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SUMMARY

This study describes the torque control of a vector controlled load machine (dynamometer) mechanically coupled
to a drive machine for the emulation of nonlinear loads. Proposed dynamometer control strategy is based on model
reference control using an on-line trained Multi-layer Neural Networks (MNN). The emulation is involved in the
closed loop speed control of the drive machine. After the training of the neuro-controller,  the drive machine will
see the desired nonlinear mechanical load. An integral compensator supporting the trained MNN is used for
eliminating or reducing the model tracking steady state errors. Training problems of the MNN in drive systems are
also discussed. Variety of load models which are the nonlinear function of  the speed, friction and inertia are
successfully emulated and the generalization capability of the trained MNN is tested for various reference inputs.
Simulation results showing the excellent dynamometer control performance are presented.
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1. INTRODUCTION

The use of torque-controlled load machines
(dynamometers) is common in the testing of electrical
machines [1, 2]. In these applications, electrical
machine is normally tested under steady state or slowly
changing conditions. Recent research, aimed at
emulating loads having faster dynamics [3-5], has
resulted in simulated load emulation under open-loop
conditions i.e. the emulated load is not a part of closed
loop speed or position control system. Dynamic load
emulation under closed-loop conditions is desirable for
evaluating motor drive controllers. However, adaptive
and robust control schemes are attracting considerable
attention. To verify the effectiveness of these, it is
desirable to provide a load machine in which
mechanical parameters (such as inertia and friction)
can either be pre-programmed or else vary with speed
or position. In such cases, it is very desirable that the
emulation preserves the model mechanical dynamics.

In addition to machine testing, another application
of mechanical load emulation (either in open or closed
loop) is to provide off-site testing of converter drives

driving real industrial applications. Examples include
high-stiction loads (e.g. reciprocating pumps,
escalators), period impact loads (large washing
machines, compressors), the catching of spinning loads
(after power interrupt) and many underhauling/
overhauling applications. If the parameters of such
loads are even only approximately known, the ability
to evaluate and test such applications off-site would
be advantageous.

Previous dynamic emulation research [3-5] is based
on the principle of inverse mechanical dynamics in
which the shaft speed is measured and used to derive
the desired torque for the load machine. In Ref. [3, 4] a
model-reference approach is presented in which it is
implied that the shaft speed or position could be used as
a tracking variable and so avoid the inverse dynamics.
In Ref. [5], an integrator back-stepping design technique
is presented which claims to emulate a dynamic load
under closed loop conditions. However, the desired
torque trajectory is still derived from an inverse
mechanical model. In Refs. [6] and [7], a new load
emulation strategy, based on model reference torque
feed-forward control which preserves the dynamics of
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a desired load model when the emulation is placed in a
closed loop speed control system, is proposed for both
linear and nonlinear load models accurately.

In the last decade, neural network control has
emerged as an attractive research area. The most useful
property of the neural networks in control is their
ability to approximate any nonlinear mapping in
addition to learning, generalization and parallel
processing [8-10]. These properties make the neural
networks attractive in control applications since they
can be applied even if no exact mathematical model of
the system exists. Models can be derived from the
input-output patterns of the process [11-13]. Thus,
neuro-controllers do not require more knowledge of
the process and the complex design procedure. Multi-
layer neural networks are widely used in control
applications and, by selecting a suitable neural network
structure and learning algorithm for the training of the
network, it is reported that good control performance
can be achieved [14-18].

Some researches are reported about the application
of neural network control to DC and AC drives [19-
23]. They show the effectiveness of the neural network
controllers in the nonlinear motor control. However,
the implementation problems of the neural network
control are not explicitly emphasized (e.g., control
performance of the neuro controllers under realistic
operating conditions of the electrical drives, problems
related with the on-line training of the MNN under the
parameter variations, and steady state errors). In
addition, to our best knowledge, the neural network
control strategy is not applied to the emulation of
nonlinear mechanical loads.

This paper presents the neural network torque
control of the load machine in order to emulate
nonlinear loads by considering practical problems such
as, on-line training of the load machine under the
realistic operating conditions, limited drive and load
machine torque input, and steady state errors. In
addition, electrical circuit dynamics of the load
machine is not included in the neural network structure
thus, this reduces the complexity of the neural network.
This paper is organized as follows: In Section 2, we
summarize the conventional approaches to the load
emulation. In Section 3, the proposed neuro-load
emulation scheme is presented. The training of the
neural network and its implementation are discussed
in Section 4. The emulation is placed in the closed loop

speed control system of the drive machine and the
simulation results showing the effectiveness of the
proposed dynamometer control strategy for various
nonlinear loads are presented in Section 5.

