
selected composite system both from the small period
unit cells (five to ten fibers unit cells) and from the
considerably larger period unit cells having two orders
of magnitude more particles (three to five hundred
fibers). The supplemented numerical examples showed
that the PUC with a small number of reinforcement
was able to capture the overall behavior of random
composites with a considerable level of confidence.
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PROCJENA EFEKTIVNIH TERMOELASTI^NIH SVOJSTAVA
SLU^AJNIH VLAKNASTIH KOMPOZITA

SA@ETAK

U ovom radu se odre|uju efektivna termoelasti~na svojstva materijala za slu~ajne vlaknaste kompozite. Posebno
se obra|uje grafitna vlaknasta ku~ina uba~ena u polimersku matricu kao predstavnik dvofaznih, nepravilnih,
slo`enih medija. Opisana su dva pristupa procjeni efektivnih svojstava. Prvi pristup koristi pro{ireni oblik Hashin-
Shtrikman-ovog varijacijskog na~ela koji izravno uklju~uje odre|enu mikrostrukturu, koja opisuje funkcije za
postavljanje ograni~enja na efektivna termoelasti~na svojstva. Drugi pristup se temelji na izgradnji periodi~ne
jedini~ne }elije koja statisti~ki sli~i stvarnoj mikrostrukturi. Postupak standardne homogenizacije, utemeljen na
kontroli naprezanja, koristi se kako bi se stvorio sustav jednad`bi za procjenjivanje svih termoelasti~nih svojstava
kompozita. Iznosi se nekoliko numeri~kih rezultata za odabrani sustav materijala.

Klju~ne rije~i: termoelasti~na svojstva, vlaknasti kompozit, dvofazni kompozit, slu~ajna mikrostruktura.