2. CONVENTIONAL LOAD EMULATION
STRATEGIES

Main idea in the load emulation is to control the
torque of the dynamometer mechanically coupled to
the drive machine such that, the drive machine will
see a load equal to a desired load model. The simplest
method for the load emulation is to use the inverse
model approach. It is noted that simulations of inverse
model approach are often successful [3-5]. However,
in practice, noise considerations prohibit the use of
small time steps for the computation of the inverse
dynamics and discretization effects lead to stability
problems. Further, it may not always be possible to
derive the inverse dynamics of some nonlinear loads.
Some new load emulation strategies are developed to
overcome the problems mentioned above [6, 7]. In
these methods, basically, the real shaft speed is forced
to follow a model reference speed (the desired shaft
speed) which is obtained by applying the drive
machine torque to the desired emulated load dynamics.
It is shown that load emulation strategies mentioned
above give excellent results for wide variety of linear
and nonlinear loads.

The control strategies of the load machine may be
different for the purpose of the emulation. However,
the reasonable approach is to find the right load
machine torque by minimization of the error between
the desired load model speed (ωm) and the actual speed
(ω) as shown in Figure 1 (Note that ω* is the reference
input to the control system). Although the model
reference approach is used in Refs. [6] and [7], the
control strategy is not adaptive and thus the learning
process does not exist. This paper uses the model
reference emulation strategy based on neural network
control and aims to overcome the design complexity
utilizing the approximation, learning and generalization
properties of neural networks. Thus, finding an inverse
dynamic model of the load model both the noise
problems of inverse dynamics approach [3-5] and the
control design procedure of the model reference
approach [6, 7] are eliminated.
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Fig. 1  Model reference load emulation approach
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3. LOAD EMULATION SCHEME USING
THE MNN

In Figure 1, total inertia and friction seen from the
drive machine and the load machine for direct coupled
system is J=Jd+JL, and B=Bd+BL respectively. Thus,
linear dynamic torque relation of drive machine can
be written as:

ωω B
dt
d

JTT Le +=− (1)

where Te is the drive machine torque (Nm), TL is the
load machine torque (Nm), and ω is the shaft speed
(rad/s). Let the inertia Jm(⋅) and friction Bm(⋅) of the
reference load model be a nonlinear function of the
total inertia, friction and the speed respectively. We can
write the reference load model as:

mmmme B
dt
d

JT ωω )()( ⋅+⋅= (2)

where ωm is the reference load model speed. Note that,
the type of the nonlinearity in Eq. (2) does not matter
when the neural network implementation is
considered.

Although some internally dynamics neural network
structures which do not need the dynamic information
of the system are investigated for the modeling and
control purpose [24, 25], the common approach in the
neural network control of a system is to find the correct
neural network model of the system [8-15]. Therefore,
the signals which represent the dynamics of the system
should be included in the input vector of the neural
networks. For this purpose, backward discrete time
equivalence of Eq. (1) can be written as:
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where Te(k)-TL(k) is the net torque input for the drive
machine and Ts is the sampling time. Similarly, the
reference load model can be represented:
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Assume that the error e(k) between reference load

model and actual speed is zero. Obviously, this means
that ωm(k) equals to ω(k). Thus, the net torque should
be:
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Equation (5) gives us the desired load machine

torque to be provided by the neural network as:

( ) ( ) ( ) ( )},,{ kT1k1kfkT emL −−= ωω (6)

where f(⋅) is the unknown nonlinear function. If the
Jm(⋅) and Bm(⋅) consist of a static nonlinear function of
the speed, only the previous values of the actual and
model speed will be used in Eq. (6). This study
assumes that the J and B are unknown and Eq. (6) is to
be learned by the neural network. The load emulation
control scheme of the dynamometer using the MNN
which includes an auxiliary integral compensator is
shown in Figure 2.
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Fig. 2  Model reference load emulation control structure using MNN
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3.1 An auxiliary integral controller design

In the previous studies of neural network control
[18-25], there is no mention about steady state error
which should be especially taken into account in the
presence of external disturbances. A desirable
solution is to use an integral compensator supporting
the neuro-controller when the full trained neuro-
controller is not able to decrease the steady state error
in an acceptable level. Figure 3 shows the model
tracking and steady state errors due to the lack of the
integral compensator. Actually, the integral
compensator has not considerable effect on the
control system when the error (e) is small and no
effect when the MNN controller provides the desired
performance.

Algorithm for integral compensator can be written
as follows:

if TL(MNN) = TL(max)       then T(i) = 0

    else T(i) = Ki ∫ e dt

if T(i) >| TL(max)-TL(MNN) | then T(i)=| TL(max)- TL(MNN)|

    else T(i)=T(i)

TL=TL(MNN)+T(i)

where TL(MNN) is the output of the MNN and T(i) is the
output of the integrator. Note that an anti-windup
integrator is employed in order to stop the integration
during the saturation [7]. Integral compensator gain Ki
may be set manually however, in order to increase the
performance of the compensator, it can be determined
adaptively by using the gradient descent method after
the training of the MNN. In this case, the value of the
learning rate used to train Ki becomes important since
the error will be zero in a short time during the training
and, the best value of Ki should be calculated in this
period.

4. TRAINING OF THE MULTILAYER
NEURAL NEWORKS

Training of the MNN means finding a procedure
for the adaptation of the MNN weights which
minimize the selected performance criteria. Pattern
learning algorithm for the training of the neuro-
controller is inevitable for on-line adaptation. For
pattern learning, the error (e) between the model and
actual speed (model tracking error), and the square of
the error as a performance criteria (E) are defined in
discrete time as:

( ) ( ) ( )

( ) ( )ke
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where ωm(k) is the speed of the load model. Note that
the MNN output error (et) between the ideal and actual
load machine torque is not known explicitly.
Therefore, this error should be estimated using the
model tracking error as follows:
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If the derivative of 
LT∂

∂ω  is calculated in discrete

time, the MNN output error can be found as:
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Actually, instead of accurate value of 
LT∂

∂ω
, the sign

of this derivative is sufficient for the training of the
MNN and, this procedure is known as direct adaptive
control, since the forward MNN model of the motor is
not used for the training of the MNN controller.

In this study, 3-6-1 (the number of inputs, hidden
layer neurons and output respectively) MNN which
has a hidden layer with sigmoid and an output neuron
with linear activation function is used. Feedforward
mathematical relation of the MNN can be written as:
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where, ( ) ( ) ( ) ( )[ ]kT1k1kkx emi ,, −−= ωω  is the ith

input vector of the MNN, vj(k) is the jth output of the
hidden layer, Wji is the weight between the ith input
and the jth hidden layer neuron and θj is the jth weight
of the output layer. As an example of training,
correction to be applied to any weight in the hidden
layer can be calculated as follows:

( ) ( ) ( ) ( )1kWkxkkW jiijji −−= ∆ηµδ∆ (11)

where, δj is known as local error for any neuron in the
hidden layer and can be calculated as:
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Fig. 3  The steady state errors in the neuro load emulation
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( ) ( ) ( ) )( ⋅′= jjtj kkek ϕθδ (12)
where ϕ 'j(⋅) is the derivative of the hidden layer
activation function.

If the neural network control strategy given above
is implemented in practice, due to the difficulty of the
off-line adaptation, the on-line adaptation, which is
usually known as pattern learning in the neural
network literature, should be used. However, this may
result in undesired responses in the initial training stage
since the MNN weights are assigned randomly. In
addition, external torque or speed dependent inertia
and friction may cause the wrong gradient which is
calculated according to the actual input (TL) in Eq. (8).
It is clear that a suitable solution for this type of
problems is to choose appropriate initial values of the
weights of the MNN. Thus, this requires the simulation
of the system and then the weights obtained from the
simulated system can be used for practical
applications. Since the MNN learns the nonlinear
motor dynamics instead of memorizing the motor
parameters, it is expected that the pre-training provides
a reasonable start for the training of the MNN in
practice.

In this study, the MNN is trained for the constant
values of Jm=2J and Bm=5B and then the weights
obtained are used as initial weights of the MNN
controller which is used in the nonlinear parameter
variation cases. Actually, it has been seen that the
weights obtained from the simulation for constant Jm
and Bm values provide a reasonable control
performance for the nonlinear load models however, a
better performance is obtained by continuing the
training.

5. SIMULATION RESULTS

Performance of the neural network control structure
given in Figure 2 is tested for the drive system which
has the nominal parameters: J=3.5×10-3 kgm2,
B=7×10-4 Nms, Temax=5 Nm, TLmax=5 Nm. A suitable
PI controller is designed for the drive machine since
the aim of this paper is to control the load machine
using the MNN to provide a desired load model. The
initial training of the MNN is implemented for a linear
load model which has the parameters of Jm=2J and
Bm=5B. For the training, 300.000 (Ts is 5 ms) patterns
are used with the learning rate of 2×10-3. Good
emulation performance is obtained and neural
networks weights are saved.

When the control performance of the trained MNN
(without the integral compensator) is tested for
nonlinear load models of Eqs. (13) and (14),
reasonable model tracking performances are observed.
However, in order to provide the accurate dynamics of
the load model for the emulation, more training is
required. Note that the integral compensator is used to
eliminate only small errors and thus, more training is
necessary to reduce the model tracking error. In Eqs.
(13) and (14), J and B are the total nominal inertia and

friction of the drive and load machine, Jm and Bm are
the nonlinear inertia and friction to be emulated:

ω

ω

ω

⋅+=

⋅+=

<<=

am

2
m

mext

BB10B

KJ4J

8060Nm2T ,

(13)

where Text is the external disturbance torque and the
constants are K=2×10-6 and Ba=1×10-4. Equation (13)
implies that the drive machine is faced on the speed
dependent inertia and friction in addition to the
external pulse disturbance torque. Training of the
MNN controller is carried on for 150.000 patterns for
sinusoidal speed reference and then the weights are
saved. The performance of the trained MNN and the
integral compensator is tested for the sinusoidal and
step input references as shown in Figures 4 and 5.
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Figure 4(a) shows the model and actual speeds for
the sinusoidal speed reference. An external pulse
torque of 2 Nm is also applied as seen in Figure 4(a).
Figure 4(b) shows the torques of the drive and load
machines (Te and TL). In addition, Figure 5 shows the
performance of the controllers for a step speed
reference with an external torque of 4 Nm applied at
t=1.25 s. Note that the step input reference has a value
of 100 rad/s between t=0 and 0.75 seconds and then
the step is changed to 50 rad/s at t=0.75s. As seen in
these figures, very good emulation performances are
obtained.

Another generalization performance of the trained
MNN controller is given in Figure 6 with the load
model of Eq. (14) in which the emulated inertia and
friction change as a function of the speed. Note that
the drive machine torque is not shown in Figure 6(b)
for clarity. The step reference input (ω*) used in Figure
6(c) is the same as in Figure 5(a):

( )
( )ω

ω

150B5B10B

150J3J4J

m

m

.cos

.sin

+=

+=
(14)

or inverse dynamics problems. In this study, simulation
results showing the performance of the emulation
strategy are presented and some practical constraints
(e.g., the torque demand limitation, the training
problems due to the on-line implementation) are taken
into consideration in the simulations. The experimental
implementation of the proposed emulation strategy
will be the subject of further work.
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OPONA[ANJE NELINEARNIH MEHANI^KIH OPTERE]ENJA POMO]U VIŠESLOJNIH
NEURALNIH MRE@A

SA@ETAK

Ovaj rad opisuje kontrolu obrtanja vektorom kontroliranog stroja (dinamometra) koji je mehani~ki povezan za
pogonski stroj zbog opona{anja nelinearnih optere}enja. Predlo`ena strategija kontrole dinamometra zasniva se
na modelu odgovaraju}e kontrole koja koristi on-line trenirane višeslojne neuralne mre`e (MNN). Opona{anje se
uklju~uje u kontrolu brzine zatvorene petlje pogonskog stroja. Nakon treniranja neurokontrolora, pogonski stroj }e
polu~iti `eljeno nelinearno mehani~ko optere}enje. Integralni kompenzator koji podupire trenirani MNN koristi se
za eliminaciju ili smanjenje grešaka modela traganja za stabilnim stanjem. Ovaj rad govori i o problemima treniranja
MNN kod pogonskih sustava. Brojni modeli optere}enja koji su nelinearna funkcija brzine, trenja i tromosti uspješno
se opona{aju, a sposobnost generalizacije tretiranog MNN testira se za razli~ite odgovaraju}e ulazne podatke.
Predstavljeni su rezultati simulacije koji pokazuju izvrsnu kontrolu rada dinamometara.

Klju~ne rije~i: opona{anje optere}enja, vi{eslojne neuralne mre`e, nelinearno optere}enje, dinamometar, kontrola
obrtanja.


